Abstract

A variety of up-and-coming applications of piezoluminescence in artificial skins, structural health diagnosis, and mechano-driven lightings and displays recently have triggered an intense research effort to design and develop new piezoluminescent materials. In this work, we deduced and verified an efficient piezoluminescence in ferroelectric Ca3Ti2O7:Pr3+ long-persistent phosphor, in view of three fundamental elements forming piezoluminescence – piezoelectricity, luminescent centers and carrier traps. Under the stimulation of mechanical actions including compression and friction, Ca3Ti2O7:Pr3+ shows an intense red emission from 1D2-3H4 transition of Pr3+. On the basis of investigations on structural and optical characteristics especially photoluminescence, persistent luminescence and thermoluminescence, we finally proposed a possible piezoluminescent mechanism in Ca3Ti2O7:Pr3+. Our research is expected to expand the horizon of existing piezoluminescent materials, accelerating the development and application of new materials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Trap-controlled mechanoluminescence in Pr3+-activated M2Nb2O7 (M = Sr, Ca) isomorphic perovskites

Cong Pan, Jun-Cheng Zhang, Min Zhang, Xu Yan, Hong-Di Zhang, Yun-Ze Long, Xin-Yuan Sun, and Hai-Tao Jiang
Opt. Mater. Express 8(6) 1425-1434 (2018)

Preparation and characterization of a long persistent phosphor Na2Ca3Si2O8:Ce3+

Yahong Jin, Yinrong Fu, Yihua Hu, Li Chen, Guifang Ju, and Zhongfei Mu
Opt. Mater. Express 5(7) 1488-1497 (2015)

The influence of defects formed by Ca excess and thermal post-treatments on the persistent luminescence of CaTiO3:Pr

Eugenio H. Otal, Alexandra E. Maegli, Nina Vogel-Schäuble, Bernhard Walfort, Hans Hagemann, Songhak Yoon, Albert Zeller, and Anke Weidenkaff
Opt. Mater. Express 2(4) 405-412 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).
  2. N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A 90(1–2), 93–96 (1982).
    [Crossref]
  3. G. T. Reynolds, “Piezoluminescence from a ferroelectric polymer and quartz,” J. Lumin. 75(4), 295–299 (1997).
    [Crossref]
  4. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
    [Crossref]
  5. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
    [Crossref]
  6. C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
    [Crossref]
  7. Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett. 84(24), 5016–5018 (2004).
    [Crossref]
  8. C. N. Xu, “Coatings,” in Encyclopedia of Smart Materials, M. Schwartz, ed. (Wiley, 2002).
  9. X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
    [Crossref]
  10. C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
    [Crossref]
  11. N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
    [Crossref] [PubMed]
  12. Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
    [Crossref] [PubMed]
  13. S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
    [Crossref]
  14. S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
    [Crossref] [PubMed]
  15. N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
    [Crossref]
  16. N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
    [Crossref]
  17. S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
    [Crossref]
  18. D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
    [Crossref]
  19. J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
    [Crossref]
  20. M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
    [Crossref] [PubMed]
  21. K. S. Sohn, M. Y. Cho, M. Kim, and J. S. Kim, “A smart load-sensing system using standardized mechano-luminescence measurement,” Opt. Express 23(5), 6073–6082 (2015).
    [Crossref] [PubMed]
  22. K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
    [Crossref] [PubMed]
  23. S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
    [Crossref]
  24. Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
    [Crossref]
  25. D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
    [Crossref] [PubMed]
  26. J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
    [Crossref]
  27. Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
    [Crossref] [PubMed]
  28. L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
    [Crossref]
  29. M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
    [Crossref]
  30. J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
    [Crossref]
  31. S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
    [Crossref]
  32. J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
    [Crossref] [PubMed]
  33. M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
    [Crossref]
  34. M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
    [Crossref] [PubMed]
  35. Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
    [Crossref] [PubMed]
  36. R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
    [Crossref]
  37. B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
    [Crossref] [PubMed]
  38. J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
    [Crossref]
  39. G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
    [Crossref]
  40. J. I. Pankove, Optical Processes in Semiconductors (New York, 1971).
  41. J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
    [Crossref]
  42. P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
    [Crossref]
  43. W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).
  44. K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
    [Crossref]

2017 (1)

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

2016 (6)

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]

2015 (7)

B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref] [PubMed]

M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref] [PubMed]

Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref] [PubMed]

D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref] [PubMed]

K. S. Sohn, M. Y. Cho, M. Kim, and J. S. Kim, “A smart load-sensing system using standardized mechano-luminescence measurement,” Opt. Express 23(5), 6073–6082 (2015).
[Crossref] [PubMed]

2014 (3)

R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]

2013 (6)

K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref] [PubMed]

2012 (3)

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
[Crossref]

Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref] [PubMed]

2011 (1)

N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref] [PubMed]

2008 (2)

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]

2006 (1)

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]

2005 (1)

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

2004 (2)

C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]

Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett. 84(24), 5016–5018 (2004).
[Crossref]

1999 (3)

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]

1997 (1)

G. T. Reynolds, “Piezoluminescence from a ferroelectric polymer and quartz,” J. Lumin. 75(4), 295–299 (1997).
[Crossref]

1991 (1)

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]

1982 (1)

N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A 90(1–2), 93–96 (1982).
[Crossref]

1963 (1)

G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]

1962 (1)

G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).

1958 (1)

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).

Akiyama, M.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]

Alzetta, G.

G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).

Atari, N. A.

N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A 90(1–2), 93–96 (1982).
[Crossref]

Baere, I. D.

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Bettinelli, M.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]

Birol, T.

J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]

Bombardi, A.

M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref] [PubMed]

Bos, A. J. J.

K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Botterman, J.

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Boutinaud, P.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]

Braun, W.

G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]

Cao, C.

R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]

Cao, R.

R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]

Cavalli, E.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]

Chan, H. L. W.

Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref] [PubMed]

Chen, B.

D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
[Crossref]

Chen, G.

R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]

Chen, H.

B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref] [PubMed]

Chen, K.

R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]

Chen, L.

M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref] [PubMed]

Cheong, S. W.

J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]

Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref] [PubMed]

M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref] [PubMed]

Cherian, J. G.

J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]

Cho, M. Y.

Choi, B.

S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]

Dai, J.

Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref] [PubMed]

Eeckhout, K. V. D.

K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Elcombe, M. M.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]

Fujihala, M.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Fujio, Y.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Gao, B.

J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]

Gao, G.

Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref] [PubMed]

Gecevicius, M.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Goodman, P.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]

Ha, N. Y.

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Han, W. P.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Hao, J.

M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref] [PubMed]

Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref] [PubMed]

Harms, N. C.

J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]

Hawkins, K. D.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]

Herzog, D. C. G.

G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]

Hirotsu, J.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Hoogenstraaten, W.

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).

Huang, F.

B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref] [PubMed]

Huang, F. T.

Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref] [PubMed]

Hwang, S. H.

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

Imai, Y.

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]

Jeong, J.

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

Jeong, S. M.

S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Jiang, S.

R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]

Joo, K. I.

S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

Kamimura, S.

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
[Crossref]

Kim, H.

S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

Kim, J.

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

Kim, J. S.

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

K. S. Sohn, M. Y. Cho, M. Kim, and J. S. Kim, “A smart load-sensing system using standardized mechano-luminescence measurement,” Opt. Express 23(5), 6073–6082 (2015).
[Crossref] [PubMed]

Kim, M.

Kisi, E. H.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]

Kortüm, G.

G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]

Lee, J. W.

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

Lee, S. K.

S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Li, C.

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]

Li, Y.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Lin, H.

B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref] [PubMed]

Lin, Z.

B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref] [PubMed]

Liu, P.

R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]

Liu, Y.

Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett. 84(24), 5016–5018 (2004).
[Crossref]

Long, Y. Z.

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref] [PubMed]

Luo, X.

M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref] [PubMed]

Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref] [PubMed]

Mahiou, R.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]

Matheson, S.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]

Matsui, H.

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]

Minnaja, N.

G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).

Murakami, Y.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Murray, C. A.

M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref] [PubMed]

Musfeldt, J. L.

J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]

Nishikubo, K.

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

Nonaka, K.

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]

Oh, Y. S.

Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref] [PubMed]

Oubaha, M.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]

Peng, D.

D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
[Crossref]

Pinel, E.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]

Poelman, D.

K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Qiu, J.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Reynolds, G. T.

G. T. Reynolds, “Piezoluminescence from a ferroelectric polymer and quartz,” J. Lumin. 75(4), 295–299 (1997).
[Crossref]

Sakata, Y.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Santucci, S.

G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).

Scherillo, A.

M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref] [PubMed]

Senn, M. S.

M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref] [PubMed]

Singh, S. P.

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

Smet, P. F.

K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Sohn, K. S.

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

K. S. Sohn, M. Y. Cho, M. Kim, and J. S. Kim, “A smart load-sensing system using standardized mechano-luminescence measurement,” Opt. Express 23(5), 6073–6082 (2015).
[Crossref] [PubMed]

Song, S.

S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]

Sun, B.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Takezoe, H.

S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]

Terasaki, N.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]

N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref] [PubMed]

Terasawa, Y.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Timilsina, S.

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

Tsang, M. K.

M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref] [PubMed]

Tu, D.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Ueno, N.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Vanderbilt, D.

J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]

Vecchini, C.

M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref] [PubMed]

Wang, B.

B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref] [PubMed]

Wang, F.

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
[Crossref]

Wang, X.

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]

Wang, Y.

Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref] [PubMed]

B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref] [PubMed]

Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref] [PubMed]

Watanabe, S.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Watanabe, T.

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

White, T. J.

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]

Wong, M. C.

M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref] [PubMed]

Xu, C. N.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref] [PubMed]

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
[Crossref]

N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref] [PubMed]

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett. 84(24), 5016–5018 (2004).
[Crossref]

C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]

Xu, J.

B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref] [PubMed]

Yamabe, J.

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Yamada, H.

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
[Crossref]

N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref] [PubMed]

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]

Yan, X.

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Yoshida, A.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

Yu, X.

R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]

Zhang, H.

N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref] [PubMed]

Zhang, H. D.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Zhang, J. C.

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]

J. C. Zhang, C. N. Xu, and Y. Z. Long, “Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels,” Opt. Express 21(11), 13699–13709 (2013).
[Crossref] [PubMed]

Zhang, L.

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]

Zhang, Y.

M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref] [PubMed]

Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref] [PubMed]

Zhao, L. Z.

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Zheng, X. G.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

ACS Appl. Mater. Interfaces (1)

K. S. Sohn, S. Timilsina, S. P. Singh, J. W. Lee, and J. S. Kim, “A mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS and piezoresistive CNT/PDMS hybrid sensor: red-light emission and a standardized strain quantification,” ACS Appl. Mater. Interfaces 8(50), 34777–34783 (2016).
[Crossref] [PubMed]

Acta Crystallogr. B (1)

M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Crystallogr. B 47(3), 305–314 (1991).
[Crossref]

Acta Mater. (1)

J. Botterman, K. V. D. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Adv. Funct. Mater. (1)

S. M. Jeong, S. Song, H. Kim, K. I. Joo, and H. Takezoe, “Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite,” Adv. Funct. Mater. 26(27), 4848–4858 (2016).
[Crossref]

Adv. Mater. (5)

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

M. C. Wong, L. Chen, M. K. Tsang, Y. Zhang, and J. Hao, “Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect,” Adv. Mater. 27(30), 4488–4495 (2015).
[Crossref] [PubMed]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

Y. Zhang, G. Gao, H. L. W. Chan, J. Dai, Y. Wang, and J. Hao, “Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures,” Adv. Mater. 24(13), 1729–1735 (2012).
[Crossref] [PubMed]

S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, “Color manipulation of mechanoluminescence from stress-activated composite films,” Adv. Mater. 25(43), 6194–6200 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

G. Kortüm, W. Braun, and D. C. G. Herzog, “Principles and techniques of diffuse-reflectance spectroscopy,” Angew. Chem. Int. Ed. Engl. 2(7), 333–341 (1963).
[Crossref]

Appl. Phys. Lett. (8)

J. G. Cherian, T. Birol, N. C. Harms, B. Gao, S. W. Cheong, D. Vanderbilt, and J. L. Musfeldt, “Optical spectroscopy and band gap analysis of hybrid improper ferroelectric Ca3Ti2O7,” Appl. Phys. Lett. 108(26), 262901 (2016).
[Crossref]

S. M. Jeong, S. Song, S. K. Lee, and B. Choi, “Mechanically driven light-generator with high durability,” Appl. Phys. Lett. 102(5), 051110 (2013).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett. 74(9), 1236–1238 (1999).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescence,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

C. N. Xu, H. Yamada, X. Wang, and X. G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040–3042 (2004).
[Crossref]

Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett. 84(24), 5016–5018 (2004).
[Crossref]

M. Akiyama, C. N. Xu, H. Matsui, K. Nonaka, and T. Watanabe, “Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light,” Appl. Phys. Lett. 75(17), 2548–2550 (1999).
[Crossref]

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n = 1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett. 101(9), 091113 (2012).
[Crossref]

Catal. Today (1)

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today 201, 203–208 (2013).
[Crossref]

Chem. Commun. (Camb.) (1)

N. Terasaki, H. Zhang, H. Yamada, and C. N. Xu, “Mechanoluminescent light source for a fluorescent probe molecule,” Chem. Commun. (Camb.) 47(28), 8034–8036 (2011).
[Crossref] [PubMed]

Chem. Mater. (2)

J. C. Zhang, Y. Z. Long, X. Yan, X. Wang, and F. Wang, “Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping,” Chem. Mater. 28(11), 4052–4057 (2016).
[Crossref]

J. C. Zhang, L. Z. Zhao, Y. Z. Long, H. D. Zhang, B. Sun, W. P. Han, X. Yan, and X. Wang, “Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect,” Chem. Mater. 27(21), 7481–7489 (2015).
[Crossref]

Chem. Soc. Rev. (1)

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Chempluschem (1)

D. Peng, B. Chen, and F. Wang, “Recent advances in doped mechanoluminescent phosphors,” Chempluschem 80(8), 1209–1215 (2015).
[Crossref]

Energy Environ. Sci. (1)

S. M. Jeong, S. Song, K. I. Joo, J. Kim, S. H. Hwang, J. Jeong, and H. Kim, “Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer,” Energy Environ. Sci. 7(10), 3338–3346 (2014).
[Crossref]

IEEE Sens. J. (1)

N. Terasaki and C. N. Xu, “Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor,” IEEE Sens. J. 13(10), 3999–4004 (2013).
[Crossref]

Il Nuovo Cimento (1)

G. Alzetta, N. Minnaja, and S. Santucci, “Piezoluminescence in zinc-sulphide phosphors,” Il Nuovo Cimento 23(5), 910–913 (1962).

Inorg. Chem. (1)

B. Wang, H. Lin, J. Xu, H. Chen, Z. Lin, F. Huang, and Y. Wang, “Design, preparation, and characterization of a novel red long-persistent perovskite phosphor: Ca3Ti2O7:Pr3+,” Inorg. Chem. 54(23), 11299–11306 (2015).
[Crossref] [PubMed]

Int. J. Hydrogen Energy (1)

Y. Fujio, C. N. Xu, Y. Terasawa, Y. Sakata, J. Yamabe, N. Ueno, N. Terasaki, A. Yoshida, S. Watanabe, and Y. Murakami, “Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel,” Int. J. Hydrogen Energy 41(2), 1333–1340 (2016).
[Crossref]

J. Electrochem. Soc. (1)

L. Zhang, H. Yamada, Y. Imai, and C. N. Xu, “Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior,” J. Electrochem. Soc. 155(3), J63–J65 (2008).
[Crossref]

J. Lumin. (1)

G. T. Reynolds, “Piezoluminescence from a ferroelectric polymer and quartz,” J. Lumin. 75(4), 295–299 (1997).
[Crossref]

J. Solid State Chem. (1)

R. Cao, G. Chen, X. Yu, C. Cao, K. Chen, P. Liu, and S. Jiang, “Luminescence properties of Ca3Ti2O7:Eu3+, Bi3+, R+ (R+=Li+, Na+, and K+) red emission phosphor,” J. Solid State Chem. 220, 97–101 (2014).
[Crossref]

J. Visualizat. (1)

C. Li, C. N. Xu, L. Zhang, H. Yamada, and Y. Imai, “Dynamic visualization of stress distribution on metal by mechanoluminescence images,” J. Visualizat. 11(4), 329–335 (2008).
[Crossref]

Nat. Mater. (1)

Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, “Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals,” Nat. Mater. 14(4), 407–413 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. (1)

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1), 9–13 (2006).
[Crossref]

Philips Res. Rep. (1)

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep. 13, 515–693 (1958).

Phys. Lett. A (1)

N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A 90(1–2), 93–96 (1982).
[Crossref]

Phys. Rev. B (1)

K. V. D. Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Phys. Rev. Lett. (1)

M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, “Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping,” Phys. Rev. Lett. 114(3), 035701 (2015).
[Crossref] [PubMed]

RSC Advances (1)

J. C. Zhang, Y. Z. Long, X. Wang, and C. N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Advances 4(77), 40665–40675 (2014).
[Crossref]

Other (2)

J. I. Pankove, Optical Processes in Semiconductors (New York, 1971).

C. N. Xu, “Coatings,” in Encyclopedia of Smart Materials, M. Schwartz, ed. (Wiley, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Powder XRD patterns of products synthesized using different conditions. (b) Crystal structure of Ca3Ti2O7.
Fig. 2
Fig. 2 (a) Diffuse reflection spectrum of as-synthesized Ca3Ti2O7:Pr3+. The top-left inset shows the optical image in a lit environment. The bottom-right inset presents the derived band gap. (b) PL excitation (λem = 615 nm) and emission (λex = 327 nm) spectra of Ca3Ti2O7:Pr3+. The inset presents the photograph of Ca3Ti2O7:Pr3+ irradiated by 254 nm UV light.
Fig. 3
Fig. 3 (a) AG excitation spectrum of Ca3Ti2O7:Pr3+ obtained by plotting AG intensity (I30s) after 1 min irradiation with wavelengths between 200 and 500 nm in 5-nm step. Inset shows spectra of PL excitation (PLE) and AG excitation (AGE) for comparison. (b) AG decay curve of Ca3Ti2O7:Pr3+. The inset presents the optical images taken at different times (10-600 s) after light irradiation of 308 nm for 1 min by a hand-held UV lamp. The red AG is visible to naked eyes for more than 600 s.
Fig. 4
Fig. 4 Piezoluminescence and triboluminescence from Ca3Ti2O7:Pr3+. (a) Dependence of piezoluminescent intensity on compression load and photograph of piezoluminescence at peak load. (b) Triboluminescent response on the mechanical friction with a metal rod of 1 mm diameter and the corresponding optical image.
Fig. 5
Fig. 5 Spectra of afterglow and piezoluminescence (Piezo-L) from Ca3Ti2O7:Pr3+.
Fig. 6
Fig. 6 (a) ThL curves of Ca3Ti2O7:Pr3+ at different heating rate (1, 2 and 3 °C/s). The inset illustrates the Gauss fit of single peak. (b) Hoogenstraaten plots for ThL peak.
Fig. 7
Fig. 7 Schematic illustration of the luminescent processes in Ca3Ti2O7:Pr3+.

Metrics