Abstract

In this paper, a surface plasmon resonance (SPR) spectroscopic ellipsometry, based on Otto-Bliokh configuration, is developed for the measurement of thickness and optical constants of ultra-thin coatings. This technique combines sensitivity of surface plasmon with accessibility of optical constants and other advantages of ellipsometry. Surface plasmons (SP) are generated in the sample under test in total reflectance mode and SP geometric distribution over the sample surface is influenced by the coating thickness and optical properties on one hand, and by the air gap thickness on the other hand. Nanoscale control of the thickness of the air gap between a convex surface and the sample was assured using a micron-size beam spot irradiating the contact zone. The amplitude and phase change induced by SPR in the visible and near-infrared spectral range were obtained to determine the dispersion of optical constants and the thickness of the ultra-thin layer. The extracted optical constants were found to be in excellent agreement with the results obtained using TEM and XRR techniques. Both theoretical analysis and experimental results demonstrated high sensitivity and precision of the proposed technique for the analysis of coatings of both metals and dielectrics on metals.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry

Yao Shan, Guohang Hu, Liyuan Gu, Hongbo He, Aijun Zeng, Yuanan Zhao, and Anna Sytchkova
Appl. Opt. 56(28) 7898-7904 (2017)

Measuring ultrathin metal coatings using SPR spectroscopic ellipsometry with a prism-dielectric-metal-liquid configuration

Yao Shan, Guohang Hu, Maria Luisa Grilli, Hongbo He, Meiping Zhu, Yuanan Zhao, and Jianda Shao
Opt. Express 27(6) 7912-7921 (2019)

Ellipsometric measurement technique for a modified Otto configuration used for observing surface-plasmon resonance

Tetsuo Iwata and Yasuhiro Mizutani
Opt. Express 18(14) 14480-14487 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. Lopez-Rios and G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81(2), 529–538 (1979).
    [Crossref]
  2. Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
    [Crossref]
  3. T. Iwata and G. Komoda, “Measurements of complex refractive indices of metals at several wavelengths by frustrated total internal reflection due to surface plasmon resonance,” Appl. Opt. 47(13), 2386–2391 (2008).
    [Crossref] [PubMed]
  4. E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
    [Crossref]
  5. A. Otto, “A new method for exciting non-radioactive surface plasma oscillations,” Phys. Status Solidi 26, K99–K101 (1968).
    [Crossref]
  6. Y. Kaneoka, K. Nishigaki, Y. Mizutani, and T. Iwata, “Precise measurement of the thickness of a dielectric layer on a metal surface by use of a modified Otto optical configuration,” Int. J. Optomech. 9(1), 48–61 (2015).
    [Crossref]
  7. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
    [Crossref] [PubMed]
  8. T. Iwata and S. Maeda, “Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry,” Appl. Opt. 46(9), 1575–1582 (2007).
    [Crossref] [PubMed]
  9. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
    [Crossref] [PubMed]
  10. Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 471957 (2011).
  11. A. Sytchkova, D. Zola, M. L. Grilli, A. Piegari, M. Fang, H. He, and J. Shao, “Interface plasmonic properties of silver coated by ultrathin metal oxides,” Proc. SPIE 8168, 81681V (2011).
    [Crossref]
  12. E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67(1), 1–21 (2013).
    [Crossref] [PubMed]
  13. M. Born and E. Wolf, Principles of Optics, sixth edition (Pergamon, 1986).
  14. A. M. Efimov, Optical Constants of Inorganic Glasses (Chemical Rubber Company, 1995).
  15. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
    [Crossref] [PubMed]
  16. A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kena-Cohen, and S. Maier, “Optical and Structural Properties of Ultra-thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
    [Crossref]
  17. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  18. T. Iwata and Y. Mizutani, “Ellipsometric measurement technique for a modified Otto configuration used for observing surface-plasmon resonance,” Opt. Express 18(14), 14480–14487 (2010).
    [Crossref] [PubMed]

2015 (2)

Y. Kaneoka, K. Nishigaki, Y. Mizutani, and T. Iwata, “Precise measurement of the thickness of a dielectric layer on a metal surface by use of a modified Otto optical configuration,” Int. J. Optomech. 9(1), 48–61 (2015).
[Crossref]

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kena-Cohen, and S. Maier, “Optical and Structural Properties of Ultra-thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

2013 (1)

2011 (2)

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 471957 (2011).

A. Sytchkova, D. Zola, M. L. Grilli, A. Piegari, M. Fang, H. He, and J. Shao, “Interface plasmonic properties of silver coated by ultrathin metal oxides,” Proc. SPIE 8168, 81681V (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

2007 (1)

2006 (2)

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[Crossref] [PubMed]

2004 (1)

1998 (1)

1979 (1)

T. Lopez-Rios and G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81(2), 529–538 (1979).
[Crossref]

1971 (1)

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

1968 (1)

A. Otto, “A new method for exciting non-radioactive surface plasma oscillations,” Phys. Status Solidi 26, K99–K101 (1968).
[Crossref]

Arwin, H.

Bliokh, Yu. P.

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

De Martino, A.

Djurisic, A. B.

Dolling, G.

Elazar, J. M.

Enkrich, C.

Fang, M.

A. Sytchkova, D. Zola, M. L. Grilli, A. Piegari, M. Fang, H. He, and J. Shao, “Interface plasmonic properties of silver coated by ultrathin metal oxides,” Proc. SPIE 8168, 81681V (2011).
[Crossref]

Felsteiner, J.

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

Garcia-Caurel, E.

Gaston, J.-P.

Grigorenko, A. N.

Grilli, M. L.

A. Sytchkova, D. Zola, M. L. Grilli, A. Piegari, M. Fang, H. He, and J. Shao, “Interface plasmonic properties of silver coated by ultrathin metal oxides,” Proc. SPIE 8168, 81681V (2011).
[Crossref]

He, H.

A. Sytchkova, D. Zola, M. L. Grilli, A. Piegari, M. Fang, H. He, and J. Shao, “Interface plasmonic properties of silver coated by ultrathin metal oxides,” Proc. SPIE 8168, 81681V (2011).
[Crossref]

Ho, H. P.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 471957 (2011).

Huang, Y. H.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 471957 (2011).

Iwata, T.

Johansen, K.

Kabashin, A. V.

Kaneoka, Y.

Y. Kaneoka, K. Nishigaki, Y. Mizutani, and T. Iwata, “Precise measurement of the thickness of a dielectric layer on a metal surface by use of a modified Otto optical configuration,” Int. J. Optomech. 9(1), 48–61 (2015).
[Crossref]

Kena-Cohen, S.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kena-Cohen, and S. Maier, “Optical and Structural Properties of Ultra-thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Komoda, G.

Kong, S. K.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 471957 (2011).

Kossoy, A.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kena-Cohen, and S. Maier, “Optical and Structural Properties of Ultra-thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Kretschmann, E.

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

Leosson, K.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kena-Cohen, and S. Maier, “Optical and Structural Properties of Ultra-thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Linden, S.

Lipson, S. G.

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

Lopez-Rios, T.

T. Lopez-Rios and G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81(2), 529–538 (1979).
[Crossref]

Maeda, S.

Maier, S.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kena-Cohen, and S. Maier, “Optical and Structural Properties of Ultra-thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Majewski, M. L.

Merk, V.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kena-Cohen, and S. Maier, “Optical and Structural Properties of Ultra-thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Mizutani, Y.

Y. Kaneoka, K. Nishigaki, Y. Mizutani, and T. Iwata, “Precise measurement of the thickness of a dielectric layer on a metal surface by use of a modified Otto optical configuration,” Int. J. Optomech. 9(1), 48–61 (2015).
[Crossref]

T. Iwata and Y. Mizutani, “Ellipsometric measurement technique for a modified Otto configuration used for observing surface-plasmon resonance,” Opt. Express 18(14), 14480–14487 (2010).
[Crossref] [PubMed]

Nishigaki, K.

Y. Kaneoka, K. Nishigaki, Y. Mizutani, and T. Iwata, “Precise measurement of the thickness of a dielectric layer on a metal surface by use of a modified Otto optical configuration,” Int. J. Optomech. 9(1), 48–61 (2015).
[Crossref]

Otto, A.

A. Otto, “A new method for exciting non-radioactive surface plasma oscillations,” Phys. Status Solidi 26, K99–K101 (1968).
[Crossref]

Patskovsky, S.

Piegari, A.

A. Sytchkova, D. Zola, M. L. Grilli, A. Piegari, M. Fang, H. He, and J. Shao, “Interface plasmonic properties of silver coated by ultrathin metal oxides,” Proc. SPIE 8168, 81681V (2011).
[Crossref]

Poksinski, M.

Rakic, A. D.

Shao, J.

A. Sytchkova, D. Zola, M. L. Grilli, A. Piegari, M. Fang, H. He, and J. Shao, “Interface plasmonic properties of silver coated by ultrathin metal oxides,” Proc. SPIE 8168, 81681V (2011).
[Crossref]

Simakov, D.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kena-Cohen, and S. Maier, “Optical and Structural Properties of Ultra-thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Soukoulis, C. M.

Sytchkova, A.

A. Sytchkova, D. Zola, M. L. Grilli, A. Piegari, M. Fang, H. He, and J. Shao, “Interface plasmonic properties of silver coated by ultrathin metal oxides,” Proc. SPIE 8168, 81681V (2011).
[Crossref]

Vander, R.

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

Vuye, G.

T. Lopez-Rios and G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81(2), 529–538 (1979).
[Crossref]

Wegener, M.

Wu, S. Y.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 471957 (2011).

Yan, L.

Zola, D.

A. Sytchkova, D. Zola, M. L. Grilli, A. Piegari, M. Fang, H. He, and J. Shao, “Interface plasmonic properties of silver coated by ultrathin metal oxides,” Proc. SPIE 8168, 81681V (2011).
[Crossref]

Adv. Opt. Mater. (1)

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kena-Cohen, and S. Maier, “Optical and Structural Properties of Ultra-thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Adv. Opt. Technol. (1)

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 471957 (2011).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

Appl. Spectrosc. (1)

Int. J. Optomech. (1)

Y. Kaneoka, K. Nishigaki, Y. Mizutani, and T. Iwata, “Precise measurement of the thickness of a dielectric layer on a metal surface by use of a modified Otto optical configuration,” Int. J. Optomech. 9(1), 48–61 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Status Solidi (1)

A. Otto, “A new method for exciting non-radioactive surface plasma oscillations,” Phys. Status Solidi 26, K99–K101 (1968).
[Crossref]

Proc. SPIE (1)

A. Sytchkova, D. Zola, M. L. Grilli, A. Piegari, M. Fang, H. He, and J. Shao, “Interface plasmonic properties of silver coated by ultrathin metal oxides,” Proc. SPIE 8168, 81681V (2011).
[Crossref]

Surf. Sci. (1)

T. Lopez-Rios and G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81(2), 529–538 (1979).
[Crossref]

Z. Phys. (1)

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics, sixth edition (Pergamon, 1986).

A. M. Efimov, Optical Constants of Inorganic Glasses (Chemical Rubber Company, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the SPR-based spectroscopic ellipsometry.
Fig. 2
Fig. 2 A SPR absorption spot observed for a thin gold film illuminated by a white light.
Fig. 3
Fig. 3 The ellipsometric angles (a)Ψ and (b)Δ varied with light wavelength, obtained by SPR-based ellipsometry and numerical fitting, of a ultra-thin gold film at different thicknesses of the air gap.
Fig. 4
Fig. 4 The cross-section of an ultra-thin coating observed by TEM.
Fig. 5
Fig. 5 The thickness of ultra-thin gold coatings measured by XRR and SPR-based ellipsometry.
Fig. 6
Fig. 6 (a) Real part and (b) imaginary part of the refractive index of a 7.9nm thick gold layer compared to the values of bulk gold [17].
Fig. 7
Fig. 7 The ellipsometric angles (a) Ψ and (b) Δ varied with light wavelength, obtained by SPR-based ellipsometry and numerical fitting, of gold films with different thickness. d_film is the thickness of the ultrathin gold film.
Fig. 8
Fig. 8 (a)Ψ and (b) Δ varied with light wavelength and incident angle in ellipsometry without SPR. (c) Ψ and (d) Δ varied with light wavelength and incident angle in SPR-based ellipsometry.
Fig. 9
Fig. 9 (a) Ψ and (b) Δ varied with light wavelength in ellipsometry without SPR. (c) Ψ and (d) Δ varied with light wavelength in SPR-based ellipsometry. d_film is the thickness of the ultrathin gold film.
Fig. 10
Fig. 10 (a) Ψ and (b) Δ varied with light wavelength in ellipsometry without SPR. (c) Ψ and (d) Δ varied with light wavelength in SPR-based ellipsometry. n_film is the refractive index of the ultra-thin gold film with the thickness of 8nm [15].

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k x = k 0 ε m ε d ε m + ε d
d_air=R R 2 r 2
d_air_uncer= R 2 (rL/2) 2 R 2 (r+L/2) 2
M i =[ cos( k 0 nzcosθ) - i p sin( k 0 nzcosθ) ipsin( k 0 nzcosθ) cos( k 0 nzcosθ) ],
M= M 1 M 2 M 3 ... M j =[ m 11 m 12 m 21 m 22 ]
r s = ( m 11 + m 12 p l ) p 1 ( m 21 + m 22 p l ) ( m 11 + m 12 p l ) p 1 +( m 21 + m 22 p l )
r p = ( m 11 + m 12 q l ) q 1 ( m 21 + m 22 q l ) ( m 11 + m 12 q l ) q 1 +( m 21 + m 22 q l )
MS E 2 = 1 N i=1 N [ ( Ψ i mod Ψ i exp Ψ i exp ) 2 + ( Δ i mod Δ i exp Δ i exp ) 2 ]

Metrics