Abstract

A stimulated Raman scattering (SRS) imaging technique based on spatial modulation of the pump beam has been used to study gases. The SRS gain signal was separated from the Stokes beam background in the spatial frequency domain. The SRS signal shows linear behaviour with the gas pressure at a range from 1.0 to 8.0 bars. The signal is linearly proportional to the pump beam intensity while it is enhanced with increasing the Stokes beam intensity to a certain limit than it saturates. Further, the chemical specificity of the technique has been investigated. Two sharp peaks with line width at half maximum of about 0.30 nm have been obtained at Stokes beam wavelengths of 629.93 nm and 634.05 nm corresponding to the methane and ethylene gases, respectively. The results show that SRS imaging is a promising technique to provide chemical specificity as well as spatial and temporal information of gaseous species.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stimulated Raman scattering holography for time-resolved imaging of methane gas

Eynas Amer, Per Gren, Stefan Edenharder, and Mikael Sjödahl
Appl. Opt. 55(13) 3429-3434 (2016)

Stimulated Raman scattering signals recorded by the use of an optical imaging technique

Eynas Amer, Per Gren, and Mikael Sjödahl
Appl. Opt. 54(20) 6377-6385 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
    [Crossref] [PubMed]
  2. Y. Ozeki and K. Itoh, “Stimulated Raman scattering microscopy for live-cell imaging with high contrast and high sensitivity,” Laser Phys. 20(5), 1114–1118 (2010).
    [Crossref]
  3. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  4. M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
    [Crossref] [PubMed]
  5. B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
    [Crossref] [PubMed]
  6. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
    [Crossref]
  7. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  8. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
    [Crossref] [PubMed]
  9. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
    [Crossref] [PubMed]
  10. E. Amer, P. Gren, and M. Sjödahl, “Stimulated Raman scattering signals recorded by the use of an optical imaging technique,” Appl. Opt. 54(20), 6377–6385 (2015).
    [Crossref] [PubMed]
  11. J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19(8), 085408 (2008).
    [Crossref]
  12. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  13. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
    [Crossref] [PubMed]
  14. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17(5), 3651–3658 (2009).
    [Crossref] [PubMed]

2015 (1)

2012 (1)

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

2011 (3)

M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

2010 (4)

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Y. Ozeki and K. Itoh, “Stimulated Raman scattering microscopy for live-cell imaging with high contrast and high sensitivity,” Laser Phys. 20(5), 1114–1118 (2010).
[Crossref]

Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19(8), 085408 (2008).
[Crossref]

2007 (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

1982 (1)

Amer, E.

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Dake, F.

Dantus, M.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

Dietzek, B.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

Ding, S. Y.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Freudiger, C. W.

M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fukui, K.

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Gren, P.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Himmel, M. E.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Ina, H.

Itoh, K.

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kiefer, J.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19(8), 085408 (2008).
[Crossref]

Kitagawa, Y.

Kobayashi, S.

Krafft, C.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Leipertz, A.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19(8), 085408 (2008).
[Crossref]

Liu, Y. S.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Nishizawa, N.

Ozeki, Y.

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Popp, J.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Roeffaers, M. B. J.

M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
[Crossref] [PubMed]

Saar, B. G.

M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
[Crossref] [PubMed]

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Schmitt, M.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

Schorsch, S.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19(8), 085408 (2008).
[Crossref]

Seeger, T.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19(8), 085408 (2008).
[Crossref]

Sjödahl, M.

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Steuer, S.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19(8), 085408 (2008).
[Crossref]

Sumimura, K.

Takeda, M.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Umemura, W.

van Dalen, G.

M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
[Crossref] [PubMed]

van Ruijven, M.

M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
[Crossref] [PubMed]

Weikl, M. C.

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19(8), 085408 (2008).
[Crossref]

Xiao, C.

M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
[Crossref] [PubMed]

Xie, X. S.

M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Xu, B.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

Zeng, Y.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Zhang, X.

M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
[Crossref] [PubMed]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

B. G. Saar, Y. Zeng, C. W. Freudiger, Y. S. Liu, M. E. Himmel, X. S. Xie, and S. Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl. 49(32), 5476–5479 (2010).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: Beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

J. Biomed. Opt. (2)

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17(4), 040801 (2012).
[Crossref] [PubMed]

M. B. J. Roeffaers, X. Zhang, C. W. Freudiger, B. G. Saar, M. van Ruijven, G. van Dalen, C. Xiao, and X. S. Xie, “Label-free imaging of biomolecules in food products using stimulated Raman microscopy,” J. Biomed. Opt. 16(2), 021118 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Laser Phys. (1)

Y. Ozeki and K. Itoh, “Stimulated Raman scattering microscopy for live-cell imaging with high contrast and high sensitivity,” Laser Phys. 20(5), 1114–1118 (2010).
[Crossref]

Meas. Sci. Technol. (1)

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19(8), 085408 (2008).
[Crossref]

Nat. Photonics (1)

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The experimental setup of the SRS imaging. M: mirrors, B.S: beam splitter, NL: negative lens, L1: collimating lens, L2: imaging lens, EF: edge filter for 532 nm, F1: a red filter and F2: an absorbing filter set.
Fig. 2
Fig. 2 Results from the Methane experiment, the images are averages of 128 pulses. (a) An image of the pump beam fringes of spacing 0.67 mm, (b, c) Stokes beam images without and with the pump beam fringes present, respectively, (d) the quotient between the (c) and (b) images and (e) a cross-section of the magnitude of the Fourier transform of the image in (d). The gas pressure is 12 bars, the mean pump beam intensity (IP) is 6 MW/cm2 and the Stokes beam intensity (IS) is 26 kW/cm2.
Fig. 3
Fig. 3 Results from a Methane experiment, the images are single shot. (a, b) Stokes beam images without and with the pump beam fringes present, respectively, (c) the quotient between of the (b) and (a) images and (d) a cross-section of the magnitude of the Fourier transform of the image in (c). The gas pressure is 12 bars, the mean pump beam intensity (IP) is 6 MW/cm2 and the Stokes beam intensity (IS) is 26 kW/cm2.
Fig. 4
Fig. 4 The dependence of the SRS gain signal to background ratio on the gas pressure. The mean pump beam intensity (IP) is 6 MW/cm2 and the Stokes beam intensity (IS) is 26 kW/cm2.
Fig. 5
Fig. 5 The dependence of the SRS gain signal to background ratio on the pump beam intensity. The gas pressure is 12 bars and the Stokes beam intensity (IS) is 26 kW/cm2.
Fig. 6
Fig. 6 The dependence of the SRS gain signal to background ratio on the Stokes beam intensity. The gas pressure is 12 bars and the mean pump beam intensity (IP) is 3.2 MW/cm2.
Fig. 7
Fig. 7 Results from ethylene experiment, the images are averages of 128 pulses. (a) An image of the pump beam fringes of spacing 0.67 mm, (b) a normalized image of the Stokes beam with and without the pump beam fringes and (c) a cross-section of the magnitude of the Fourier transform of the normalized image in (b). The gas pressure is 12 bars, the mean pump beam intensity (IP) is 6 MW/cm2 and the Stokes beam intensity (IS) is 26 kW/cm2.
Fig. 8
Fig. 8 The SRS gain signal to background ratio at different wavelengths of the Stokes beam for a gas mixture of two gases (CH4 and C2H4). The mean pump beam intensity (IP) is 6 MW/cm2 and the Stokes beam intensity (IS) is 26 kW/cm2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I=n(x)+2 J α +2 J α cos(4πσ x x ),
I( S )=n(S)+2 J α ( S )+ J α ( S2σ x )+ J α ( S+2σ x ),
g= 4I(2σ ) x I(0) ,

Metrics