Abstract

We present a theoretical and experimental study of plasma optical modulation for probe lasers based on the plasma induced by pump pulses. This concept relies on two co-propagating laser pulses in carbon disulfide, where a drive laser pulse first excites plasma channels while a following carrier laser pulse is modulated by the plasma. The modulation on the probe beam can be conveniently adjusted through electron density, plasma width, propagation distance of plasma, the power of pump lasers, or the pump beam’s profile. The experimental results and theoretical solutions are very consistent, which fully illustrates that this method for plasma optical modulation is reasonable. This pump-probe method is also a potential measurement technique for inferring the on-axis plasma density shape.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Topological insulator Sb2Te3 as an optical media for the generation of ring-shaped beams

Chao Tan, Qingkai Wang, and Xiquan Fu
Opt. Mater. Express 4(10) 2016-2025 (2014)

In-line holographic imaging and electron density extraction of ultrafast ionized air filaments

George Rodriguez, Anthony R. Valenzuela, Balakishore Yellampalle, Mark J. Schmitt, and Ki-Yong Kim
J. Opt. Soc. Am. B 25(12) 1988-1997 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. Kowalski and M. Życzkowski, “Data encryption of optical fibre communication using pseudo-random spatial light modulation,” Opto-Electron. Rev. 24(2), 75–81 (2016).
    [Crossref]
  2. K. Liu, C. R. Ye, S. Khan, and V. J. Sorge, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
    [Crossref]
  3. R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3(4), 396–402 (2016).
    [Crossref]
  4. J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
    [Crossref]
  5. P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
    [Crossref] [PubMed]
  6. K. Shcherbin, I. Gvozdovskyy, and D. R. Evans, “Infrared sensitive liquid crystal light valve with semiconductor substrate,” Appl. Opt. 55(5), 1076–1081 (2016).
    [Crossref] [PubMed]
  7. P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, and L. R. Jaroszewicz, “Perdeuterated liquid crystals for near infrared applications,” Opt. Mater. 60, 209–213 (2016).
    [Crossref]
  8. J. M. Wang, X. X. Chen, Z. S. Xu, W. J. Yang, and X. D. Jiang, “Design and fabrication of BSO liquid crystal light valve,” Exp. Sci. Technol. 6, 007 (2011).
  9. V. Marinova, S. H. Lin, and K. Y. Hsu, “Electro-optically and all-optically addressed spatial light modulator devices based on organic-inorganic hybrid structures,” Proc. SPIE 100220, 1–6 (2016).
  10. P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
    [Crossref]
  11. N. Collings, T. D. Wilkinson, A. Jeziorska, A. B. Davey, B. Movaghar, and W. A. Crossland, “Charge-injecting layers for liquid crystal light valves,” Proc. SPIE 5464, 421–427 (2004).
    [Crossref]
  12. M. G. Kirzhner, M. Klebanov, V. Lyubin, N. Collings, and I. Abdulhalim, “Liquid crystal high-resolution optically addressed spatial light modulator using a nanodimensional chalcogenide photosensor,” Opt. Lett. 39(7), 2048–2051 (2014).
    [Crossref] [PubMed]
  13. M. Watanabe, “Quality recovery method of interference patterns generated from faulty MEMS spatial light modulators,” J. Lightwave Technol. 34(3), 910–917 (2016).
    [Crossref]
  14. I. W. Jung, Y. A. Peter, E. Carr, J. S. Wang, and O. Solgaard, “Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes,” IEEE J. S. Top. Quant. 13(2), 162–167 (2007).
    [Crossref]
  15. L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 72090C, 1–15 (2009).
  16. I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. S. Top. Quant. 13(2), 155–161 (2007).
    [Crossref]
  17. K. Khalil, Y. M. Sabry, K. Hassan, A. Shebl, M. Soliman, Y. M. Eltagoury, and D. Khalil, “In-line optical MEMS phase modulator and application in ring laser frequency modulation,” IEEE J. S. Top. Quant. 52(8), 1–8 (2016).
    [Crossref]
  18. A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
    [Crossref]
  19. G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. 11(8), 085005 (2009).
  20. L. Ni, C. Shen, H. Li, K. F. Liu, and S. Wei, “Discussion on feasibility of inserting the GSP into LCOS,” Infrared Las. Eng. 44(6), 1773–1778 (2015).
  21. L. A. Shiramin and V. D. Thourhout, “Graphene modulators and switches integrated on silicon and silicon nitride waveguide,” IEEE J. S. Top. Quant. 23(1), 1–7 (2017).
  22. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  23. K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
    [Crossref] [PubMed]
  24. J. Gosciniak and D. T. H. Tan, “Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators,” Nanotechnology 24(18), 185202 (2013).
    [Crossref] [PubMed]
  25. R. Hao, W. Du, E. P. Li, and H. S. Chen, “Graphene assisted TE/TM-independent polarizer based on Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 27(10), 1112–1115 (2015).
    [Crossref]
  26. Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
    [Crossref] [PubMed]
  27. H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
    [Crossref]
  28. L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
    [Crossref] [PubMed]
  29. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
    [Crossref]
  30. F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
    [Crossref] [PubMed]
  31. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
    [Crossref]
  32. H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
    [Crossref] [PubMed]

2017 (1)

L. A. Shiramin and V. D. Thourhout, “Graphene modulators and switches integrated on silicon and silicon nitride waveguide,” IEEE J. S. Top. Quant. 23(1), 1–7 (2017).

2016 (9)

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

M. Kowalski and M. Życzkowski, “Data encryption of optical fibre communication using pseudo-random spatial light modulation,” Opto-Electron. Rev. 24(2), 75–81 (2016).
[Crossref]

R. Bruck, K. Vynck, P. Lalanne, B. Mills, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, and O. L. Muskens, “All-optical spatial light modulator for reconfigurable silicon photonic circuits,” Optica 3(4), 396–402 (2016).
[Crossref]

K. Shcherbin, I. Gvozdovskyy, and D. R. Evans, “Infrared sensitive liquid crystal light valve with semiconductor substrate,” Appl. Opt. 55(5), 1076–1081 (2016).
[Crossref] [PubMed]

P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, and L. R. Jaroszewicz, “Perdeuterated liquid crystals for near infrared applications,” Opt. Mater. 60, 209–213 (2016).
[Crossref]

V. Marinova, S. H. Lin, and K. Y. Hsu, “Electro-optically and all-optically addressed spatial light modulator devices based on organic-inorganic hybrid structures,” Proc. SPIE 100220, 1–6 (2016).

M. Watanabe, “Quality recovery method of interference patterns generated from faulty MEMS spatial light modulators,” J. Lightwave Technol. 34(3), 910–917 (2016).
[Crossref]

K. Khalil, Y. M. Sabry, K. Hassan, A. Shebl, M. Soliman, Y. M. Eltagoury, and D. Khalil, “In-line optical MEMS phase modulator and application in ring laser frequency modulation,” IEEE J. S. Top. Quant. 52(8), 1–8 (2016).
[Crossref]

2015 (6)

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

K. Liu, C. R. Ye, S. Khan, and V. J. Sorge, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

R. Hao, W. Du, E. P. Li, and H. S. Chen, “Graphene assisted TE/TM-independent polarizer based on Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 27(10), 1112–1115 (2015).
[Crossref]

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

L. Ni, C. Shen, H. Li, K. F. Liu, and S. Wei, “Discussion on feasibility of inserting the GSP into LCOS,” Infrared Las. Eng. 44(6), 1773–1778 (2015).

2014 (1)

2013 (1)

J. Gosciniak and D. T. H. Tan, “Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators,” Nanotechnology 24(18), 185202 (2013).
[Crossref] [PubMed]

2011 (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

2009 (3)

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. 11(8), 085005 (2009).

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 72090C, 1–15 (2009).

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

2007 (2)

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. S. Top. Quant. 13(2), 155–161 (2007).
[Crossref]

I. W. Jung, Y. A. Peter, E. Carr, J. S. Wang, and O. Solgaard, “Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes,” IEEE J. S. Top. Quant. 13(2), 162–167 (2007).
[Crossref]

2006 (1)

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

2005 (1)

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[Crossref]

2004 (2)

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

N. Collings, T. D. Wilkinson, A. Jeziorska, A. B. Davey, B. Movaghar, and W. A. Crossland, “Charge-injecting layers for liquid crystal light valves,” Proc. SPIE 5464, 421–427 (2004).
[Crossref]

2002 (1)

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

1996 (1)

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

Abdulhalim, I.

Albright, R.

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

Becker, A.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

Bennis, N.

P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, and L. R. Jaroszewicz, “Perdeuterated liquid crystals for near infrared applications,” Opt. Mater. 60, 209–213 (2016).
[Crossref]

Bifano, T.

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 72090C, 1–15 (2009).

Bleier, Z.

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 72090C, 1–15 (2009).

Bruck, R.

Carr, E.

I. W. Jung, Y. A. Peter, E. Carr, J. S. Wang, and O. Solgaard, “Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes,” IEEE J. S. Top. Quant. 13(2), 162–167 (2007).
[Crossref]

Chen, H. S.

R. Hao, W. Du, E. P. Li, and H. S. Chen, “Graphene assisted TE/TM-independent polarizer based on Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 27(10), 1112–1115 (2015).
[Crossref]

Chen, M.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

Chen, Z.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

Chenc, L.

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

Chin, S. L.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

Chirico, G.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Cho, S. H.

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Choi, J. Y.

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Chu, D.

P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Chun, Y. T.

P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Chung, H. J.

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Collings, N.

M. G. Kirzhner, M. Klebanov, V. Lyubin, N. Collings, and I. Abdulhalim, “Liquid crystal high-resolution optically addressed spatial light modulator using a nanodimensional chalcogenide photosensor,” Opt. Lett. 39(7), 2048–2051 (2014).
[Crossref] [PubMed]

N. Collings, T. D. Wilkinson, A. Jeziorska, A. B. Davey, B. Movaghar, and W. A. Crossland, “Charge-injecting layers for liquid crystal light valves,” Proc. SPIE 5464, 421–427 (2004).
[Crossref]

Cornelissen, S.

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 72090C, 1–15 (2009).

Crossland, W. A.

N. Collings, T. D. Wilkinson, A. Jeziorska, A. B. Davey, B. Movaghar, and W. A. Crossland, “Charge-injecting layers for liquid crystal light valves,” Proc. SPIE 5464, 421–427 (2004).
[Crossref]

D’Angelo, E.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Dalir, H.

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Davey, A. B.

N. Collings, T. D. Wilkinson, A. Jeziorska, A. B. Davey, B. Movaghar, and W. A. Crossland, “Charge-injecting layers for liquid crystal light valves,” Proc. SPIE 5464, 421–427 (2004).
[Crossref]

Ding, Y.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Drieenhuizenb, B.

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

Du, W.

R. Hao, W. Du, E. P. Li, and H. S. Chen, “Graphene assisted TE/TM-independent polarizer based on Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 27(10), 1112–1115 (2015).
[Crossref]

Eltagoury, Y. M.

K. Khalil, Y. M. Sabry, K. Hassan, A. Shebl, M. Soliman, Y. M. Eltagoury, and D. Khalil, “In-line optical MEMS phase modulator and application in ring laser frequency modulation,” IEEE J. S. Top. Quant. 52(8), 1–8 (2016).
[Crossref]

Evans, D. R.

Frandsen, L. H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Gacioch, K.

P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, and L. R. Jaroszewicz, “Perdeuterated liquid crystals for near infrared applications,” Opt. Mater. 60, 209–213 (2016).
[Crossref]

Gandolfi, D.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Gosciniak, J.

J. Gosciniak and D. T. H. Tan, “Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators,” Nanotechnology 24(18), 185202 (2013).
[Crossref] [PubMed]

Gvozdovskyy, I.

Hammer, D. X.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

Hao, R.

R. Hao, W. Du, E. P. Li, and H. S. Chen, “Graphene assisted TE/TM-independent polarizer based on Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 27(10), 1112–1115 (2015).
[Crossref]

Harmata, P.

P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, and L. R. Jaroszewicz, “Perdeuterated liquid crystals for near infrared applications,” Opt. Mater. 60, 209–213 (2016).
[Crossref]

Haspeslaghd, L.

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

Hassan, K.

K. Khalil, Y. M. Sabry, K. Hassan, A. Shebl, M. Soliman, Y. M. Eltagoury, and D. Khalil, “In-line optical MEMS phase modulator and application in ring laser frequency modulation,” IEEE J. S. Top. Quant. 52(8), 1–8 (2016).
[Crossref]

Hoeksb, M.

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

Hsu, K. Y.

V. Marinova, S. H. Lin, and K. Y. Hsu, “Electro-optically and all-optically addressed spatial light modulator devices based on organic-inorganic hybrid structures,” Proc. SPIE 100220, 1–6 (2016).

Hu, H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Jaroszewicz, L. R.

P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, and L. R. Jaroszewicz, “Perdeuterated liquid crystals for near infrared applications,” Opt. Mater. 60, 209–213 (2016).
[Crossref]

Jaroszynski, D. A.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

Jeziorska, A.

N. Collings, T. D. Wilkinson, A. Jeziorska, A. B. Davey, B. Movaghar, and W. A. Crossland, “Charge-injecting layers for liquid crystal light valves,” Proc. SPIE 5464, 421–427 (2004).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Jung, I. W.

I. W. Jung, Y. A. Peter, E. Carr, J. S. Wang, and O. Solgaard, “Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes,” IEEE J. S. Top. Quant. 13(2), 162–167 (2007).
[Crossref]

Kanno, I.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. S. Top. Quant. 13(2), 155–161 (2007).
[Crossref]

Kennedy, P. K.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

Khalil, D.

K. Khalil, Y. M. Sabry, K. Hassan, A. Shebl, M. Soliman, Y. M. Eltagoury, and D. Khalil, “In-line optical MEMS phase modulator and application in ring laser frequency modulation,” IEEE J. S. Top. Quant. 52(8), 1–8 (2016).
[Crossref]

Khalil, K.

K. Khalil, Y. M. Sabry, K. Hassan, A. Shebl, M. Soliman, Y. M. Eltagoury, and D. Khalil, “In-line optical MEMS phase modulator and application in ring laser frequency modulation,” IEEE J. S. Top. Quant. 52(8), 1–8 (2016).
[Crossref]

Khan, S.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorge, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Kim, K.

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Kim, T.

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Kirzhner, M. G.

Klebanov, M.

Kotera, H.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. S. Top. Quant. 13(2), 155–161 (2007).
[Crossref]

Kowalski, M.

M. Kowalski and M. Życzkowski, “Data encryption of optical fibre communication using pseudo-random spatial light modulation,” Opto-Electron. Rev. 24(2), 75–81 (2016).
[Crossref]

Krasavin, A. V.

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

Kula, P.

P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, and L. R. Jaroszewicz, “Perdeuterated liquid crystals for near infrared applications,” Opt. Mater. 60, 209–213 (2016).
[Crossref]

Kunisawa, T.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. S. Top. Quant. 13(2), 155–161 (2007).
[Crossref]

Lalanne, P.

Lauria, J.

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

Li, E. P.

R. Hao, W. Du, E. P. Li, and H. S. Chen, “Graphene assisted TE/TM-independent polarizer based on Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 27(10), 1112–1115 (2015).
[Crossref]

Li, H.

L. Ni, C. Shen, H. Li, K. F. Liu, and S. Wei, “Discussion on feasibility of inserting the GSP into LCOS,” Infrared Las. Eng. 44(6), 1773–1778 (2015).

Li, Y.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

Lin, S. H.

V. Marinova, S. H. Lin, and K. Y. Hsu, “Electro-optically and all-optically addressed spatial light modulator devices based on organic-inorganic hybrid structures,” Proc. SPIE 100220, 1–6 (2016).

Liu, K.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorge, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Liu, K. F.

L. Ni, C. Shen, H. Li, K. F. Liu, and S. Wei, “Discussion on feasibility of inserting the GSP into LCOS,” Infrared Las. Eng. 44(6), 1773–1778 (2015).

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, W.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

Lyubin, V.

Mapelli, J.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Marc, P.

P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, and L. R. Jaroszewicz, “Perdeuterated liquid crystals for near infrared applications,” Opt. Mater. 60, 209–213 (2016).
[Crossref]

Marinova, V.

V. Marinova, S. H. Lin, and K. Y. Hsu, “Electro-optically and all-optically addressed spatial light modulator devices based on organic-inorganic hybrid structures,” Proc. SPIE 100220, 1–6 (2016).

Mashanovich, G. Z.

Mei, T.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. 11(8), 085005 (2009).

Mills, B.

Ming, H.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. 11(8), 085005 (2009).

Morawiak, P.

P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, and L. R. Jaroszewicz, “Perdeuterated liquid crystals for near infrared applications,” Opt. Mater. 60, 209–213 (2016).
[Crossref]

Mori, W. B.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

Mortensen, N. A.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Movaghar, B.

N. Collings, T. D. Wilkinson, A. Jeziorska, A. B. Davey, B. Movaghar, and W. A. Crossland, “Charge-injecting layers for liquid crystal light valves,” Proc. SPIE 5464, 421–427 (2004).
[Crossref]

Muskens, O. L.

Ni, L.

L. Ni, C. Shen, H. Li, K. F. Liu, and S. Wei, “Discussion on feasibility of inserting the GSP into LCOS,” Infrared Las. Eng. 44(6), 1773–1778 (2015).

Noojin, G. D.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

Peter, Y. A.

I. W. Jung, Y. A. Peter, E. Carr, J. S. Wang, and O. Solgaard, “Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes,” IEEE J. S. Top. Quant. 13(2), 162–167 (2007).
[Crossref]

Pozzi, P.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Qian, L. J.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

Reed, G. T.

Roach, W. P.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

Rockwell, B. A.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

Sabry, Y. M.

K. Khalil, Y. M. Sabry, K. Hassan, A. Shebl, M. Soliman, Y. M. Eltagoury, and D. Khalil, “In-line optical MEMS phase modulator and application in ring laser frequency modulation,” IEEE J. S. Top. Quant. 52(8), 1–8 (2016).
[Crossref]

Sakakura, M.

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[Crossref]

Schatzberg, L. Z.

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 72090C, 1–15 (2009).

Shcherbin, K.

Shebl, A.

K. Khalil, Y. M. Sabry, K. Hassan, A. Shebl, M. Soliman, Y. M. Eltagoury, and D. Khalil, “In-line optical MEMS phase modulator and application in ring laser frequency modulation,” IEEE J. S. Top. Quant. 52(8), 1–8 (2016).
[Crossref]

Shen, C.

L. Ni, C. Shen, H. Li, K. F. Liu, and S. Wei, “Discussion on feasibility of inserting the GSP into LCOS,” Infrared Las. Eng. 44(6), 1773–1778 (2015).

Sheng, Z.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

Sheng, Z. M.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

Shiramin, L. A.

L. A. Shiramin and V. D. Thourhout, “Graphene modulators and switches integrated on silicon and silicon nitride waveguide,” IEEE J. S. Top. Quant. 23(1), 1–7 (2017).

Shrestha, P. K.

P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Simard, P. T.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

Solgaard, O.

I. W. Jung, Y. A. Peter, E. Carr, J. S. Wang, and O. Solgaard, “Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes,” IEEE J. S. Top. Quant. 13(2), 162–167 (2007).
[Crossref]

Soliman, M.

K. Khalil, Y. M. Sabry, K. Hassan, A. Shebl, M. Soliman, Y. M. Eltagoury, and D. Khalil, “In-line optical MEMS phase modulator and application in ring laser frequency modulation,” IEEE J. S. Top. Quant. 52(8), 1–8 (2016).
[Crossref]

Sorge, V. J.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorge, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Stewart, J.

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 72090C, 1–15 (2009).

Suzuki, T.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. S. Top. Quant. 13(2), 155–161 (2007).
[Crossref]

Tan, D. T. H.

J. Gosciniak and D. T. H. Tan, “Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators,” Nanotechnology 24(18), 185202 (2013).
[Crossref] [PubMed]

Teng, H.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

Terazima, M.

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[Crossref]

Théberge, F.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

Thomas, R. J.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

Thomson, D. J.

Thourhout, V. D.

L. A. Shiramin and V. D. Thourhout, “Graphene modulators and switches integrated on silicon and silicon nitride waveguide,” IEEE J. S. Top. Quant. 23(1), 1–7 (2017).

Tognolina, M.

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vanneerb, R.

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

Vladimirsky, O.

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

Vynck, K.

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, J. S.

I. W. Jung, Y. A. Peter, E. Carr, J. S. Wang, and O. Solgaard, “Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes,” IEEE J. S. Top. Quant. 13(2), 162–167 (2007).
[Crossref]

Wang, P.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. 11(8), 085005 (2009).

Wang, Y.

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Watanabe, M.

Wei, S.

L. Ni, C. Shen, H. Li, K. F. Liu, and S. Wei, “Discussion on feasibility of inserting the GSP into LCOS,” Infrared Las. Eng. 44(6), 1773–1778 (2015).

Wei, Z.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

Weng, S. M.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

Wilkinson, T. D.

N. Collings, T. D. Wilkinson, A. Jeziorska, A. B. Davey, B. Movaghar, and W. A. Crossland, “Charge-injecting layers for liquid crystal light valves,” Proc. SPIE 5464, 421–427 (2004).
[Crossref]

Witvrouwd, A.

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

Xia, Y.

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Xiao, S.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Yang, H.

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

Ye, C. R.

K. Liu, C. R. Ye, S. Khan, and V. J. Sorge, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, L. L.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

Yuan, G. H.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. 11(8), 085005 (2009).

Yuan, X. C.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. 11(8), 085005 (2009).

Yvind, K.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, D. G.

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. 11(8), 085005 (2009).

Zhang, J.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

Zhang, X.

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhao, Y.

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

Zheludev, N. I.

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

Zhu, X.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Zyczkowski, M.

M. Kowalski and M. Życzkowski, “Data encryption of optical fibre communication using pseudo-random spatial light modulation,” Opto-Electron. Rev. 24(2), 75–81 (2016).
[Crossref]

ACS Photonics (1)

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32(4), 670–678 (1996).
[Crossref]

IEEE J. S. Top. Quant. (4)

L. A. Shiramin and V. D. Thourhout, “Graphene modulators and switches integrated on silicon and silicon nitride waveguide,” IEEE J. S. Top. Quant. 23(1), 1–7 (2017).

I. W. Jung, Y. A. Peter, E. Carr, J. S. Wang, and O. Solgaard, “Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes,” IEEE J. S. Top. Quant. 13(2), 162–167 (2007).
[Crossref]

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. S. Top. Quant. 13(2), 155–161 (2007).
[Crossref]

K. Khalil, Y. M. Sabry, K. Hassan, A. Shebl, M. Soliman, Y. M. Eltagoury, and D. Khalil, “In-line optical MEMS phase modulator and application in ring laser frequency modulation,” IEEE J. S. Top. Quant. 52(8), 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Hao, W. Du, E. P. Li, and H. S. Chen, “Graphene assisted TE/TM-independent polarizer based on Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 27(10), 1112–1115 (2015).
[Crossref]

Infrared Las. Eng. (1)

L. Ni, C. Shen, H. Li, K. F. Liu, and S. Wei, “Discussion on feasibility of inserting the GSP into LCOS,” Infrared Las. Eng. 44(6), 1773–1778 (2015).

J. Lightwave Technol. (1)

J. Opt. (1)

G. H. Yuan, X. C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. 11(8), 085005 (2009).

Laser Photonics Rev. (1)

K. Liu, C. R. Ye, S. Khan, and V. J. Sorge, “Review and perspective on ultrafast wavelength-size electro-optic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015).
[Crossref]

Light Sci. Appl. (1)

P. K. Shrestha, Y. T. Chun, and D. Chu, “A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles,” Light Sci. Appl. 4(3), e259 (2015).
[Crossref]

Microelectron. Eng. (1)

J. Lauria, R. Albright, O. Vladimirsky, M. Hoeksb, R. Vanneerb, B. Drieenhuizenb, L. Chenc, L. Haspeslaghd, and A. Witvrouwd, “SLM device for 193nm lithographic applications,” Microelectron. Eng. 86(4–6), 569–572 (2009).
[Crossref]

Nano Lett. (1)

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

J. Gosciniak and D. T. H. Tan, “Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators,” Nanotechnology 24(18), 185202 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

L. L. Yu, Y. Zhao, L. J. Qian, M. Chen, S. M. Weng, Z. M. Sheng, D. A. Jaroszynski, W. B. Mori, and J. Zhang, “Plasma optical modulators for intense lasers,” Nat. Commun. 7, 11893 (2016).
[Crossref] [PubMed]

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011).
[Crossref] [PubMed]

Neurophotonics (1)

P. Pozzi, D. Gandolfi, M. Tognolina, G. Chirico, J. Mapelli, and E. D’Angelo, “High-throughput spatial light modulation two-photon microscopy for fast functional imaging,” Neurophotonics 2(1), 015005 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

P. Kula, N. Bennis, P. Marć, P. Harmata, K. Gacioch, P. Morawiak, and L. R. Jaroszewicz, “Perdeuterated liquid crystals for near infrared applications,” Opt. Mater. 60, 209–213 (2016).
[Crossref]

Optica (1)

Opto-Electron. Rev. (1)

M. Kowalski and M. Życzkowski, “Data encryption of optical fibre communication using pseudo-random spatial light modulation,” Opto-Electron. Rev. 24(2), 75–81 (2016).
[Crossref]

Phys. Rev. B (1)

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1 Pt 2), 016406 (2002).
[Crossref] [PubMed]

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036406 (2006).
[Crossref] [PubMed]

Proc. SPIE (3)

L. Z. Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, and Z. Bleier, “Secure optical communication system utilizing deformable MEMS mirrors,” Proc. SPIE 72090C, 1–15 (2009).

V. Marinova, S. H. Lin, and K. Y. Hsu, “Electro-optically and all-optically addressed spatial light modulator devices based on organic-inorganic hybrid structures,” Proc. SPIE 100220, 1–6 (2016).

N. Collings, T. D. Wilkinson, A. Jeziorska, A. B. Davey, B. Movaghar, and W. A. Crossland, “Charge-injecting layers for liquid crystal light valves,” Proc. SPIE 5464, 421–427 (2004).
[Crossref]

Other (1)

J. M. Wang, X. X. Chen, Z. S. Xu, W. J. Yang, and X. D. Jiang, “Design and fabrication of BSO liquid crystal light valve,” Exp. Sci. Technol. 6, 007 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Spatial intensity distribution of probe beams with w=0.6mm, σ=0.5mm, z=5mm and electron density (a) n c =70 n 0 , (b) n c =50 n 0 , and (c) n c =30 n 0 , respectively. (d) The corresponding cross line (y = 0) of probe beam when electron densities is tuned.
Fig. 2
Fig. 2 Spatial intensity distribution of probe beam with w=0.6mm, n c =70 n 0 , z=5mm (a) no plasma, and plasma channel width (b) σ=0.5mm, (c) σ=0.4mm, and (d) σ=0.3mm, respectively. (e) The corresponding cross line (y = 0) of probe beam when plasma channel widths is tuned.
Fig. 3
Fig. 3 (a) Spatial intensity distribution of probe beam with w=0.6mm, σ=0.5mm, n c =70 n 0 , and propagation distance z=4, 5, 6, 8, 11, 20, 40mm, respectively. (b) The corresponding cross line (y = 0) of probe beam when propagation distance is tuned.
Fig. 4
Fig. 4 Experimental setup. Laser 1, femtosecond laser; Laser 2, He-Ne laser; M1 and M2, silver-coated plane mirrors; A1 and A2, attenuators; BS1 and BS2, beam splitter; BD, beam dump.
Fig. 5
Fig. 5 Spatial intensity distribution of probe beams at Pfs of (a) 14 mW, (b) 16 mW and (c) 19mW, respectively. (d) The corresponding cross line (y = 0) of probe beam when Pfs is tuned.
Fig. 6
Fig. 6 Spatial intensity distribution of probe beam for different electron densities n c =70 n 0 (black curve), n c =50 n 0 (red curve), n c =30 n 0 (blue curve) in theory, and at Pfs of 14 mW (black circles), 16 mW (red circles), 19 mW (blue circles) in the experiment.
Fig. 7
Fig. 7 Spatial intensity distribution of different modulated probe beams, inset maps of (d)-(f) are the intensity profile of the pump beam.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E ( r ,z,t)= e x E 0 ( r ,z,t) 2 exp(ikzi ω 0 t)+c.c.
[ 2 1 c 2 2 t 2 ] E ( r ,z,t)= ω p 2 ( r ) c 2 E ( r ,z,t)
{ 2 +2ik z + ( 1 β g 2 ) 2 ζ 2 }ψ( r ,z,ζ)= ω p 2 ( r ) c 2 ψ( r ,z,ζ)
( 2 x 2 + 2 y 2 +2ik z ω p 2 (x,y,z) c 2 )ψ(x,y,z)=0
2 ψ(x,y,z) x 2 + 2 ψ(x,y,z) y 2 +2ik ψ(x,y,z) z k 2 n e (x,y,z) n c ψ(x,y,z)=0
ψ(x,y,z)=A(x,y,z)exp( iφ(x,y,z) )
2kA φ z +A ( φ x ) 2 +A ( φ y ) 2 2 A x 2 2 A y 2 + n e n c k 2 A=0
2k A z +2 A x φ x +2 A y φ y +A 2 φ x 2 +A 2 φ y 2 =0
φ w (x,y,z)=φ(x,y,0) k 2 n c 0 z n e (x,y, z )d z
A w (x,y,z)=A(x,y,0)
A(x,y,z)=A(x,y,0)exp[ 1 k 0 z ( A(x,y,0) x φ(x,y, z ) x + A(x,y,0) y φ(x,y, z ) y )d z ]× exp[ 1 2k 0 z ( 2 φ(x,y, z ) x 2 + 2 φ(x,y, z ) y 2 )d z ]
A(x,y,z)= A 0 exp[ x 2 + y 2 2 w 2 + n 0 n c ( x 2 +y ) 2 z 2 2 w 2 σ 2 exp( x 2 + y 2 2 σ 2 x 2 + y 2 2 w 2 ) ]× exp{ z 2 n 0 4 n c [ 1 σ 2 exp( x 2 + y 2 2 σ 2 )+ x 2 + y 2 σ 4 exp( x 2 + y 2 2 σ 2 ) ] }
I c = I 0 exp( z 2 n 0 2 σ 2 n c )

Metrics