Abstract

Lasing was demonstrated for the first time at 2.09 μm in 0.5% Holmium (Ho) doped YAG single crystal fiber (SCF) fabricated using the Laser Heated Pedestal Growth (LHPG) method. Output power of 23.5 W with 67.5% optical-to-optical slope efficiency is, to the best of our knowledge, the highest output power achieved at 2 µm from a SCF fabricated using LHPG. With continued improvement in the quality of the SCF and better thermal management, output power of few 100s W and higher, especially in the 2 µm spectral region, is realizable in the very near future.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ho:YAG single crystal fiber: fabrication and optical characterization

Yuan Li, Eric G. Johnson, Craig D. Nie, James A. Harrington, and Ramesh Shori
Opt. Express 22(12) 14896-14903 (2014)

Growth of single-crystal YAG fiber optics

Craig D. Nie, Subhabrata Bera, and James A. Harrington
Opt. Express 24(14) 15522-15527 (2016)

Lasing of surface-polished polycrystalline Ho: YAG (yttrium aluminum garnet) fiber

Hyunjun Kim, Randall S Hay, Sean A. McDaniel, Gary Cook, Nicholas G. Usechak, Augustine M. Urbas, Kathleen N. Shugart, HeeDong Lee, Ali H. Kadhim, Dean P. Brown, Benjamin Griffin, Geoff E. Fair, Randall G. Corns, Santeri A. Potticary, Frank K. Hopkins, Kent L. Averett, David E. Zelmon, Triplicane A. Parthasarathy, and Kristin A. Keller
Opt. Express 25(6) 6725-6731 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37(14), 2898–2900 (2012).
    [Crossref] [PubMed]
  2. X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
    [Crossref]
  3. P. C. Shi, I. A. Watson, and J. H. Sharp, “High-concentration Er:YAG single-crystal fibers grown by laser-heated pedestal growth technique,” Opt. Lett. 36(12), 2182–2184 (2011).
    [Crossref] [PubMed]
  4. D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
    [Crossref]
  5. S. Ishibashi and K. Naganuma, “Mode-locked operation of Cr⁴⁺:YAG single-crystal fiber laser with external cavity,” Opt. Express 22(6), 6764–6771 (2014).
    [Crossref] [PubMed]
  6. Y. Li, E. G. Johnson, C. D. Nie, J. A. Harrington, and R. Shori, “Ho:YAG single crystal fiber: fabrication and optical characterization,” Opt. Express 22(12), 14896–14903 (2014).
    [Crossref] [PubMed]
  7. M. Digonnet, C. J. Gaeta, and H. J. Shaw, “1.064-and 1.32-µm Nd: YAG single crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
    [Crossref]
  8. J. S. Haggerty, W. P. Menashi, and J. F. Wenekkus, “Method for forming refractory fibers by laser energy,” U.S. Patent 3,944,640, (1976).
  9. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
    [Crossref]
  10. R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79(1-3), 669–680 (1986).
    [Crossref]
  11. R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
    [Crossref]
  12. R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36(24), 5934–5940 (1997).
    [Crossref] [PubMed]
  13. R. S. F. Chang, H. Hara, S. Chaddha, S. Sengupta, and N. Djeu, “Lasing performance of Tm: YAG minirod grown by laser-heated pedestal growth technique,” IEEE Photon. Technol. Lett. 2(10), 695–696 (1990).
    [Crossref]
  14. J. Stone and C. A. Burrus, “Nd:Y2O3 single-crystal fiber laser: room-temperature cw operation at 1.07- and 1.35- μm wavelength,” J. Appl. Phys. 49(4), 2281–2287 (1978).
    [Crossref]
  15. A. V. Derov, R. S. Kuptsov, and V. I. Svistunov, “Methods for studying single-crystal aluminum-oxide fibers,” Glass Ceram. 71(3–4), 102–104 (2014).
    [Crossref]
  16. S. L. Baldochi, F. R. Silva, J. R. De Moraes, J. Jakutis, N. U. Wetter, and A. M. E. Santo, “Synthesis and growth of materials for solid state lasers: Nd:YLF and Nd:LLW single crystal fibers,” J. Cryst. Growth 317(1), 4–7 (2011).
    [Crossref]
  17. B. Shaw, C. Askins, W. Kim, S. Bayya, J. Peele, R. Thapa, S. R. Bowman, R. R. Gattass, and J. S. Sanghera, “Cladding pumped single crystal Yb:YAG fiber amplifier,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM4A.4.
  18. K. Y. Hsu, M. H. Yang, D. Y. Jheng, C. C. Lai, S. L. Huang, K. Mennemann, and V. Dietrich, “Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes,” Opt. Mater. Express 3(6), 813–820 (2013).
    [Crossref]
  19. K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express 16(16), 12264–12271 (2008).
    [Crossref] [PubMed]
  20. N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency,” Opt. Lett. 38(14), 2431–2433 (2013).
    [Crossref] [PubMed]
  21. N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “High efficiency, resonantly diode pumped, double-clad, Er:YAG-core, waveguide laser,” Opt. Express 20(23), 25554–25561 (2012).
    [Crossref] [PubMed]
  22. X. Mu, S. Meissner, H. Meissner, and A. W. Yu, “High efficiency Yb:YAG crystalline fiber-waveguide lasers,” Opt. Lett. 39(21), 6331–6334 (2014).
    [Crossref] [PubMed]
  23. C. C. Lai, K. Y. Huang, H. J. Tsai, K. Y. Hsu, S. K. Liu, C. T. Cheng, K. D. Ji, C. P. Ke, S. R. Lin, and S. L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
    [Crossref] [PubMed]
  24. C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30(2), 129–131 (2005).
    [Crossref] [PubMed]
  25. C. C. Lai, C. P. Ke, S. K. Liu, D. Y. Jheng, D. J. Wang, M. Y. Chen, Y. S. Li, P. S. Yeh, and S. L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 36(6), 784–786 (2011).
    [Crossref] [PubMed]
  26. D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 16–23 (2015).
    [Crossref]
  27. H. E. LaBelle., “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50(1), 8–17 (1980).
    [Crossref]
  28. T. Fukuda and V. I. Chani, Shaped Crystals-Growth by Micro-Pulling-Down Technique (Springer, 2007).
  29. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE Press, 2003).
  30. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
    [Crossref]
  31. V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65(12), 3860–3861 (1994).
    [Crossref]
  32. G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330T (2013).
    [Crossref]
  33. D. C. Brown, V. Envid, and J. Zembek, “Ho:YAG absorption cross sections from 1700 to 2200 nm at 83, 175, and 295 K,” Appl. Opt. 51(34), 8147–8158 (2012).
    [Crossref] [PubMed]
  34. M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002).
    [Crossref]
  35. D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho: YAG laser pumped by a cladding-pumped tunable Tm: silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
    [Crossref]
  36. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
    [Crossref]
  37. J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
    [Crossref]
  38. H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
    [Crossref] [PubMed]

2015 (1)

D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 16–23 (2015).
[Crossref]

2014 (4)

2013 (3)

2012 (4)

2011 (5)

2009 (3)

C. C. Lai, K. Y. Huang, H. J. Tsai, K. Y. Hsu, S. K. Liu, C. T. Cheng, K. D. Ji, C. P. Ke, S. R. Lin, and S. L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
[Crossref] [PubMed]

J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

2008 (1)

2005 (1)

2004 (1)

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho: YAG laser pumped by a cladding-pumped tunable Tm: silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

2002 (1)

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002).
[Crossref]

1997 (1)

1994 (1)

V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65(12), 3860–3861 (1994).
[Crossref]

1991 (1)

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

1990 (1)

R. S. F. Chang, H. Hara, S. Chaddha, S. Sengupta, and N. Djeu, “Lasing performance of Tm: YAG minirod grown by laser-heated pedestal growth technique,” IEEE Photon. Technol. Lett. 2(10), 695–696 (1990).
[Crossref]

1989 (2)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

1986 (2)

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79(1-3), 669–680 (1986).
[Crossref]

M. Digonnet, C. J. Gaeta, and H. J. Shaw, “1.064-and 1.32-µm Nd: YAG single crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
[Crossref]

1980 (1)

H. E. LaBelle., “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50(1), 8–17 (1980).
[Crossref]

1978 (1)

J. Stone and C. A. Burrus, “Nd:Y2O3 single-crystal fiber laser: room-temperature cw operation at 1.07- and 1.35- μm wavelength,” J. Appl. Phys. 49(4), 2281–2287 (1978).
[Crossref]

Abdolvand, A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho: YAG laser pumped by a cladding-pumped tunable Tm: silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

Ahmed, M. A.

Aubry, N.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37(14), 2898–2900 (2012).
[Crossref] [PubMed]

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

Baldochi, S. L.

S. L. Baldochi, F. R. Silva, J. R. De Moraes, J. Jakutis, N. U. Wetter, and A. M. E. Santo, “Synthesis and growth of materials for solid state lasers: Nd:YLF and Nd:LLW single crystal fibers,” J. Cryst. Growth 317(1), 4–7 (2011).
[Crossref]

Balembois, F.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37(14), 2898–2900 (2012).
[Crossref] [PubMed]

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

Brown, D. C.

Burrus, C. A.

J. Stone and C. A. Burrus, “Nd:Y2O3 single-crystal fiber laser: room-temperature cw operation at 1.07- and 1.35- μm wavelength,” J. Appl. Phys. 49(4), 2281–2287 (1978).
[Crossref]

Byer, R. L.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Chaddha, S.

R. S. F. Chang, H. Hara, S. Chaddha, S. Sengupta, and N. Djeu, “Lasing performance of Tm: YAG minirod grown by laser-heated pedestal growth technique,” IEEE Photon. Technol. Lett. 2(10), 695–696 (1990).
[Crossref]

Chang, R. S. F.

V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65(12), 3860–3861 (1994).
[Crossref]

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

R. S. F. Chang, H. Hara, S. Chaddha, S. Sengupta, and N. Djeu, “Lasing performance of Tm: YAG minirod grown by laser-heated pedestal growth technique,” IEEE Photon. Technol. Lett. 2(10), 695–696 (1990).
[Crossref]

Chen, H.

Chen, J. C.

Chen, M. Y.

Chen, P. Y.

Cheng, C. T.

Chuang, C. Y.

Clarkson, W. A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho: YAG laser pumped by a cladding-pumped tunable Tm: silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

Cooper, L. J.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho: YAG laser pumped by a cladding-pumped tunable Tm: silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

De Moraes, J. R.

S. L. Baldochi, F. R. Silva, J. R. De Moraes, J. Jakutis, N. U. Wetter, and A. M. E. Santo, “Synthesis and growth of materials for solid state lasers: Nd:YLF and Nd:LLW single crystal fibers,” J. Cryst. Growth 317(1), 4–7 (2011).
[Crossref]

Délen, X.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37(14), 2898–2900 (2012).
[Crossref] [PubMed]

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

Derov, A. V.

A. V. Derov, R. S. Kuptsov, and V. I. Svistunov, “Methods for studying single-crystal aluminum-oxide fibers,” Glass Ceram. 71(3–4), 102–104 (2014).
[Crossref]

Didierjean, J.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37(14), 2898–2900 (2012).
[Crossref] [PubMed]

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

Dietrich, V.

Digonnet, M.

M. Digonnet, C. J. Gaeta, and H. J. Shaw, “1.064-and 1.32-µm Nd: YAG single crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
[Crossref]

Djeu, N.

V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65(12), 3860–3861 (1994).
[Crossref]

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

R. S. F. Chang, H. Hara, S. Chaddha, S. Sengupta, and N. Djeu, “Lasing performance of Tm: YAG minirod grown by laser-heated pedestal growth technique,” IEEE Photon. Technol. Lett. 2(10), 695–696 (1990).
[Crossref]

Dubinskii, M.

Envid, V.

Feigelson, R. S.

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79(1-3), 669–680 (1986).
[Crossref]

Fejer, M. M.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Fourmigué, J. M.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

Fromzel, V.

Fuhrberg, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

Gaeta, C. J.

M. Digonnet, C. J. Gaeta, and H. J. Shaw, “1.064-and 1.32-µm Nd: YAG single crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
[Crossref]

Gebremichael, E.

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330T (2013).
[Crossref]

Georges, P.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37(14), 2898–2900 (2012).
[Crossref] [PubMed]

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

Gorajek, L.

J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Graf, T.

Hara, H.

R. S. F. Chang, H. Hara, S. Chaddha, S. Sengupta, and N. Djeu, “Lasing performance of Tm: YAG minirod grown by laser-heated pedestal growth technique,” IEEE Photon. Technol. Lett. 2(10), 695–696 (1990).
[Crossref]

Harrington, J. A.

Hirth, A.

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002).
[Crossref]

Hsu, K. Y.

Huang, K. Y.

Huang, S. L.

Ishibashi, S.

Jabczynski, J.

J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Jakutis, J.

S. L. Baldochi, F. R. Silva, J. R. De Moraes, J. Jakutis, N. U. Wetter, and A. M. E. Santo, “Synthesis and growth of materials for solid state lasers: Nd:YLF and Nd:LLW single crystal fibers,” J. Cryst. Growth 317(1), 4–7 (2011).
[Crossref]

Jelinkova, H.

J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Jheng, D. Y.

Ji, K. D.

Johnson, E. G.

Jundt, D. H.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Ke, C. P.

Koopmann, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

Koranda, P.

J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Kuptsov, R. S.

A. V. Derov, R. S. Kuptsov, and V. I. Svistunov, “Methods for studying single-crystal aluminum-oxide fibers,” Glass Ceram. 71(3–4), 102–104 (2014).
[Crossref]

Kwiatkowski, J.

J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

LaBelle, H. E.

H. E. LaBelle., “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50(1), 8–17 (1980).
[Crossref]

Lai, C. C.

Lamrini, S.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

Lebbou, K.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

Li, Y.

Li, Y. S.

Liang, Y. C.

D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 16–23 (2015).
[Crossref]

Lin, S. R.

Lin, Y. S.

Liu, S. K.

Lo, C. Y.

Martial, I.

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

Maxwell, G.

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330T (2013).
[Crossref]

Meissner, H.

Meissner, S.

Mennemann, K.

Mu, X.

Naganuma, K.

Nemec, M.

J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Nie, C. D.

Nubling, R. K.

Perrodin, D.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

Phomsakha, V.

V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65(12), 3860–3861 (1994).
[Crossref]

Piehler, S.

Ponting, B.

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330T (2013).
[Crossref]

Sangla, D.

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

Santo, A. M. E.

S. L. Baldochi, F. R. Silva, J. R. De Moraes, J. Jakutis, N. U. Wetter, and A. M. E. Santo, “Synthesis and growth of materials for solid state lasers: Nd:YLF and Nd:LLW single crystal fibers,” J. Cryst. Growth 317(1), 4–7 (2011).
[Crossref]

Schäfer, M.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

Schellhorn, M.

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002).
[Crossref]

Scholle, K.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

Sengupta, S.

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

R. S. F. Chang, H. Hara, S. Chaddha, S. Sengupta, and N. Djeu, “Lasing performance of Tm: YAG minirod grown by laser-heated pedestal growth technique,” IEEE Photon. Technol. Lett. 2(10), 695–696 (1990).
[Crossref]

Sharp, J. H.

Shaw, H. J.

M. Digonnet, C. J. Gaeta, and H. J. Shaw, “1.064-and 1.32-µm Nd: YAG single crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
[Crossref]

Shaw, L. B.

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

Shen, D.

Shen, D. Y.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho: YAG laser pumped by a cladding-pumped tunable Tm: silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

Shi, P. C.

Shori, R.

Silva, F. R.

S. L. Baldochi, F. R. Silva, J. R. De Moraes, J. Jakutis, N. U. Wetter, and A. M. E. Santo, “Synthesis and growth of materials for solid state lasers: Nd:YLF and Nd:LLW single crystal fibers,” J. Cryst. Growth 317(1), 4–7 (2011).
[Crossref]

Soleimani, N.

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330T (2013).
[Crossref]

Stone, J.

J. Stone and C. A. Burrus, “Nd:Y2O3 single-crystal fiber laser: room-temperature cw operation at 1.07- and 1.35- μm wavelength,” J. Appl. Phys. 49(4), 2281–2287 (1978).
[Crossref]

Sulc, J.

J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Svistunov, V. I.

A. V. Derov, R. S. Kuptsov, and V. I. Svistunov, “Methods for studying single-crystal aluminum-oxide fibers,” Glass Ceram. 71(3–4), 102–104 (2014).
[Crossref]

Tang, D.

Ter-Gabrielyan, N.

Tillement, O.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

Tsai, H. J.

Voss, A.

Wang, D. J.

Watson, I. A.

Wetter, N. U.

S. L. Baldochi, F. R. Silva, J. R. De Moraes, J. Jakutis, N. U. Wetter, and A. M. E. Santo, “Synthesis and growth of materials for solid state lasers: Nd:YLF and Nd:LLW single crystal fibers,” J. Cryst. Growth 317(1), 4–7 (2011).
[Crossref]

Yang, H.

Yang, M. H.

Yang, X.

Yeh, P. S.

Yu, A. W.

Zembek, J.

Zendzian, W.

J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Zhang, J.

Zhao, T.

Zhuo, W. J.

Appl. Opt. (2)

Appl. Phys. B (4)

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho: YAG laser pumped by a cladding-pumped tunable Tm: silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, O. Tillement, and J. M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97(2), 263–273 (2009).
[Crossref]

Appl. Phys. Lett. (2)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989).
[Crossref]

Glass Ceram. (1)

A. V. Derov, R. S. Kuptsov, and V. I. Svistunov, “Methods for studying single-crystal aluminum-oxide fibers,” Glass Ceram. 71(3–4), 102–104 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 16–23 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. S. F. Chang, H. Hara, S. Chaddha, S. Sengupta, and N. Djeu, “Lasing performance of Tm: YAG minirod grown by laser-heated pedestal growth technique,” IEEE Photon. Technol. Lett. 2(10), 695–696 (1990).
[Crossref]

J. Appl. Phys. (1)

J. Stone and C. A. Burrus, “Nd:Y2O3 single-crystal fiber laser: room-temperature cw operation at 1.07- and 1.35- μm wavelength,” J. Appl. Phys. 49(4), 2281–2287 (1978).
[Crossref]

J. Cryst. Growth (3)

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79(1-3), 669–680 (1986).
[Crossref]

H. E. LaBelle., “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50(1), 8–17 (1980).
[Crossref]

S. L. Baldochi, F. R. Silva, J. R. De Moraes, J. Jakutis, N. U. Wetter, and A. M. E. Santo, “Synthesis and growth of materials for solid state lasers: Nd:YLF and Nd:LLW single crystal fibers,” J. Cryst. Growth 317(1), 4–7 (2011).
[Crossref]

J. Lightwave Technol. (1)

M. Digonnet, C. J. Gaeta, and H. J. Shaw, “1.064-and 1.32-µm Nd: YAG single crystal fiber lasers,” J. Lightwave Technol. 4(4), 454–460 (1986).
[Crossref]

Laser Phys. Lett. (1)

J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

X. Mu, S. Meissner, H. Meissner, and A. W. Yu, “High efficiency Yb:YAG crystalline fiber-waveguide lasers,” Opt. Lett. 39(21), 6331–6334 (2014).
[Crossref] [PubMed]

N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency,” Opt. Lett. 38(14), 2431–2433 (2013).
[Crossref] [PubMed]

C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30(2), 129–131 (2005).
[Crossref] [PubMed]

C. C. Lai, K. Y. Huang, H. J. Tsai, K. Y. Hsu, S. K. Liu, C. T. Cheng, K. D. Ji, C. P. Ke, S. R. Lin, and S. L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
[Crossref] [PubMed]

C. C. Lai, C. P. Ke, S. K. Liu, D. Y. Jheng, D. J. Wang, M. Y. Chen, Y. S. Li, P. S. Yeh, and S. L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett. 36(6), 784–786 (2011).
[Crossref] [PubMed]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

P. C. Shi, I. A. Watson, and J. H. Sharp, “High-concentration Er:YAG single-crystal fibers grown by laser-heated pedestal growth technique,” Opt. Lett. 36(12), 2182–2184 (2011).
[Crossref] [PubMed]

X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37(14), 2898–2900 (2012).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Proc. SPIE (2)

G. Maxwell, N. Soleimani, B. Ponting, and E. Gebremichael, “Coilable single crystal fibers of doped-YAG for high power laser applications,” Proc. SPIE 8733, 87330T (2013).
[Crossref]

R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991).
[Crossref]

Rev. Sci. Instrum. (1)

V. Phomsakha, R. S. F. Chang, and N. Djeu, “Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers,” Rev. Sci. Instrum. 65(12), 3860–3861 (1994).
[Crossref]

Other (4)

B. Shaw, C. Askins, W. Kim, S. Bayya, J. Peele, R. Thapa, S. R. Bowman, R. R. Gattass, and J. S. Sanghera, “Cladding pumped single crystal Yb:YAG fiber amplifier,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AM4A.4.

T. Fukuda and V. I. Chani, Shaped Crystals-Growth by Micro-Pulling-Down Technique (Springer, 2007).

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE Press, 2003).

J. S. Haggerty, W. P. Menashi, and J. F. Wenekkus, “Method for forming refractory fibers by laser energy,” U.S. Patent 3,944,640, (1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of Ho:YAG SCF laser setup and (b) actual setup.
Fig. 2
Fig. 2 The output laser power as a function of absorbed pump power under both CW and pulsed pump mode.
Fig. 3
Fig. 3 The optical spectrum of the laser at 20 W of output power centered at 2090.6 nm. The inset, the whole spectrum from 1900 – 2200 nm.
Fig. 4
Fig. 4 (a), the near-field image; (b), the far-field image and (c), the intensity slice in x and y direction of 1 W output laser power. (d), the near-field image; (e), the far-field image and (f), the intensity slice in x and y direction of the 22 W output laser power.

Metrics