Abstract

We report frequency measurement of the clock transition in an 115In+ ion sympathetically-cooled with Ca+ ions in a linear rf trap. The Ca+ ions are used as a probe of the external electromagnetic field and as the coolant for preparing the cold In+. The frequency is determined to be 1 267 402 452 901 049.9 (6.9) Hz by averaging 36 measurements using an optical frequency comb referenced to the frequency standards located in the same site.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absolute frequency measurement of the In+ clock transition with a mode-locked laser

J. von Zanthier, Th. Becker, M. Eichenseer, A. Yu. Nevsky, Ch. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev
Opt. Lett. 25(23) 1729-1731 (2000)

Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement

Kensuke Matsubara, Hidekazu Hachisu, Ying Li, Shigeo Nagano, Clayton Locke, Asahiko Nogami, Masatoshi Kajita, Kazuhiro Hayasaka, Tetsuya Ido, and Mizuhiko Hosokawa
Opt. Express 20(20) 22034-22041 (2012)

Laser cooling and isotope separation of Cd+ ions confined in a linear Paul trap

Utako Tanaka, Hidetsuka Imajo, Kazuhiro Hayasaka, Ryuzo Ohmukai, Masayoshi Watanabe, and Shinji Urabe
Opt. Lett. 22(17) 1353-1355 (1997)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
    [Crossref]
  2. F. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28, 012002 (2017).
    [Crossref]
  3. N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik, “Single-ion atomic clock with 3×10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
    [Crossref]
  4. R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
    [Crossref]
  5. P. Dubé, A. A. Madej, Z. Zhou, and J. E. Bernard, “Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level,” Phys. Rev. A 87, 023806 (2013).
    [Crossref]
  6. H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion,” Science 306, 1355–1358 (2004).
    [Crossref] [PubMed]
  7. M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
    [Crossref]
  8. K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
    [Crossref] [PubMed]
  9. Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
    [Crossref]
  10. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
    [Crossref] [PubMed]
  11. J.-S. Chen, S. M. Brewer, C. W. Chou, D. J. Wineland, D. R. Leibrandt, and D. B. Hume, “Sympathetic ground state cooling and time-dilation shifts in an 27Al+ optical clock,” Phys. Rev. Lett. 118, 053002 (2017).
    [Crossref]
  12. J. von Zanthier, Th. Becker, M. Eichenseer, A. Yu. Nevsky, Ch. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T.W. Hänsch, P.V. Pokasov, M.N. Skvortsov, and S.N. Bagayev, “Absolute frequency measurement of the In+ clock transition with a mode-locked laser,” Opt. Lett.,  25(23), 1729–1731 (2000).
    [Crossref]
  13. Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
    [Crossref]
  14. H. Dehmelt, “Monoion oscillator as potential ultimate laser frequency standard,” IEEE Trans. Instrum. Meas. IM-31(2), 83–87 (1982).
    [Crossref]
  15. M. S. Safronova, M. G. Kozlov, and Charles W. Clark, “Precision calculation of blackbody radiation shifts for optical frequency metrology,” Phys. Rev. Lett. 107, 143006 (2011).
    [Crossref] [PubMed]
  16. K. Pyka, N. Herschbach, J. Keller, and T. E. Mehlstäubler, “A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock,” Appl. Phys. B. 114(1), 231–241 (2014).
    [Crossref]
  17. P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749 (2005).
    [Crossref] [PubMed]
  18. E. Peik, G. Hollemann, and H. Walther, “Laser cooling and quantum jumps of a single indium ion”, Phys. Rev. A 49, 402–408 (1994).
    [Crossref] [PubMed]
  19. E. Peik, J. Abel, Th. Becker, J. von Zanthier, and H. Walther, “Sideband cooling of ions in radio-frequency traps”, Phys. Rev. A 60, 439–449(1999)
    [Crossref]
  20. K. Hayasaka, “Synthesis of two-species ion chains for a new optical frequency standard with an indium ion,” Appl. Phys. B 107(4), 965–970 (2012).
    [Crossref]
  21. K. Hayasaka, “Modulation-free optical locking of an external-cavity diode laser to a filter cavity,” Opt. Lett. 36(12), 2188–2190 (2011).
    [Crossref] [PubMed]
  22. S. Uetake, K. Matsubara, H. Ito, K. Hayasaka, and M. Hosokawa, “Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb,” Appl. Phys. B 97, 413–419 (2009).
    [Crossref]
  23. U. Tanaka, T. Kitanaka, K. Hayasaka, and S. Urabe, “Sideband cooling of a Ca+ - In+ ion chain toward the quantum logic spectroscopy of In+,” Appl. Phys. B 121(2), 147–153 (2015).
    [Crossref]
  24. D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Minimization of ion micromotion in a Paul trap,” J. Appl. Phys. 83(10), 5025–5033 (1998).
    [Crossref]
  25. D. J. Berleland and M.G. Boshier, “Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems,” Phys. Rev. A. 65, 033413 (2002).
    [Crossref]
  26. G. P. Barwood, P. Gill, G. Huang, H. A. Klein, and W. R. C. Rowley, “Sub-kHz clock transition linewidths in a cold trapped 88Sr ion in low magnetic fields using 1092-nm polarisation switching,” Opt. Commun. 151, 50–55 (1998).
    [Crossref]
  27. H. Hachisu and T. Ido, “Intermittent optical frequency measurements to reduce the dead time uncertainty of frequency link,” J. Jpn. Appl. Phys. 54(11), 112401 (2015).
    [Crossref]
  28. H. Hachisu, G. Petit, and T. Ido, “Absolute frequency measurement with uncertainty below 1 × 10−15 using International Atomic Time,” Appl. Phys. B 123, 34 (2017).
    [Crossref]
  29. H. Hachisu, G. Petit, F. Nakagawa, Y. Hanado, and T. Ido, “SI-traceable measurement of an optical frequency at low 10−16 level without a local primary standard,” Opt. Express 25, 8511 (2017).
    [Crossref] [PubMed]
  30. A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
    [Crossref]
  31. N. Herschbach, K. Pyka, J. Keller, and T. E. Mehlstäubler, “Linear Paul trap design for an optical clock with Coulomb crystals,” Appl. Phys. B,  117, 891–906 (2012).
    [Crossref]
  32. NIST Atomic Spectra Database ver 5.4 (2016), https://www.nist.gov/pml/atomic-spectra-database

2017 (4)

F. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28, 012002 (2017).
[Crossref]

J.-S. Chen, S. M. Brewer, C. W. Chou, D. J. Wineland, D. R. Leibrandt, and D. B. Hume, “Sympathetic ground state cooling and time-dilation shifts in an 27Al+ optical clock,” Phys. Rev. Lett. 118, 053002 (2017).
[Crossref]

H. Hachisu, G. Petit, and T. Ido, “Absolute frequency measurement with uncertainty below 1 × 10−15 using International Atomic Time,” Appl. Phys. B 123, 34 (2017).
[Crossref]

H. Hachisu, G. Petit, F. Nakagawa, Y. Hanado, and T. Ido, “SI-traceable measurement of an optical frequency at low 10−16 level without a local primary standard,” Opt. Express 25, 8511 (2017).
[Crossref] [PubMed]

2016 (2)

N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik, “Single-ion atomic clock with 3×10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

2015 (3)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

U. Tanaka, T. Kitanaka, K. Hayasaka, and S. Urabe, “Sideband cooling of a Ca+ - In+ ion chain toward the quantum logic spectroscopy of In+,” Appl. Phys. B 121(2), 147–153 (2015).
[Crossref]

H. Hachisu and T. Ido, “Intermittent optical frequency measurements to reduce the dead time uncertainty of frequency link,” J. Jpn. Appl. Phys. 54(11), 112401 (2015).
[Crossref]

2014 (2)

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

K. Pyka, N. Herschbach, J. Keller, and T. E. Mehlstäubler, “A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock,” Appl. Phys. B. 114(1), 231–241 (2014).
[Crossref]

2013 (1)

P. Dubé, A. A. Madej, Z. Zhou, and J. E. Bernard, “Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level,” Phys. Rev. A 87, 023806 (2013).
[Crossref]

2012 (3)

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref] [PubMed]

K. Hayasaka, “Synthesis of two-species ion chains for a new optical frequency standard with an indium ion,” Appl. Phys. B 107(4), 965–970 (2012).
[Crossref]

N. Herschbach, K. Pyka, J. Keller, and T. E. Mehlstäubler, “Linear Paul trap design for an optical clock with Coulomb crystals,” Appl. Phys. B,  117, 891–906 (2012).
[Crossref]

2011 (2)

K. Hayasaka, “Modulation-free optical locking of an external-cavity diode laser to a filter cavity,” Opt. Lett. 36(12), 2188–2190 (2011).
[Crossref] [PubMed]

M. S. Safronova, M. G. Kozlov, and Charles W. Clark, “Precision calculation of blackbody radiation shifts for optical frequency metrology,” Phys. Rev. Lett. 107, 143006 (2011).
[Crossref] [PubMed]

2009 (2)

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

S. Uetake, K. Matsubara, H. Ito, K. Hayasaka, and M. Hosokawa, “Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb,” Appl. Phys. B 97, 413–419 (2009).
[Crossref]

2008 (1)

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

2007 (1)

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

2006 (1)

A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref]

2005 (1)

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749 (2005).
[Crossref] [PubMed]

2004 (1)

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion,” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

2002 (1)

D. J. Berleland and M.G. Boshier, “Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems,” Phys. Rev. A. 65, 033413 (2002).
[Crossref]

2000 (1)

1999 (1)

E. Peik, J. Abel, Th. Becker, J. von Zanthier, and H. Walther, “Sideband cooling of ions in radio-frequency traps”, Phys. Rev. A 60, 439–449(1999)
[Crossref]

1998 (2)

G. P. Barwood, P. Gill, G. Huang, H. A. Klein, and W. R. C. Rowley, “Sub-kHz clock transition linewidths in a cold trapped 88Sr ion in low magnetic fields using 1092-nm polarisation switching,” Opt. Commun. 151, 50–55 (1998).
[Crossref]

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Minimization of ion micromotion in a Paul trap,” J. Appl. Phys. 83(10), 5025–5033 (1998).
[Crossref]

1994 (1)

E. Peik, G. Hollemann, and H. Walther, “Laser cooling and quantum jumps of a single indium ion”, Phys. Rev. A 49, 402–408 (1994).
[Crossref] [PubMed]

1982 (1)

H. Dehmelt, “Monoion oscillator as potential ultimate laser frequency standard,” IEEE Trans. Instrum. Meas. IM-31(2), 83–87 (1982).
[Crossref]

Abel, J.

E. Peik, J. Abel, Th. Becker, J. von Zanthier, and H. Walther, “Sideband cooling of ions in radio-frequency traps”, Phys. Rev. A 60, 439–449(1999)
[Crossref]

Abgrall, M.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Bagayev, S.N.

Barwood, G. P.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion,” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

G. P. Barwood, P. Gill, G. Huang, H. A. Klein, and W. R. C. Rowley, “Sub-kHz clock transition linewidths in a cold trapped 88Sr ion in low magnetic fields using 1092-nm polarisation switching,” Opt. Commun. 151, 50–55 (1998).
[Crossref]

Becker, Th.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

J. von Zanthier, Th. Becker, M. Eichenseer, A. Yu. Nevsky, Ch. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T.W. Hänsch, P.V. Pokasov, M.N. Skvortsov, and S.N. Bagayev, “Absolute frequency measurement of the In+ clock transition with a mode-locked laser,” Opt. Lett.,  25(23), 1729–1731 (2000).
[Crossref]

E. Peik, J. Abel, Th. Becker, J. von Zanthier, and H. Walther, “Sideband cooling of ions in radio-frequency traps”, Phys. Rev. A 60, 439–449(1999)
[Crossref]

Benhelm, J.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Bergquist, J. C.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749 (2005).
[Crossref] [PubMed]

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Minimization of ion micromotion in a Paul trap,” J. Appl. Phys. 83(10), 5025–5033 (1998).
[Crossref]

Berkeland, D. J.

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Minimization of ion micromotion in a Paul trap,” J. Appl. Phys. 83(10), 5025–5033 (1998).
[Crossref]

Berleland, D. J.

D. J. Berleland and M.G. Boshier, “Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems,” Phys. Rev. A. 65, 033413 (2002).
[Crossref]

Bernard, J. E.

P. Dubé, A. A. Madej, Z. Zhou, and J. E. Bernard, “Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level,” Phys. Rev. A 87, 023806 (2013).
[Crossref]

Blatt, R.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Blatt, S.

A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref]

Bongs, K.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

Boshier, M.G.

D. J. Berleland and M.G. Boshier, “Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems,” Phys. Rev. A. 65, 033413 (2002).
[Crossref]

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref]

Brewer, S. M.

J.-S. Chen, S. M. Brewer, C. W. Chou, D. J. Wineland, D. R. Leibrandt, and D. B. Hume, “Sympathetic ground state cooling and time-dilation shifts in an 27Al+ optical clock,” Phys. Rev. Lett. 118, 053002 (2017).
[Crossref]

Brusch, A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Cao, J.

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

Chen, J.-S.

J.-S. Chen, S. M. Brewer, C. W. Chou, D. J. Wineland, D. R. Leibrandt, and D. B. Hume, “Sympathetic ground state cooling and time-dilation shifts in an 27Al+ optical clock,” Phys. Rev. Lett. 118, 053002 (2017).
[Crossref]

Chou, C. W.

J.-S. Chen, S. M. Brewer, C. W. Chou, D. J. Wineland, D. R. Leibrandt, and D. B. Hume, “Sympathetic ground state cooling and time-dilation shifts in an 27Al+ optical clock,” Phys. Rev. Lett. 118, 053002 (2017).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Chwalla, M.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Clark, Charles W.

M. S. Safronova, M. G. Kozlov, and Charles W. Clark, “Precision calculation of blackbody radiation shifts for optical frequency metrology,” Phys. Rev. Lett. 107, 143006 (2011).
[Crossref] [PubMed]

Dehmelt, H.

H. Dehmelt, “Monoion oscillator as potential ultimate laser frequency standard,” IEEE Trans. Instrum. Meas. IM-31(2), 83–87 (1982).
[Crossref]

Diddams, S. A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Drullinger, R. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Dubé, P.

P. Dubé, A. A. Madej, Z. Zhou, and J. E. Bernard, “Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level,” Phys. Rev. A 87, 023806 (2013).
[Crossref]

Dumke, R.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

Eichenseer, M.

Foreman, S. M.

A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref]

Fortier, T. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Gao, K.

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

Gill, P.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion,” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

G. P. Barwood, P. Gill, G. Huang, H. A. Klein, and W. R. C. Rowley, “Sub-kHz clock transition linewidths in a cold trapped 88Sr ion in low magnetic fields using 1092-nm polarisation switching,” Opt. Commun. 151, 50–55 (1998).
[Crossref]

Godun, R. M.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

Guan, H.

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

Hachisu, H.

Hanado, Y.

Hänsch, T.W.

Hänsel, W.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Hayasaka, K.

U. Tanaka, T. Kitanaka, K. Hayasaka, and S. Urabe, “Sideband cooling of a Ca+ - In+ ion chain toward the quantum logic spectroscopy of In+,” Appl. Phys. B 121(2), 147–153 (2015).
[Crossref]

K. Hayasaka, “Synthesis of two-species ion chains for a new optical frequency standard with an indium ion,” Appl. Phys. B 107(4), 965–970 (2012).
[Crossref]

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref] [PubMed]

K. Hayasaka, “Modulation-free optical locking of an external-cavity diode laser to a filter cavity,” Opt. Lett. 36(12), 2188–2190 (2011).
[Crossref] [PubMed]

S. Uetake, K. Matsubara, H. Ito, K. Hayasaka, and M. Hosokawa, “Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb,” Appl. Phys. B 97, 413–419 (2009).
[Crossref]

Herschbach, N.

K. Pyka, N. Herschbach, J. Keller, and T. E. Mehlstäubler, “A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock,” Appl. Phys. B. 114(1), 231–241 (2014).
[Crossref]

N. Herschbach, K. Pyka, J. Keller, and T. E. Mehlstäubler, “Linear Paul trap design for an optical clock with Coulomb crystals,” Appl. Phys. B,  117, 891–906 (2012).
[Crossref]

Hollemann, G.

E. Peik, G. Hollemann, and H. Walther, “Laser cooling and quantum jumps of a single indium ion”, Phys. Rev. A 49, 402–408 (1994).
[Crossref] [PubMed]

Holzwarth, R.

Hong, F.

F. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28, 012002 (2017).
[Crossref]

Hosokawa, M.

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref] [PubMed]

S. Uetake, K. Matsubara, H. Ito, K. Hayasaka, and M. Hosokawa, “Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb,” Appl. Phys. B 97, 413–419 (2009).
[Crossref]

Huang, G.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion,” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

G. P. Barwood, P. Gill, G. Huang, H. A. Klein, and W. R. C. Rowley, “Sub-kHz clock transition linewidths in a cold trapped 88Sr ion in low magnetic fields using 1092-nm polarisation switching,” Opt. Commun. 151, 50–55 (1998).
[Crossref]

Huang, X.

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

Huang, Y.

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

Hume, D. B.

J.-S. Chen, S. M. Brewer, C. W. Chou, D. J. Wineland, D. R. Leibrandt, and D. B. Hume, “Sympathetic ground state cooling and time-dilation shifts in an 27Al+ optical clock,” Phys. Rev. Lett. 118, 053002 (2017).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Huntemann, N.

N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik, “Single-ion atomic clock with 3×10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]

Ido, T.

H. Hachisu, G. Petit, and T. Ido, “Absolute frequency measurement with uncertainty below 1 × 10−15 using International Atomic Time,” Appl. Phys. B 123, 34 (2017).
[Crossref]

H. Hachisu, G. Petit, F. Nakagawa, Y. Hanado, and T. Ido, “SI-traceable measurement of an optical frequency at low 10−16 level without a local primary standard,” Opt. Express 25, 8511 (2017).
[Crossref] [PubMed]

H. Hachisu and T. Ido, “Intermittent optical frequency measurements to reduce the dead time uncertainty of frequency link,” J. Jpn. Appl. Phys. 54(11), 112401 (2015).
[Crossref]

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref] [PubMed]

A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref]

Itano, W. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749 (2005).
[Crossref] [PubMed]

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Minimization of ion micromotion in a Paul trap,” J. Appl. Phys. 83(10), 5025–5033 (1998).
[Crossref]

Ito, H.

S. Uetake, K. Matsubara, H. Ito, K. Hayasaka, and M. Hosokawa, “Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb,” Appl. Phys. B 97, 413–419 (2009).
[Crossref]

Johnson, L. A. M.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

Jones, J. M.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

Kajita, M.

Keller, J.

K. Pyka, N. Herschbach, J. Keller, and T. E. Mehlstäubler, “A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock,” Appl. Phys. B. 114(1), 231–241 (2014).
[Crossref]

N. Herschbach, K. Pyka, J. Keller, and T. E. Mehlstäubler, “Linear Paul trap design for an optical clock with Coulomb crystals,” Appl. Phys. B,  117, 891–906 (2012).
[Crossref]

Kim, K.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

King, S. A.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

Kirchmair, G.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Kitanaka, T.

U. Tanaka, T. Kitanaka, K. Hayasaka, and S. Urabe, “Sideband cooling of a Ca+ - In+ ion chain toward the quantum logic spectroscopy of In+,” Appl. Phys. B 121(2), 147–153 (2015).
[Crossref]

Klein, H. A.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion,” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

G. P. Barwood, P. Gill, G. Huang, H. A. Klein, and W. R. C. Rowley, “Sub-kHz clock transition linewidths in a cold trapped 88Sr ion in low magnetic fields using 1092-nm polarisation switching,” Opt. Commun. 151, 50–55 (1998).
[Crossref]

Kozlov, M. G.

M. S. Safronova, M. G. Kozlov, and Charles W. Clark, “Precision calculation of blackbody radiation shifts for optical frequency metrology,” Phys. Rev. Lett. 107, 143006 (2011).
[Crossref] [PubMed]

Langer, C.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749 (2005).
[Crossref] [PubMed]

Laurent, Ph.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Lea, S. N.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion,” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

Leibrandt, D. R.

J.-S. Chen, S. M. Brewer, C. W. Chou, D. J. Wineland, D. R. Leibrandt, and D. B. Hume, “Sympathetic ground state cooling and time-dilation shifts in an 27Al+ optical clock,” Phys. Rev. Lett. 118, 053002 (2017).
[Crossref]

Li, T.

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

Li, Y.

Liang, K.

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

Lipphardt, B.

N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik, “Single-ion atomic clock with 3×10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]

Liu, P.

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

Liu, T.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

Locke, C.

Lorini, L.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Lu, Z. H.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

Ludlow, A. D.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref]

Madej, A. A.

P. Dubé, A. A. Madej, Z. Zhou, and J. E. Bernard, “Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level,” Phys. Rev. A 87, 023806 (2013).
[Crossref]

Margolis, H. S.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion,” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

Matsubara, K.

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref] [PubMed]

S. Uetake, K. Matsubara, H. Ito, K. Hayasaka, and M. Hosokawa, “Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb,” Appl. Phys. B 97, 413–419 (2009).
[Crossref]

Mehlstäubler, T. E.

K. Pyka, N. Herschbach, J. Keller, and T. E. Mehlstäubler, “A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock,” Appl. Phys. B. 114(1), 231–241 (2014).
[Crossref]

N. Herschbach, K. Pyka, J. Keller, and T. E. Mehlstäubler, “Linear Paul trap design for an optical clock with Coulomb crystals,” Appl. Phys. B,  117, 891–906 (2012).
[Crossref]

Miller, J. D.

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Minimization of ion micromotion in a Paul trap,” J. Appl. Phys. 83(10), 5025–5033 (1998).
[Crossref]

Monz, T.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Nagano, S.

Nakagawa, F.

Nevsky, A. Yu.

Newbury, N. R.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Nisbet-Jones, P. B. R.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

Nogami, A.

Notcutt, M.

A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref]

Oskay, W. H.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Ou, B.

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

Peik, E.

N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik, “Single-ion atomic clock with 3×10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

J. von Zanthier, Th. Becker, M. Eichenseer, A. Yu. Nevsky, Ch. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T.W. Hänsch, P.V. Pokasov, M.N. Skvortsov, and S.N. Bagayev, “Absolute frequency measurement of the In+ clock transition with a mode-locked laser,” Opt. Lett.,  25(23), 1729–1731 (2000).
[Crossref]

E. Peik, J. Abel, Th. Becker, J. von Zanthier, and H. Walther, “Sideband cooling of ions in radio-frequency traps”, Phys. Rev. A 60, 439–449(1999)
[Crossref]

E. Peik, G. Hollemann, and H. Walther, “Laser cooling and quantum jumps of a single indium ion”, Phys. Rev. A 49, 402–408 (1994).
[Crossref] [PubMed]

Petit, G.

H. Hachisu, G. Petit, and T. Ido, “Absolute frequency measurement with uncertainty below 1 × 10−15 using International Atomic Time,” Appl. Phys. B 123, 34 (2017).
[Crossref]

H. Hachisu, G. Petit, F. Nakagawa, Y. Hanado, and T. Ido, “SI-traceable measurement of an optical frequency at low 10−16 level without a local primary standard,” Opt. Express 25, 8511 (2017).
[Crossref] [PubMed]

Pokasov, P.V.

Pyka, K.

K. Pyka, N. Herschbach, J. Keller, and T. E. Mehlstäubler, “A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock,” Appl. Phys. B. 114(1), 231–241 (2014).
[Crossref]

N. Herschbach, K. Pyka, J. Keller, and T. E. Mehlstäubler, “Linear Paul trap design for an optical clock with Coulomb crystals,” Appl. Phys. B,  117, 891–906 (2012).
[Crossref]

Reichert, J.

Riebe, M.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Roos, C. F.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Rosenband, T.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749 (2005).
[Crossref] [PubMed]

Rovera, G. D.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Rowley, W. R. C.

G. P. Barwood, P. Gill, G. Huang, H. A. Klein, and W. R. C. Rowley, “Sub-kHz clock transition linewidths in a cold trapped 88Sr ion in low magnetic fields using 1092-nm polarisation switching,” Opt. Commun. 151, 50–55 (1998).
[Crossref]

Safronova, M. S.

M. S. Safronova, M. G. Kozlov, and Charles W. Clark, “Precision calculation of blackbody radiation shifts for optical frequency metrology,” Phys. Rev. Lett. 107, 143006 (2011).
[Crossref] [PubMed]

Sanner, C.

N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik, “Single-ion atomic clock with 3×10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]

Santarelli, G.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Schindler, P.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749 (2005).
[Crossref] [PubMed]

Schwedes, Ch.

Skvortsov, M.N.

Stalnaker, J. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Stejskal, A.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

Swann, W. C.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

Szymaniec, K.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion,” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

Tamm, Chr.

N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik, “Single-ion atomic clock with 3×10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]

Tanaka, U.

U. Tanaka, T. Kitanaka, K. Hayasaka, and S. Urabe, “Sideband cooling of a Ca+ - In+ ion chain toward the quantum logic spectroscopy of In+,” Appl. Phys. B 121(2), 147–153 (2015).
[Crossref]

Udem, Th.

Uetake, S.

S. Uetake, K. Matsubara, H. Ito, K. Hayasaka, and M. Hosokawa, “Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb,” Appl. Phys. B 97, 413–419 (2009).
[Crossref]

Urabe, S.

U. Tanaka, T. Kitanaka, K. Hayasaka, and S. Urabe, “Sideband cooling of a Ca+ - In+ ion chain toward the quantum logic spectroscopy of In+,” Appl. Phys. B 121(2), 147–153 (2015).
[Crossref]

Villar, A. S.

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

von Zanthier, J.

Walther, H.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

J. von Zanthier, Th. Becker, M. Eichenseer, A. Yu. Nevsky, Ch. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T.W. Hänsch, P.V. Pokasov, M.N. Skvortsov, and S.N. Bagayev, “Absolute frequency measurement of the In+ clock transition with a mode-locked laser,” Opt. Lett.,  25(23), 1729–1731 (2000).
[Crossref]

E. Peik, J. Abel, Th. Becker, J. von Zanthier, and H. Walther, “Sideband cooling of ions in radio-frequency traps”, Phys. Rev. A 60, 439–449(1999)
[Crossref]

E. Peik, G. Hollemann, and H. Walther, “Laser cooling and quantum jumps of a single indium ion”, Phys. Rev. A 49, 402–408 (1994).
[Crossref] [PubMed]

Wang, L. J.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

Wang, Y. H.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

Wineland, D. J.

J.-S. Chen, S. M. Brewer, C. W. Chou, D. J. Wineland, D. R. Leibrandt, and D. B. Hume, “Sympathetic ground state cooling and time-dilation shifts in an 27Al+ optical clock,” Phys. Rev. Lett. 118, 053002 (2017).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749 (2005).
[Crossref] [PubMed]

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Minimization of ion micromotion in a Paul trap,” J. Appl. Phys. 83(10), 5025–5033 (1998).
[Crossref]

Ye, J.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref]

Zelevinsky, T.

A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref]

Zhang, J.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

Zhao, Y. N.

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

Zhou, Z.

P. Dubé, A. A. Madej, Z. Zhou, and J. E. Bernard, “Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level,” Phys. Rev. A 87, 023806 (2013).
[Crossref]

Appl. Phys. B (5)

S. Uetake, K. Matsubara, H. Ito, K. Hayasaka, and M. Hosokawa, “Frequency stability measurement of a transfer-cavity-stabilized diode laser by using an optical frequency comb,” Appl. Phys. B 97, 413–419 (2009).
[Crossref]

U. Tanaka, T. Kitanaka, K. Hayasaka, and S. Urabe, “Sideband cooling of a Ca+ - In+ ion chain toward the quantum logic spectroscopy of In+,” Appl. Phys. B 121(2), 147–153 (2015).
[Crossref]

K. Hayasaka, “Synthesis of two-species ion chains for a new optical frequency standard with an indium ion,” Appl. Phys. B 107(4), 965–970 (2012).
[Crossref]

H. Hachisu, G. Petit, and T. Ido, “Absolute frequency measurement with uncertainty below 1 × 10−15 using International Atomic Time,” Appl. Phys. B 123, 34 (2017).
[Crossref]

N. Herschbach, K. Pyka, J. Keller, and T. E. Mehlstäubler, “Linear Paul trap design for an optical clock with Coulomb crystals,” Appl. Phys. B,  117, 891–906 (2012).
[Crossref]

Appl. Phys. B. (1)

K. Pyka, N. Herschbach, J. Keller, and T. E. Mehlstäubler, “A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock,” Appl. Phys. B. 114(1), 231–241 (2014).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

H. Dehmelt, “Monoion oscillator as potential ultimate laser frequency standard,” IEEE Trans. Instrum. Meas. IM-31(2), 83–87 (1982).
[Crossref]

J. Appl. Phys. (1)

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Minimization of ion micromotion in a Paul trap,” J. Appl. Phys. 83(10), 5025–5033 (1998).
[Crossref]

J. Jpn. Appl. Phys. (1)

H. Hachisu and T. Ido, “Intermittent optical frequency measurements to reduce the dead time uncertainty of frequency link,” J. Jpn. Appl. Phys. 54(11), 112401 (2015).
[Crossref]

Meas. Sci. Technol. (1)

F. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28, 012002 (2017).
[Crossref]

Opt. Commun. (2)

Y. H. Wang, R. Dumke, T. Liu, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker, and H. Walther, “Absolute frequency measurement of the 115In+ 5s21S0−5s5p3P0 narrowline transition,” Opt. Commun. 273, 526–531 (2007).
[Crossref]

G. P. Barwood, P. Gill, G. Huang, H. A. Klein, and W. R. C. Rowley, “Sub-kHz clock transition linewidths in a cold trapped 88Sr ion in low magnetic fields using 1092-nm polarisation switching,” Opt. Commun. 151, 50–55 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (3)

E. Peik, G. Hollemann, and H. Walther, “Laser cooling and quantum jumps of a single indium ion”, Phys. Rev. A 49, 402–408 (1994).
[Crossref] [PubMed]

E. Peik, J. Abel, Th. Becker, J. von Zanthier, and H. Walther, “Sideband cooling of ions in radio-frequency traps”, Phys. Rev. A 60, 439–449(1999)
[Crossref]

P. Dubé, A. A. Madej, Z. Zhou, and J. E. Bernard, “Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level,” Phys. Rev. A 87, 023806 (2013).
[Crossref]

Phys. Rev. A. (1)

D. J. Berleland and M.G. Boshier, “Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems,” Phys. Rev. A. 65, 033413 (2002).
[Crossref]

Phys. Rev. Lett. (7)

A. D. Ludlow, M. M. Boyd, T. Zelevinsky, S. M. Foreman, S. Blatt, M. Notcutt, T. Ido, and J. Ye, “Systematic study of the 87Sr clock transition in an optical lattice,” Phys. Rev. Lett. 96, 033003 (2006).
[Crossref]

N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik, “Single-ion atomic clock with 3×10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113, 210801 (2014).
[Crossref]

Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao, “Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level,” Phys. Rev. Lett. 116, 013001 (2016).
[Crossref]

M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent, “Absolute frequency measurement of the 40Ca+ 4s2S1/2 − 3d2D5/2 clock transition,” Phys. Rev. Lett. 102, 023002 (2009).
[Crossref]

J.-S. Chen, S. M. Brewer, C. W. Chou, D. J. Wineland, D. R. Leibrandt, and D. B. Hume, “Sympathetic ground state cooling and time-dilation shifts in an 27Al+ optical clock,” Phys. Rev. Lett. 118, 053002 (2017).
[Crossref]

M. S. Safronova, M. G. Kozlov, and Charles W. Clark, “Precision calculation of blackbody radiation shifts for optical frequency metrology,” Phys. Rev. Lett. 107, 143006 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Science (3)

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref] [PubMed]

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion,” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749 (2005).
[Crossref] [PubMed]

Other (1)

NIST Atomic Spectra Database ver 5.4 (2016), https://www.nist.gov/pml/atomic-spectra-database

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Concept of the new implementation of the In+ optical clock. (a) Relevant energy levels and transitions in In+, and (b) those of Ca+. (c) Schematic drawing of the ion chain configurations for our new approach.
Fig. 2
Fig. 2 Schematic of the experimental setup. DM: dichroic mirror, PMT: photomultiplier tube, ICCD: image-intensified CCD camera.
Fig. 3
Fig. 3 (a) Plots of the In+ clock transition spectra for the two settings of the laser polarizations. The bars represent measured excitation probability, while the curves are Lorenz curves for the least square fitting. (b) Observed dependence of the spectrum center on the magnetic field along z-direction Bz. The red filled circles shows those for σ− clock excitation, while the blue empty circles represents those with σ+ clock excitation. The lines are linear fit to the data.
Fig. 4
Fig. 4 Schematic of the clcok-laser frequency measurement. ECDL: External-Cavity Diode Laser, ULE: Ultra Low Expansion, UTC(NICT): realization of Universal Coordinated Time at NICT.
Fig. 5
Fig. 5 Plot of the last six digits of the measured frequency ν0 in three sessions and of their weighed averaged value denoted as the gray line. The two gray dotted lines represent a range of the standard error. Systematic shifts including gravitational shift are not taken into account in this figure.
Fig. 6
Fig. 6 Comparison of the measured frequency with previously reported values.

Tables (2)

Tables Icon

Table 1 Measurement result of the three measurement sessions. The error includes statistical and uncertainty of the link to the SI second. Systematic errors of the ion are not included. N: number of measurements, |B|: magnetic field strength.

Tables Icon

Table 2 Evaluation of systematic errors. The shifts with estimated absolute value smaller than 0.1 Hz is expressed as 0 in the table.

Metrics