Abstract

This paper proposes and analyzes resonant Si-based electro-optical modulators and switches that use Ge-on-Si3N4 nanobeams (NBs) operating at 2 to 5 µm wavelengths. The wavelength of operation can be extended to 15 µm by mounting the Ge channel waveguides on a bulk Si chip. Electrons and holes are injected into the intrinsic Ge NB cavity center via thin P- and N- doped Ge wings on the NB (a lateral PIN diode at ~0.5 V forward bias). Simulations of the carrier-induced resonance-wavelength shift-and-damping in a 1 × 1 modulator show 6 dB of extinction at ~60 fJ/bit over the mid infrared. The NB’s active length is λ-scale. The cavity uses tapered-diameter air holes. Intensity modulation at ~1 Gb/s appears feasible. High-performance 2 × 2 switching is predicted by embedding one NB in each arm of a Mach-Zehnder device. The resonance of each identical NB is shifted by the same Δλ via carrier injection. Calculations show very low insertion loss and crosstalk in both the cross and bar states; however, the cross-to-bar energy, around 8 pJ/bit, is much higher than that in the 2 × 2 version that employs PN-junction carrier depletion.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation

Joshua Hendrickson, Richard Soref, Julian Sweet, and Walter Buchwald
Opt. Express 22(3) 3271-3283 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref and J. Hendrickson, “Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N × N switching, logic, and wavelength multiplexing,” Opt. Express 23(25), 32582–32596 (2015).
    [Crossref] [PubMed]
  2. J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
    [Crossref] [PubMed]
  3. A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22(23), 28623–28634 (2014).
    [PubMed]
  4. M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: Constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
    [Crossref]
  5. Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
    [Crossref] [PubMed]
  6. W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
    [Crossref] [PubMed]
  7. B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
    [Crossref]
  8. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  9. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40(21), 4823–4826 (2015).
    [Crossref] [PubMed]
  10. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  11. L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
    [Crossref] [PubMed]
  12. B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
    [Crossref] [PubMed]
  13. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
    [Crossref]
  14. T. J. Johnson and O. J. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2009), paper CFF4.
    [Crossref]
  15. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  16. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005).
    [Crossref] [PubMed]
  17. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
    [Crossref] [PubMed]
  18. L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
    [Crossref] [PubMed]
  19. V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
    [Crossref]
  20. J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-Insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42(2), 259–263 (2016).
    [Crossref]
  21. F. Y. Gardes, C. G. Littlejohns, J. S. Penades, C. J. Mitche, A. Z. Khokhar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” in 7th Int’l. Silicon-Germanium Technology and Device Meeting (2014), pp. 139–240.
  22. J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Design and characterization of Ge passive waveguide components on ge-on-insulator for mid-infrared photonics,” in 2016 Optical Fiber Conference (OSA, 2016), paper Tu3E.4.
  23. R. A. Soref, S. Emelett, and W. Buchwald, “Silicon waveguided components for the long-wave infrared,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
    [Crossref]
  24. C. Wolff, R. Soref, C. G. Poulton, and B. J. Eggleton, “Germanium as a material for stimulated Brillouin scattering in the mid-infrared,” Opt. Express 22(25), 30735–30747 (2014).
    [Crossref] [PubMed]
  25. H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).
  26. Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. Wooler, N. Wheeler, A. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. Petrovich, S. Alam, D. Richardson, and R. Slavik, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
    [Crossref]
  27. R. Soref, “Enabling 2-μm communications,” Nat. Photonics 9(6), 358-359 (2015).
  28. R. Soref, “Mid-infrared photonics,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015) paper W4A.4.
  29. R. Soref, “Group IV photonics for the mid-infrared,” Proc. SPIE 8629, 862902 (2013).
    [Crossref]
  30. X. Yang, F. Cheng, and R. Soref, “Single-mode GeSn mid-infrared waveguides on group-IV substrates,” Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, 2014), paper JTH2A.
    [Crossref]
  31. R. Soref, “Silicon-based silicon-germanium-tin heterostructure photonics,” Philos. Trans. R. Soc. A 371, 20130113 (2014).
  32. M. Nedeljkovic, R. Soref, and G. Z. Mashovich, “Germanium modulation via the free carrier plasma dispersion effect,” presented at the European Optical Society Annual Meeting (2014).
  33. R. Soref, “Mid-infrared 2 × 2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection,” Photonics Res. 2(5), 102–110 (2014).
    [Crossref]
  34. K. Wada and L. C. Kimerling, Photonics and Electronics with Germanium (Wiley-VCH, 2015).
  35. Y.-C. Chang, V. Paeder, L. Hvozdara, J.-M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37(14), 2883–2885 (2012).
    [Crossref] [PubMed]
  36. A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
    [Crossref]
  37. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
    [Crossref]
  38. A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
    [Crossref] [PubMed]
  39. M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
    [Crossref]
  40. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  41. S. Gupta, S. A. Srinivasan, M. Pantouvaki, H. Chen, P. Verbeyen, G. Lepage, D. Van Thourhout, G. Roelkens, K. Saraswat, P. Absil, and J. Van Campenhout, “50 GHz Ge waveguide electro-absorption modulator integrated in a 220-nm SOI photonics platform,” in Optical Fiber Communications Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper Tu2A.4.
  42. M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Loncar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
    [Crossref]
  43. Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Lončar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34(17), 2694–2696 (2009).
    [Crossref] [PubMed]
  44. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/device/
  45. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photonics J. 7(3), 1–14 (2015).
    [Crossref]
  46. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1 to 14 μm infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
    [Crossref]
  47. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2Suppl 2), A293–A308 (2012).
    [Crossref] [PubMed]
  48. C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665 (2015).
    [Crossref]

2016 (2)

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-Insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42(2), 259–263 (2016).
[Crossref]

2015 (11)

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
[Crossref] [PubMed]

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
[Crossref] [PubMed]

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: Constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

R. Soref and J. Hendrickson, “Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N × N switching, logic, and wavelength multiplexing,” Opt. Express 23(25), 32582–32596 (2015).
[Crossref] [PubMed]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40(21), 4823–4826 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. Wooler, N. Wheeler, A. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. Petrovich, S. Alam, D. Richardson, and R. Slavik, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

R. Soref, “Enabling 2-μm communications,” Nat. Photonics 9(6), 358-359 (2015).

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665 (2015).
[Crossref]

2014 (7)

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

C. Wolff, R. Soref, C. G. Poulton, and B. J. Eggleton, “Germanium as a material for stimulated Brillouin scattering in the mid-infrared,” Opt. Express 22(25), 30735–30747 (2014).
[Crossref] [PubMed]

R. Soref, “Silicon-based silicon-germanium-tin heterostructure photonics,” Philos. Trans. R. Soc. A 371, 20130113 (2014).

R. Soref, “Mid-infrared 2 × 2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection,” Photonics Res. 2(5), 102–110 (2014).
[Crossref]

J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
[Crossref] [PubMed]

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22(23), 28623–28634 (2014).
[PubMed]

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

2013 (4)

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

R. Soref, “Group IV photonics for the mid-infrared,” Proc. SPIE 8629, 862902 (2013).
[Crossref]

2012 (3)

2011 (4)

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1 to 14 μm infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Loncar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

2010 (2)

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).

2009 (1)

2006 (1)

R. A. Soref, S. Emelett, and W. Buchwald, “Silicon waveguided components for the long-wave infrared,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

2005 (2)

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005).
[Crossref] [PubMed]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Alam, S.

Aleksandrova, A.

Alipuor-Banaei, H.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: Constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Almeida, V. R.

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Alonso-Ramos, C.

Andalib, A.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: Constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Armstrong, B. M.

H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).

Bain, M. F.

H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).

Baine, P. R.

H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Becker, M.

Bradley, T.

Buchwald, W.

J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
[Crossref] [PubMed]

R. A. Soref, S. Emelett, and W. Buchwald, “Silicon waveguided components for the long-wave infrared,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

Bucio, T. D.

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
[Crossref]

Burgess, I. B.

Calvo, V.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Chang, Y.-C.

Chashnikova, M.

Chelnokov, A.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Chen, Y.

Claps, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

Deotare, P. B.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Loncar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

Diaz, G. O.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Dimitropoulos, D.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

Dwivedi, S.

Ebrahimy, M. N.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: Constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Eggleton, B. J.

Emelett, S.

R. A. Soref, S. Emelett, and W. Buchwald, “Silicon waveguided components for the long-wave infrared,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

Faist, J.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Fedosenko, O.

Fegadolli, W. S.

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

Flores, Y.

Foster, M. A.

Fowler, D.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Gaeta, A. L.

Gamble, H. S.

H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).

Gardes, F. Y.

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
[Crossref]

F. Y. Gardes, C. G. Littlejohns, J. S. Penades, C. J. Mitche, A. Z. Khokhar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” in 7th Int’l. Silicon-Germanium Technology and Device Meeting (2014), pp. 139–240.

Gasseng, A.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Geiger, R.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Gruska, B.

Guilloy, K.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Hartmann, J. M.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Hartmann, J.-M.

Healy, N.

Heidt, A.

Hendrickson, J.

Herzig, H. P.

Hvozdara, L.

Jalali, B.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

Jhaveri, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

Jiang, X.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Jones, W. M.

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

Kang, J.

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-Insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42(2), 259–263 (2016).
[Crossref]

Kelly, B.

Khokhar, A. Z.

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
[Crossref]

F. Y. Gardes, C. G. Littlejohns, J. S. Penades, C. J. Mitche, A. Z. Khokhar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” in 7th Int’l. Silicon-Germanium Technology and Device Meeting (2014), pp. 139–240.

Kischkat, J.

Klinkmüller, M.

Kuramochi, E.

Lamont, M. R. E.

Lepage, G.

Levy, J. S.

Li, M.

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

Li, Y.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Li, Z.

Lipson, M.

Littlejohns, C. G.

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
[Crossref]

F. Y. Gardes, C. G. Littlejohns, J. S. Penades, C. J. Mitche, A. Z. Khokhar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” in 7th Int’l. Silicon-Germanium Technology and Device Meeting (2014), pp. 139–240.

Liu, Z.

Loncar, M.

Loo, R.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Low, Y. H.

H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).

Luke, K.

Machulik, S.

Malik, A.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Mashanovich, G. Z.

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
[Crossref] [PubMed]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1 to 14 μm infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

F. Y. Gardes, C. G. Littlejohns, J. S. Penades, C. J. Mitche, A. Z. Khokhar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” in 7th Int’l. Silicon-Germanium Technology and Device Meeting (2014), pp. 139–240.

Masselink, W. T.

McCutcheon, M. W.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Loncar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Lončar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34(17), 2694–2696 (2009).
[Crossref] [PubMed]

McNeill, D. W.

H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).

Miller, D. A. B.

Mitche, C. J.

F. Y. Gardes, C. G. Littlejohns, J. S. Penades, C. J. Mitche, A. Z. Khokhar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” in 7th Int’l. Silicon-Germanium Technology and Device Meeting (2014), pp. 139–240.

Mitchell, C. J.

Monastyrskyi, G.

Montgomery, J. H.

H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).

Muneeb, M.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Nedeljkovic, M.

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
[Crossref] [PubMed]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1 to 14 μm infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

Nishiguchi, K.

Notomi, M.

Nozaki, K.

O’Carroll, J.

Okawachi, Y.

Oliveira, J. E. B.

Orafaei, H.

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: Constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Orcutt, J. S.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665 (2015).
[Crossref]

Paeder, V.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Passaro, V. M. N.

Pathak, S.

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Pauc, N.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Peacock, A. C.

Penades, J. S.

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
[Crossref] [PubMed]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
[Crossref]

F. Y. Gardes, C. G. Littlejohns, J. S. Penades, C. J. Mitche, A. Z. Khokhar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” in 7th Int’l. Silicon-Germanium Technology and Device Meeting (2014), pp. 139–240.

Peters, S.

Petrovich, M.

Phelan, R.

Poitras, C. B.

Poletti, F.

Popovic, M. A.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665 (2015).
[Crossref]

Poulton, C. G.

Poulton, C. V.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665 (2015).
[Crossref]

Preble, S. F.

Qi, B.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Quan, Q.

Rainey, P. V.

H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).

Reboud, V.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Reed, G. T.

F. Y. Gardes, C. G. Littlejohns, J. S. Penades, C. J. Mitche, A. Z. Khokhar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” in 7th Int’l. Silicon-Germanium Technology and Device Meeting (2014), pp. 139–240.

Richardson, D.

Richter, T.

Roelkens, G.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Salem, R.

Scherer, A.

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

Schmidt, B. S.

Schubert, C.

Semtsiv, M.

Shainline, J. M.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665 (2015).
[Crossref]

Shakoor, A.

Shen, L.

Shimura, Y.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

Shinya, A.

Sigg, H.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Slavik, R.

Soref, R.

R. Soref and J. Hendrickson, “Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N × N switching, logic, and wavelength multiplexing,” Opt. Express 23(25), 32582–32596 (2015).
[Crossref] [PubMed]

R. Soref, “Enabling 2-μm communications,” Nat. Photonics 9(6), 358-359 (2015).

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
[Crossref] [PubMed]

R. Soref, “Silicon-based silicon-germanium-tin heterostructure photonics,” Philos. Trans. R. Soc. A 371, 20130113 (2014).

R. Soref, “Mid-infrared 2 × 2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection,” Photonics Res. 2(5), 102–110 (2014).
[Crossref]

C. Wolff, R. Soref, C. G. Poulton, and B. J. Eggleton, “Germanium as a material for stimulated Brillouin scattering in the mid-infrared,” Opt. Express 22(25), 30735–30747 (2014).
[Crossref] [PubMed]

R. Soref, “Group IV photonics for the mid-infrared,” Proc. SPIE 8629, 862902 (2013).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1 to 14 μm infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

Soref, R. A.

R. A. Soref, S. Emelett, and W. Buchwald, “Silicon waveguided components for the long-wave infrared,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

Stankovic, S.

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
[Crossref]

Sweet, J.

Takagi, S.

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-Insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42(2), 259–263 (2016).
[Crossref]

Takenaka, M.

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-Insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42(2), 259–263 (2016).
[Crossref]

Troia, B.

Turner-Foster, A. C.

Van Campenhout, J.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

Van Landschoot, L.

Van Opstal, T.

Vanherle, W.

Wade, M. T.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665 (2015).
[Crossref]

Wheeler, N.

Widiez, J.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Wolff, C.

Woo, J. C. S.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

Wooler, J.

Xu, Q.

Yang, J.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Yang, M.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Yu, P.

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Yu, X.

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-Insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42(2), 259–263 (2016).
[Crossref]

Zabe, T.

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

Zeng, X.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665 (2015).
[Crossref]

Zhang, Y.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Loncar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Lončar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34(17), 2694–2696 (2009).
[Crossref] [PubMed]

ACS Nano (1)

Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, and M. Li, “Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities,” ACS Nano 8(1), 522–527 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared,” Appl. Phys. Lett. 103(16), 161119 (2013).
[Crossref]

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Loncar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98(11), 111117 (2011).
[Crossref]

ECS Trans. (1)

H. S. Gamble, P. R. Baine, Y. H. Low, P. V. Rainey, J. H. Montgomery, M. F. Bain, B. M. Armstrong, and D. W. McNeill, “Germanium on sapphire technology,” ECS Trans. 33(11), 37–50 (2010).

IEEE Photonics J. (2)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photonics J. 7(3), 1–14 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1 to 14 μm infrared wavelength range,” IEEE Photonics J. 3(6), 1171–1180 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (4)

A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. Van Campenhout, R. Loo, and G. Roelkens, “Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers,” IEEE Photonics Technol. Lett. 25(18), 1805–1808 (2013).
[Crossref]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-grating coupled low-loss Ge-on-Si rib waveguides and multimode interferometers,” IEEE Photonics Technol. Lett. 27, 1 (2015).
[Crossref]

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665 (2015).
[Crossref]

B. Qi, P. Yu, Y. Li, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

R. A. Soref, S. Emelett, and W. Buchwald, “Silicon waveguided components for the long-wave infrared,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

Mater. Sci. Semicond. Process. (1)

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-Insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42(2), 259–263 (2016).
[Crossref]

Nat. Photonics (1)

R. Soref, “Enabling 2-μm communications,” Nat. Photonics 9(6), 358-359 (2015).

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (9)

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” Opt. Express 21(3), 3861–3871 (2013).
[Crossref] [PubMed]

R. Soref and J. Hendrickson, “Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N × N switching, logic, and wavelength multiplexing,” Opt. Express 23(25), 32582–32596 (2015).
[Crossref] [PubMed]

J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
[Crossref] [PubMed]

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22(23), 28623–28634 (2014).
[PubMed]

C. Wolff, R. Soref, C. G. Poulton, and B. J. Eggleton, “Germanium as a material for stimulated Brillouin scattering in the mid-infrared,” Opt. Express 22(25), 30735–30747 (2014).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2Suppl 2), A293–A308 (2012).
[Crossref] [PubMed]

Opt. Lett. (7)

Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Lončar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34(17), 2694–2696 (2009).
[Crossref] [PubMed]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40(21), 4823–4826 (2015).
[Crossref] [PubMed]

Y.-C. Chang, V. Paeder, L. Hvozdara, J.-M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37(14), 2883–2885 (2012).
[Crossref] [PubMed]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
[Crossref] [PubMed]

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005).
[Crossref] [PubMed]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40(2), 268–271 (2015).
[Crossref] [PubMed]

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41(3), 610–613 (2016).
[Crossref] [PubMed]

Philos. Trans. R. Soc. A (1)

R. Soref, “Silicon-based silicon-germanium-tin heterostructure photonics,” Philos. Trans. R. Soc. A 371, 20130113 (2014).

Photonics Res. (1)

R. Soref, “Mid-infrared 2 × 2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection,” Photonics Res. 2(5), 102–110 (2014).
[Crossref]

Physica E (1)

M. N. Ebrahimy, H. Orafaei, A. Andalib, and H. Alipuor-Banaei, “Low power electro-optical filter: Constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Proc. SPIE (2)

V. Reboud, J. Widiez, J. M. Hartmann, G. O. Diaz, D. Fowler, A. Chelnokov, A. Gasseng, K. Guilloy, N. Pauc, V. Calvo, R. Geiger, T. Zabe, J. Faist, and H. Sigg, “Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications,” Proc. SPIE 9367, 936714 (2015).
[Crossref]

R. Soref, “Group IV photonics for the mid-infrared,” Proc. SPIE 8629, 862902 (2013).
[Crossref]

Other (10)

X. Yang, F. Cheng, and R. Soref, “Single-mode GeSn mid-infrared waveguides on group-IV substrates,” Conference on Lasers and Electro-Optics, OSA Technical Digest Series (Optical Society of America, 2014), paper JTH2A.
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashovich, “Germanium modulation via the free carrier plasma dispersion effect,” presented at the European Optical Society Annual Meeting (2014).

K. Wada and L. C. Kimerling, Photonics and Electronics with Germanium (Wiley-VCH, 2015).

F. Y. Gardes, C. G. Littlejohns, J. S. Penades, C. J. Mitche, A. Z. Khokhar, G. T. Reed, and G. Z. Mashanovich, “Germanium for photonic applications,” in 7th Int’l. Silicon-Germanium Technology and Device Meeting (2014), pp. 139–240.

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Design and characterization of Ge passive waveguide components on ge-on-insulator for mid-infrared photonics,” in 2016 Optical Fiber Conference (OSA, 2016), paper Tu3E.4.

R. Soref, “Mid-infrared photonics,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015) paper W4A.4.

T. J. Johnson and O. J. Painter, “Passive modification of free carrier lifetime in high-Q silicon-on-insulator optics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest Series (Optical Society of America, 2009), paper CFF4.
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/device/

S. Gupta, S. A. Srinivasan, M. Pantouvaki, H. Chen, P. Verbeyen, G. Lepage, D. Van Thourhout, G. Roelkens, K. Saraswat, P. Absil, and J. Van Campenhout, “50 GHz Ge waveguide electro-absorption modulator integrated in a 220-nm SOI photonics platform,” in Optical Fiber Communications Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper Tu2A.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Top down perspective view (a) and cross-sectional view (b) of the device.
Fig. 2
Fig. 2 2 μm 1 × 1 device transmission spectra for various modulation lengths for an injected carrier concentration of (a) 5*1017 and (b) 1*1017. The extinction ratio for both concentrations as a function modulation length is shown in part (c).
Fig. 3
Fig. 3 5 μm 1 × 1 device transmission spectra for various modulation lengths for an injected carrier concentration of (a) 5*1017 and (b) 1*1017. The extinction ratio for both concentrations as a function modulation length is shown in part (c).
Fig. 4
Fig. 4 Top view of the 2 × 2 EO cross-bar switch following the architecture of [1]. This monolithic device uses “all-Ge” waveguide cores on Si3N4 lower cladding.
Fig. 5
Fig. 5 Simulated transmission vs wavelength for two output ports of the 2 μm 2 × 2 DNB EO switch at zero injection and at strong injection of 5*1017 cm−3.
Fig. 6
Fig. 6 Simulated transmission vs wavelength for two output ports of the 5 μm 2 × 2 DNB EO switch at zero injection and at strong injection of 5*1017 cm−3.
Fig. 7
Fig. 7 I-V curve for the 2 μm wavelength and 5 μm wavelength devices. Note that both curves overlap and are nearly identical.
Fig. 8
Fig. 8 Carrier concentration in the 5 μm wavelength device with Lm = 10 μm as seen from cross-sectional view through (a) the center of photonic crystal cavity region, (b) the center of the air hole closest to the cavity region; (c) top-down view of the center of the nanobeam. Carriers shown are n-type; p-type carriers display the same uniformity and concentration.

Tables (5)

Tables Icon

Table 1 Geometric parameters of the photonic crystal nanobeam devices.

Tables Icon

Table 2 Change in Ge complex index of refraction for various injected carrier concentrations.

Tables Icon

Table 3 IL and CT in dB for two MZI-DNB 2 × 2 switches.

Tables Icon

Table 4 Energy per bit Eb required for off-to-on switching of the 2 µm wavelength 1 × 1 device for various modulation lengths, Lm. Shaded areas correspond to values with >6 dB extinction.

Tables Icon

Table 5 Energy per bit Eb required for off-to-on switching of the 5 µm wavelength 1 × 1 device for various modulation lengths, Lm. Shaded areas correspond to values with >6 dB extinction.

Metrics