D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref]
[PubMed]
J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]
Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]
[PubMed]
K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref]
[PubMed]
S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]
B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref]
[PubMed]
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref]
[PubMed]
Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref]
[PubMed]
D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
[Crossref]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]
M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref]
[PubMed]
K. S. Sohn, M. Y. Cho, M. Kim, and J. S. Kim, “A smart load-sensing system using standardized mechano-luminescence measurement,” Opt. Express 23(5), 6073–6082 (2015).
[Crossref]
[PubMed]
R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]
S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]
J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]
K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]
S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]
S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref]
[PubMed]
N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]
N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]
J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref]
[PubMed]
J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]
S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
[Crossref]
Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref]
[PubMed]
N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]
L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]
P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]
X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]
C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]
Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett. 84(24), 5016–5018 (2004).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]
M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]
G. T. Reynolds, “Piezoluminescence from a ferroelectric polymer and quartz,” J. Lumin. 75(4), 295–299 (1997).
[Crossref]
M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]
N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A 90(1–2), 93–96 (1982).
[Crossref]
G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]
G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).
W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]
M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]
G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).
N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A 90(1–2), 93–96 (1982).
[Crossref]
J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]
P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]
J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref]
[PubMed]
K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]
J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]
P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]
G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]
R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]
R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]
P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]
Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref]
[PubMed]
D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
[Crossref]
R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]
B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref]
[PubMed]
R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]
M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref]
[PubMed]
J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]
Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref]
[PubMed]
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref]
[PubMed]
J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]
S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]
Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref]
[PubMed]
K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]
J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]
M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]
D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref]
[PubMed]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]
Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref]
[PubMed]
Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]
[PubMed]
M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]
S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref]
[PubMed]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]
M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref]
[PubMed]
Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref]
[PubMed]
J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]
M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]
G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]
D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref]
[PubMed]
W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).
B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref]
[PubMed]
Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref]
[PubMed]
S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]
C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]
L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]
S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]
S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]
S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]
S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]
S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref]
[PubMed]
R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]
S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]
S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]
S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
[Crossref]
S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]
S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]
S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]
K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref]
[PubMed]
K. S. Sohn, M. Y. Cho, M. Kim, and J. S. Kim, “A smart load-sensing system using standardized mechano-luminescence measurement,” Opt. Express 23(5), 6073–6082 (2015).
[Crossref]
[PubMed]
M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]
G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]
K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref]
[PubMed]
S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]
S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref]
[PubMed]
C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]
Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]
[PubMed]
B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref]
[PubMed]
B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref]
[PubMed]
R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]
Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett. 84(24), 5016–5018 (2004).
[Crossref]
J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]
J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]
J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref]
[PubMed]
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref]
[PubMed]
Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref]
[PubMed]
P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]
M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]
M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]
G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref]
[PubMed]
J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]
X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]
M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]
Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref]
[PubMed]
P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]
D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
[Crossref]
P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]
K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]
J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]
Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]
[PubMed]
G. T. Reynolds, “Piezoluminescence from a ferroelectric polymer and quartz,” J. Lumin. 75(4), 295–299 (1997).
[Crossref]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref]
[PubMed]
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref]
[PubMed]
K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref]
[PubMed]
K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]
J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]
K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref]
[PubMed]
K. S. Sohn, M. Y. Cho, M. Kim, and J. S. Kim, “A smart load-sensing system using standardized mechano-luminescence measurement,” Opt. Express 23(5), 6073–6082 (2015).
[Crossref]
[PubMed]
S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]
S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]
S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref]
[PubMed]
S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]
S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]
N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]
N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref]
[PubMed]
M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref]
[PubMed]
D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref]
[PubMed]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref]
[PubMed]
B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref]
[PubMed]
J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]
D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
[Crossref]
J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]
J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]
X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]
C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]
Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref]
[PubMed]
B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref]
[PubMed]
Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref]
[PubMed]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]
M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]
M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref]
[PubMed]
D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref]
[PubMed]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]
J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref]
[PubMed]
N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]
N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]
S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
[Crossref]
N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]
L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]
X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]
Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett. 84(24), 5016–5018 (2004).
[Crossref]
C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]
M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]
B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref]
[PubMed]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]
S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
[Crossref]
N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]
L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]
X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]
C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]
J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]
D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref]
[PubMed]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]
N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]
J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]
J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]
J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref]
[PubMed]
C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]
L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]
M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref]
[PubMed]
Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref]
[PubMed]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]
D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref]
[PubMed]
X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]
C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]
K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref]
[PubMed]
M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]
J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]
S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]
D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref]
[PubMed]
M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref]
[PubMed]
X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]
Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref]
[PubMed]
S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref]
[PubMed]
G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]
J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]
S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]
C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]
C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]
Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett. 84(24), 5016–5018 (2004).
[Crossref]
M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]
S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
[Crossref]
N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]
N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref]
[PubMed]
J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]
Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref]
[PubMed]
D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
[Crossref]
S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]
N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]
G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).
B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref]
[PubMed]
Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]
L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]
G. T. Reynolds, “Piezoluminescence from a ferroelectric polymer and quartz,” J. Lumin. 75(4), 295–299 (1997).
[Crossref]
R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]
C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]
Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref]
[PubMed]
J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref]
[PubMed]
K. S. Sohn, M. Y. Cho, M. Kim, and J. S. Kim, “A smart load-sensing system using standardized mechano-luminescence measurement,” Opt. Express 23(5), 6073–6082 (2015).
[Crossref]
[PubMed]
P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]
W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).
N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A 90(1–2), 93–96 (1982).
[Crossref]
K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref]
[PubMed]
J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]
J. I. Pankove, Optical Processes in Semiconductors (New York, 1971).
C. N. Xu, “Coatings,” in Encyclopedia of Smart Materials, M. Schwartz, ed. (Wiley, 2002).