Abstract

Imaging through a scattering medium has been a main challenge in modern optical imaging field. Recently, imaging through scattering medium based on wavefront shaping has been reported. However, it has not been clearly investigated to apply the optical memory effect based iterative wavefront shaping technique in speed estimation of a moving object through scattering medium. Here, we proposed to combine the iterative wavefront shaping technique with laser speckle contrast analysis method to detect the relative speed changes of moving objects through scattering medium. Phantom experiments were performed to validate our method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapid wide-field imaging through scattering media by digital holographic wavefront correction

Runze Li, Tong Peng, Meiling Zhou, Xianghua Yu, Peng Gao, Junwei Min, Yanlong Yang, Ming Lei, Baoli Yao, Chunmin Zhang, and Tong Ye
Appl. Opt. 58(11) 2845-2853 (2019)

Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function

Xiaoqing Xu, Xiangsheng Xie, Hexiang He, Huichang Zhuang, Jianying Zhou, Abhilash Thendiyammal, and Allard P Mosk
Opt. Express 25(26) 32829-32840 (2017)

Real-time optical manipulation of particles through turbid media

Tong Peng, Runze Li, Sha An, Xianghua Yu, Meiling Zhou, Chen Bai, Yansheng Liang, Ming Lei, Chunmin Zhang, Baoli Yao, and Peng Zhang
Opt. Express 27(4) 4858-4866 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Tyson, Principles of Adaptive Optics (Academic Press, 2010).
  2. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  3. P. Sebbah, Waves and Imaging Through Complex Media (Springer Science & Business Media, 2012).
  4. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
    [Crossref]
  5. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref] [PubMed]
  6. Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
    [Crossref] [PubMed]
  7. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  8. M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23(10), 12648–12668 (2015).
    [Crossref] [PubMed]
  9. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  10. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref] [PubMed]
  11. J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
    [Crossref] [PubMed]
  12. H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
    [Crossref] [PubMed]
  13. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
    [Crossref] [PubMed]
  14. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
    [Crossref] [PubMed]
  15. G. Ghielmetti and C. M. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” Opt. Express 20(4), 3744–3752 (2012).
    [Crossref] [PubMed]
  16. G. Ghielmetti and C. M. Aegerter, “Direct imaging of fluorescent structures behind turbid layers,” Opt. Express 22(2), 1981–1989 (2014).
    [Crossref] [PubMed]
  17. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
    [Crossref] [PubMed]
  18. H. Yu, J. Jang, J. Lim, J. H. Park, W. Jang, J. Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
    [Crossref] [PubMed]
  19. J. A. Newman and K. J. Webb, “Information about moving objects embedded within heavily scattering media with speckle intensity correlations,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper FTh3D.5.
    [Crossref]
  20. E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
    [Crossref] [PubMed]
  21. C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2(10), 869–876 (2015).
    [Crossref]
  22. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [Crossref] [PubMed]
  23. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
    [Crossref] [PubMed]
  24. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
    [Crossref] [PubMed]
  25. R. Berkovits, M. Kaveh, and S. Feng, “Memory effect of waves in disordered systems: A real-space approach,” Phys. Rev. B Condens. Matter 40(1), 737–740 (1989).
    [Crossref] [PubMed]
  26. I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
    [Crossref]
  27. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
    [Crossref] [PubMed]
  28. H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32(15), 2188–2190 (2007).
    [Crossref] [PubMed]
  29. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [Crossref] [PubMed]
  30. T. W. Wu and M. Cui, “Numerical study of multi-conjugate large area wavefront correction for deep tissue microscopy,” Opt. Express 23(6), 7463–7470 (2015).
    [Crossref] [PubMed]
  31. B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
    [Crossref]

2015 (6)

2014 (5)

2013 (3)

2012 (4)

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref] [PubMed]

G. Ghielmetti and C. M. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” Opt. Express 20(4), 3744–3752 (2012).
[Crossref] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

2010 (3)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
[Crossref] [PubMed]

2008 (1)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

1990 (1)

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

1989 (1)

R. Berkovits, M. Kaveh, and S. Feng, “Memory effect of waves in disordered systems: A real-space approach,” Phys. Rev. B Condens. Matter 40(1), 737–740 (1989).
[Crossref] [PubMed]

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Aegerter, C. M.

Berkovits, R.

R. Berkovits, M. Kaveh, and S. Feng, “Memory effect of waves in disordered systems: A real-space approach,” Phys. Rev. B Condens. Matter 40(1), 737–740 (1989).
[Crossref] [PubMed]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Briers, D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Cheng, H.

Choi, H.

Choi, W.

Choi, Y.

Conkey, D. B.

Cui, M.

Duncan, D. D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Duong, T. Q.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Feng, S.

R. Berkovits, M. Kaveh, and S. Feng, “Memory effect of waves in disordered systems: A real-space approach,” Phys. Rev. B Condens. Matter 40(1), 737–740 (1989).
[Crossref] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Freund, I.

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Ghielmetti, G.

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Grabar, A. A.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

Guan, Y.

Ha, J.

He, H.

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Hirst, E.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Horstmeyer, R.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

Jang, J.

Jang, W.

Judkewitz, B.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
[Crossref] [PubMed]

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Kaveh, M.

R. Berkovits, M. Kaveh, and S. Feng, “Memory effect of waves in disordered systems: A real-space approach,” Phys. Rev. B Condens. Matter 40(1), 737–740 (1989).
[Crossref] [PubMed]

Kim, J. Y.

Kim, M.

Kirkpatrick, S. J.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Lai, P.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

Larsson, M.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Lee, S.

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Li, P.

Lim, J.

Liu, Y.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2(10), 869–876 (2015).
[Crossref]

Luo, Q.

Ma, C.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2(10), 869–876 (2015).
[Crossref]

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Newman, J. A.

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[Crossref] [PubMed]

Ni, S.

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Oh, W. Y.

Papadopoulos, I. N.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

Park, J. H.

Park, Y.

Piestun, R.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

Ruan, H.

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Steenbergen, W.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Stromberg, T.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Thompson, O. B.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Vellekoop, I. M.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Wang, L. V.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

C. Ma, F. Zhou, Y. Liu, and L. V. Wang, “Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation,” Optica 2(10), 869–876 (2015).
[Crossref]

Webb, K. J.

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[Crossref] [PubMed]

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Wu, T. W.

Xu, X.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

Yang, C.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, “Focusing on moving targets through scattering samples,” Optica 1(4), 227–232 (2014).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yoon, C.

Yu, H.

Zeng, S.

Zhang, L.

Zhou, E. H.

Zhou, F.

Zhou, J.

J. Biomed. Opt. (2)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light,” Nat. Commun. 6, 5904 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Nat. Phys. (1)

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, “Translation correlations in anisotropically scattering media,” Nat. Phys. 11(8), 684–689 (2015).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref] [PubMed]

Opt. Express (9)

H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
[Crossref] [PubMed]

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref] [PubMed]

G. Ghielmetti and C. M. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” Opt. Express 20(4), 3744–3752 (2012).
[Crossref] [PubMed]

G. Ghielmetti and C. M. Aegerter, “Direct imaging of fluorescent structures behind turbid layers,” Opt. Express 22(2), 1981–1989 (2014).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

H. Yu, J. Jang, J. Lim, J. H. Park, W. Jang, J. Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
[Crossref] [PubMed]

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23(10), 12648–12668 (2015).
[Crossref] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref] [PubMed]

T. W. Wu and M. Cui, “Numerical study of multi-conjugate large area wavefront correction for deep tissue microscopy,” Opt. Express 23(6), 7463–7470 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (2)

Phys. Rev. B Condens. Matter (1)

R. Berkovits, M. Kaveh, and S. Feng, “Memory effect of waves in disordered systems: A real-space approach,” Phys. Rev. B Condens. Matter 40(1), 737–740 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref] [PubMed]

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Physica A (1)

I. Freund, “Looking through walls and around corners,” Physica A 168(1), 49–65 (1990).
[Crossref]

Other (3)

R. Tyson, Principles of Adaptive Optics (Academic Press, 2010).

P. Sebbah, Waves and Imaging Through Complex Media (Springer Science & Business Media, 2012).

J. A. Newman and K. J. Webb, “Information about moving objects embedded within heavily scattering media with speckle intensity correlations,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper FTh3D.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup is shown for speed detection of moving object through scattering medium. Laser, Neutral density filter (ND), Collimating lens (CL), Moving diffuser (MD), Object plan (OP), Beam dump (BD), Beam splitter (BS), Objective (O1 and O2), Lens (L1 and L2), Charge coupled device (CCD), Spatial Light Modulator (SLM). Moving diffuser is a piece of moving ground glass or a fluid sample set at the speed of v.
Fig. 2
Fig. 2 Optimization process and results: a, An optimized target image corresponding to the pinhole: an image with a circle bright spot about 100 μm in diameter at the central of the image. b, Before correction: point light source is directly imaged through scattering system (with a flat pattern on SLM). c, After correction: a point image is generated when an appropriate phase pattern is loaded on the SLM. Inset: the optimized phase mask. d, The optimization process is shown by the correlation coefficient along the iteration times in the genetic algorithm. e, The imaging of a double-hole aperture after correction. f, The imaging of a ‘-’ shape aperture after correction. Scale bars: 500 μm.
Fig. 3
Fig. 3 The moving ground glass experimental results: the raw images through a highly scattering diffuser and the speed maps with laser speckle temporal contrast analysis at different speeds. a and b, the raw images without correction (loading the flat pattern on the SLM) at different speeds: lower speed (3.06 mm/s) and higher speed (7.64 mm/s). c and d, the speed maps obtained with the laser speckle temporal contrast analysis corresponding to (a) and (b). e and f, the raw images with correction (loading the optimized pattern on the SLM) at different speeds: lower speed (3.06 mm/s) and higher speed (7.64 mm/s). g and h, the speed maps obtained with the laser speckle temporal contrast analysis corresponding to (e) and (f). Scale bars: 500 μm.
Fig. 4
Fig. 4 1/K2 versus the actual speed both with correction and without correction in the moving ground glass experiment. (1/K2) is calculated from the same region of interest (ROI) in the raw images of the moving object at a range of different speeds without wavefront correction (the red square, ROI chosen in Fig. 3(d)) and with wavefront correction (the blue circle, ROI chosen in Fig. 3(h)).
Fig. 5
Fig. 5 Fluid experimental results: the raw images through a highly scattering diffuser and the speed maps with laser speckle temporal contrast analysis at different speeds. a and b, the raw images without correction (loading the flat pattern on the SLM) at different speeds: lower (5.05mm/s) and higher speed (8.07 mm/s). c and d, the speed maps obtained with the laser speckle temporal contrast analysis corresponding to (a) and (b). e and f, the raw images with correction (loading the optimized pattern on the SLM) at different speeds: lower speed (5.05 mm/s) and higher speed (8.07 mm/s). g and h, the speed maps obtained with the laser speckle temporal contrast analysis corresponding to (e) and (f). Scale bars: 500 μm.
Fig. 6
Fig. 6 1/K2 versus the actual speed both with correction and without correction in the fluid phantom experiment. 1/K2 is calculated from the region of interest (ROI, about 20×10 pixels) in the raw images of the moving object at a range of different speeds without wavefront correction (the red square, ROI chosen in Fig. 5(d)) and with wavefront correction (the blue circle, ROI chosen in Fig. 5(h)).
Fig. 7
Fig. 7 1/K2 versus the actual speed at different light intensity level without wavefront correction in the moving ground glass experiment. The averages light intensity in the raw images are 15, 31 and 200 respectively. 1/K2 is calculated from the same region (about 30×30 pixels) in the raw images at different speed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K t (x,y)= σ x,y /< I x,y >= 1 N1 { n=1 N [ I x,y (n)< I x,y >] 2 } /< I x,y >

Metrics