Abstract

Technologies featuring external control of reflected and transmitted light are lately being explored for a wide range of optical and photonic applications. Yet, the options for spectral band tuning are scarce, especially if dynamic control of either reflected or transmitted light is required. In this work we demonstrate a tunable device capable of shifting the reflected light spectrum of an impinging light using dual frequency cholesteric liquid crystals. Modulating the frequency of the applied signal, the Bragg reflection can be dynamically shifted over a wide spectral range and also switched off. This feature can be applied to color filters, augmented reality, multi-color lasers or tunable windows.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure

Po-Chang Wu, Guan-Wei Wu, Ivan V. Timofeev, Victor Ya. Zyryanov, and Wei Lee
Photon. Res. 6(12) 1094-1100 (2018)

Hybrid anchoring for a color-reflective dual-frequency cholesteric liquid crystal device switched by low voltages

Yu-Cheng Hsiao, Ivan V. Timofeev, Victor Ya. Zyryanov, and Wei Lee
Opt. Mater. Express 5(11) 2715-2720 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Inoue and H. Moritake, “Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays,” Opt. Express 24(20), 23027–23036 (2016).
    [Crossref] [PubMed]
  2. H. Kim, J. Kobashi, Y. Maeda, H. Yoshida, and M. Ozaki, “Helical pitch dependence of the electro-optic characteristics in polymer/cholesteric liquid crystal nanocomposites,” Opt. Mater. Express 6(4), 1138–1145 (2016).
    [Crossref]
  3. F. J. Kahn, “Electric-field-induced color changes and pitch dilatation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
    [Crossref]
  4. H. Xianyu, S. Faris, and G. P. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt. 43(26), 5006–5015 (2004).
    [Crossref] [PubMed]
  5. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
    [Crossref]
  6. R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
    [Crossref]
  7. H. Xianyu, T.-H. Lin, and S.-T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
    [Crossref]
  8. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable lasers based on cholesteric liquid crystals with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
  9. C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
    [Crossref]
  10. J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
    [Crossref] [PubMed]
  11. M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display and drive scheme,” Jpn. J. Appl. Phys. 38, 6827–6830 (1999).
    [Crossref]
  12. Z. Li, “Color and intensity tunable liquid crystal device” US Patent n°6,630,982 B2 (2001).
  13. Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
    [Crossref] [PubMed]
  14. R. Dąbrowski, M. Celiński, O. Chojnowska, P. Kula, J. Dziaduszek, and S. Urban, “Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing,” Liq. Cryst. 40(10), 1339–1353 (2013).
    [Crossref]
  15. P. Perkowski, M. Mrukiewicz, O. Chojnowska, W. Piecek, and R. Dąbrowski, “Spontaneous reorientation from planar to homeotropic alignment in dual-frequency mixture doped with chiral dopant,” Phase Transit. 87(10–11), 1138–1147 (2014).
    [Crossref]
  16. H. Arnould-Netillard and F. Rondelez, “Electrohydrodynamic instabilities in cholesteric liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 26(1–2), 11–31 (1974).
    [Crossref]
  17. M. De Zwart, “Distortion of the cholesteric planar texture in liquid crystals with a negative dielectric anisotropy,” J. Phys. 39(4), 423–431 (1978).
    [Crossref]
  18. D. Diguet, F. Rondelez, and G. Durand, “Anisotropie de la constante diélectrique et de la conductivité du p-metoxy-benzilidène p-n-butylaniline en phase nématique,” Compt. Rend. Acad. Sci. 271B, 954 (1970).
  19. M. L. Sartirana, B. Valenti, and R. Bartolino, “Elastic deformations and electrohydrodynamic instabilities in large pitch cholesteric liquid crystals under an electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 98(1), 321–347 (1983).
    [Crossref]

2016 (2)

2015 (1)

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

2014 (1)

P. Perkowski, M. Mrukiewicz, O. Chojnowska, W. Piecek, and R. Dąbrowski, “Spontaneous reorientation from planar to homeotropic alignment in dual-frequency mixture doped with chiral dopant,” Phase Transit. 87(10–11), 1138–1147 (2014).
[Crossref]

2013 (2)

Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
[Crossref] [PubMed]

R. Dąbrowski, M. Celiński, O. Chojnowska, P. Kula, J. Dziaduszek, and S. Urban, “Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing,” Liq. Cryst. 40(10), 1339–1353 (2013).
[Crossref]

2010 (1)

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

2006 (2)

H. Xianyu, T.-H. Lin, and S.-T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
[Crossref]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable lasers based on cholesteric liquid crystals with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).

2004 (1)

1999 (2)

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[Crossref]

M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display and drive scheme,” Jpn. J. Appl. Phys. 38, 6827–6830 (1999).
[Crossref]

1983 (1)

M. L. Sartirana, B. Valenti, and R. Bartolino, “Elastic deformations and electrohydrodynamic instabilities in large pitch cholesteric liquid crystals under an electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 98(1), 321–347 (1983).
[Crossref]

1978 (1)

M. De Zwart, “Distortion of the cholesteric planar texture in liquid crystals with a negative dielectric anisotropy,” J. Phys. 39(4), 423–431 (1978).
[Crossref]

1974 (1)

H. Arnould-Netillard and F. Rondelez, “Electrohydrodynamic instabilities in cholesteric liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 26(1–2), 11–31 (1974).
[Crossref]

1970 (3)

D. Diguet, F. Rondelez, and G. Durand, “Anisotropie de la constante diélectrique et de la conductivité du p-metoxy-benzilidène p-n-butylaniline en phase nématique,” Compt. Rend. Acad. Sci. 271B, 954 (1970).

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

F. J. Kahn, “Electric-field-induced color changes and pitch dilatation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
[Crossref]

Arnould-Netillard, H.

H. Arnould-Netillard and F. Rondelez, “Electrohydrodynamic instabilities in cholesteric liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 26(1–2), 11–31 (1974).
[Crossref]

Bailey, C. A.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

Bartolino, R.

M. L. Sartirana, B. Valenti, and R. Bartolino, “Elastic deformations and electrohydrodynamic instabilities in large pitch cholesteric liquid crystals under an electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 98(1), 321–347 (1983).
[Crossref]

Bricker, R. L.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

Bunning, T. J.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

Celinski, M.

R. Dąbrowski, M. Celiński, O. Chojnowska, P. Kula, J. Dziaduszek, and S. Urban, “Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing,” Liq. Cryst. 40(10), 1339–1353 (2013).
[Crossref]

Chen, C.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable lasers based on cholesteric liquid crystals with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).

Chen, C.-W.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable lasers based on cholesteric liquid crystals with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).

Chen, Y.-J.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable lasers based on cholesteric liquid crystals with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).

Chojnowska, O.

P. Perkowski, M. Mrukiewicz, O. Chojnowska, W. Piecek, and R. Dąbrowski, “Spontaneous reorientation from planar to homeotropic alignment in dual-frequency mixture doped with chiral dopant,” Phase Transit. 87(10–11), 1138–1147 (2014).
[Crossref]

R. Dąbrowski, M. Celiński, O. Chojnowska, P. Kula, J. Dziaduszek, and S. Urban, “Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing,” Liq. Cryst. 40(10), 1339–1353 (2013).
[Crossref]

Crawford, G. P.

Dabrowski, R.

P. Perkowski, M. Mrukiewicz, O. Chojnowska, W. Piecek, and R. Dąbrowski, “Spontaneous reorientation from planar to homeotropic alignment in dual-frequency mixture doped with chiral dopant,” Phase Transit. 87(10–11), 1138–1147 (2014).
[Crossref]

R. Dąbrowski, M. Celiński, O. Chojnowska, P. Kula, J. Dziaduszek, and S. Urban, “Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing,” Liq. Cryst. 40(10), 1339–1353 (2013).
[Crossref]

De Zwart, M.

M. De Zwart, “Distortion of the cholesteric planar texture in liquid crystals with a negative dielectric anisotropy,” J. Phys. 39(4), 423–431 (1978).
[Crossref]

Diguet, D.

D. Diguet, F. Rondelez, and G. Durand, “Anisotropie de la constante diélectrique et de la conductivité du p-metoxy-benzilidène p-n-butylaniline en phase nématique,” Compt. Rend. Acad. Sci. 271B, 954 (1970).

Duning, M. M.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

Durand, G.

D. Diguet, F. Rondelez, and G. Durand, “Anisotropie de la constante diélectrique et de la conductivité du p-metoxy-benzilidène p-n-butylaniline en phase nématique,” Compt. Rend. Acad. Sci. 271B, 954 (1970).

Durstock, M. F.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

Dziaduszek, J.

R. Dąbrowski, M. Celiński, O. Chojnowska, P. Kula, J. Dziaduszek, and S. Urban, “Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing,” Liq. Cryst. 40(10), 1339–1353 (2013).
[Crossref]

Faris, S.

Fuh, A. Y.-G.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable lasers based on cholesteric liquid crystals with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).

Helfrich, W.

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

Hikmet, R. A. M.

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[Crossref]

Hsiao, Y.-C.

Imrie, C. T.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Inoue, Y.

Jau, H.-C.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable lasers based on cholesteric liquid crystals with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).

Kahn, F. J.

F. J. Kahn, “Electric-field-induced color changes and pitch dilatation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
[Crossref]

Kemperman, H.

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[Crossref]

Kim, H.

Kobashi, J.

Kula, P.

R. Dąbrowski, M. Celiński, O. Chojnowska, P. Kula, J. Dziaduszek, and S. Urban, “Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing,” Liq. Cryst. 40(10), 1339–1353 (2013).
[Crossref]

Lavrentovich, O. D.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Lee, W.

Li, Q.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Li, Y.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Lin, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable lasers based on cholesteric liquid crystals with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).

H. Xianyu, T.-H. Lin, and S.-T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
[Crossref]

Maeda, Y.

Moritake, H.

Mrukiewicz, M.

P. Perkowski, M. Mrukiewicz, O. Chojnowska, W. Piecek, and R. Dąbrowski, “Spontaneous reorientation from planar to homeotropic alignment in dual-frequency mixture doped with chiral dopant,” Phase Transit. 87(10–11), 1138–1147 (2014).
[Crossref]

Natarajan, L. V.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

Ozaki, M.

Paterson, D. A.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Perkowski, P.

P. Perkowski, M. Mrukiewicz, O. Chojnowska, W. Piecek, and R. Dąbrowski, “Spontaneous reorientation from planar to homeotropic alignment in dual-frequency mixture doped with chiral dopant,” Phase Transit. 87(10–11), 1138–1147 (2014).
[Crossref]

Piecek, W.

P. Perkowski, M. Mrukiewicz, O. Chojnowska, W. Piecek, and R. Dąbrowski, “Spontaneous reorientation from planar to homeotropic alignment in dual-frequency mixture doped with chiral dopant,” Phase Transit. 87(10–11), 1138–1147 (2014).
[Crossref]

Rondelez, F.

H. Arnould-Netillard and F. Rondelez, “Electrohydrodynamic instabilities in cholesteric liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 26(1–2), 11–31 (1974).
[Crossref]

D. Diguet, F. Rondelez, and G. Durand, “Anisotropie de la constante diélectrique et de la conductivité du p-metoxy-benzilidène p-n-butylaniline en phase nématique,” Compt. Rend. Acad. Sci. 271B, 954 (1970).

Sartirana, M. L.

M. L. Sartirana, B. Valenti, and R. Bartolino, “Elastic deformations and electrohydrodynamic instabilities in large pitch cholesteric liquid crystals under an electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 98(1), 321–347 (1983).
[Crossref]

Storey, J. M. D.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Sutherland, R. L.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

Tondiglia, V. P.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

Urban, S.

R. Dąbrowski, M. Celiński, O. Chojnowska, P. Kula, J. Dziaduszek, and S. Urban, “Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing,” Liq. Cryst. 40(10), 1339–1353 (2013).
[Crossref]

Valenti, B.

M. L. Sartirana, B. Valenti, and R. Bartolino, “Elastic deformations and electrohydrodynamic instabilities in large pitch cholesteric liquid crystals under an electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 98(1), 321–347 (1983).
[Crossref]

Wei, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable lasers based on cholesteric liquid crystals with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).

White, T. J.

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

Wu, S.-T.

H. Xianyu, T.-H. Lin, and S.-T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
[Crossref]

Xiang, J.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Xianyu, H.

H. Xianyu, T.-H. Lin, and S.-T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
[Crossref]

H. Xianyu, S. Faris, and G. P. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt. 43(26), 5006–5015 (2004).
[Crossref] [PubMed]

Xu, M.

M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display and drive scheme,” Jpn. J. Appl. Phys. 38, 6827–6830 (1999).
[Crossref]

Yang, D.-K.

M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display and drive scheme,” Jpn. J. Appl. Phys. 38, 6827–6830 (1999).
[Crossref]

Yoshida, H.

Adv. Mater. (1)

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

H. Xianyu, T.-H. Lin, and S.-T. Wu, “Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture,” Appl. Phys. Lett. 89(9), 091124 (2006).
[Crossref]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable lasers based on cholesteric liquid crystals with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).

Compt. Rend. Acad. Sci. (1)

D. Diguet, F. Rondelez, and G. Durand, “Anisotropie de la constante diélectrique et de la conductivité du p-metoxy-benzilidène p-n-butylaniline en phase nématique,” Compt. Rend. Acad. Sci. 271B, 954 (1970).

J. Appl. Phys. (1)

C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, “Electromechanical tuning of cholesteric liquid crystals,” J. Appl. Phys. 107(1), 013105 (2010).
[Crossref]

J. Phys. (1)

M. De Zwart, “Distortion of the cholesteric planar texture in liquid crystals with a negative dielectric anisotropy,” J. Phys. 39(4), 423–431 (1978).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display and drive scheme,” Jpn. J. Appl. Phys. 38, 6827–6830 (1999).
[Crossref]

Liq. Cryst. (2)

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[Crossref]

R. Dąbrowski, M. Celiński, O. Chojnowska, P. Kula, J. Dziaduszek, and S. Urban, “Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing,” Liq. Cryst. 40(10), 1339–1353 (2013).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

H. Arnould-Netillard and F. Rondelez, “Electrohydrodynamic instabilities in cholesteric liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 26(1–2), 11–31 (1974).
[Crossref]

M. L. Sartirana, B. Valenti, and R. Bartolino, “Elastic deformations and electrohydrodynamic instabilities in large pitch cholesteric liquid crystals under an electric field,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 98(1), 321–347 (1983).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phase Transit. (1)

P. Perkowski, M. Mrukiewicz, O. Chojnowska, W. Piecek, and R. Dąbrowski, “Spontaneous reorientation from planar to homeotropic alignment in dual-frequency mixture doped with chiral dopant,” Phase Transit. 87(10–11), 1138–1147 (2014).
[Crossref]

Phys. Rev. Lett. (1)

F. J. Kahn, “Electric-field-induced color changes and pitch dilatation in cholesteric liquid crystals,” Phys. Rev. Lett. 24(5), 209–212 (1970).
[Crossref]

Other (1)

Z. Li, “Color and intensity tunable liquid crystal device” US Patent n°6,630,982 B2 (2001).

Supplementary Material (1)

NameDescription
» Visualization 1: MOV (17325 KB)      Reflection peak shift

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Dual Frequency Cholesteric LC switching behavior at different applied frequencies (100Hz (left), 15kHz (right)). For each kind of DFCLC devices (blue 440nm, green 530nm and red 620nm), the cell gap was 3µm.
Fig. 2
Fig. 2 Position of the DFCLC reflection peak vs. applied frequency and the corresponding LC textures shown in the micrographs (see Visualization 1).
Fig. 3
Fig. 3 Reflectance efficiency variation and peak shift at different applied frequencies for a DFCLC device with an original reflection in 530nm and 3µm cell gap. The inset shows the reflectance efficiency variation with frequency for 3 and 7µm cell gaps.
Fig. 4
Fig. 4 Reflection peak shift at different applied frequencies and different pitch starting points for 3µm cell gap (left) and 7µm cell gap (right).
Fig. 5
Fig. 5 Complete switching process, textures and alignments of the DFCLC upon applying voltage at different frequency ranges

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p= 1 c×HTP
λ=p× n o + n e 2

Metrics