Abstract

We propose an ultra-broadband mode converter based on the structure of a length-apodized long-period grating, where π-phase shifts are introduced at strategic locations of the grating profile. Using a 3-section length-apodized grating structure, we design and fabricate an LP01-LP11a and an LP01-LP11b mode converter with a sidewall grating and a surface grating formed along a polymer channel waveguide, respectively. The fabricated LP01-LP11a and LP01-LP11b mode converters provide a conversion efficiency higher than 99% over a bandwidth of ~120 nm and ~150 nm, respectively, or a conversion efficiency higher than 90% over a bandwidth of ~180 nm and ~300 nm, respectively. The transmission characteristics of these devices are weakly sensitive to polarization and temperature variations. These mode converters can find applications in ultra-broadband mode-division-multiplexing transmission systems based on few-mode fibers and the design principle can be applied to general grating-based mode-coupling devices for a wide range of applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber bandwidth tunable ultra-broadband mode converters based on long-period fiber gratings and helical long-period gratings

Xinyi Zhao, Yunqi Liu, Zuyao Liu, and Chengbo Mou
Opt. Express 28(8) 11990-12000 (2020)

LP01-LP11a mode converters based on long-period fiber gratings in a two-mode polarization-maintaining photonic crystal fiber

Xiaohui Zhang, Yange Liu, Zhi Wang, Jie Yu, and Hongwei Zhang
Opt. Express 26(6) 7013-7021 (2018)

Three-dimensional long-period waveguide gratings for mode-division-multiplexing applications

Wei Jin and Kin Seng Chiang
Opt. Express 26(12) 15289-15299 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  2. R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
    [Crossref]
  3. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
    [Crossref] [PubMed]
  4. J. von Hoyningen-Huene, R. Ryf, and P. Winzer, “LCoS-based mode shaper for few-mode fiber,” Opt. Express 21(15), 18097–18110 (2013).
    [Crossref] [PubMed]
  5. S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
    [Crossref]
  6. A. Witkowska, S. G. Leon-Saval, A. Pham, and T. A. Birks, “All-fiber LP11 mode convertors,” Opt. Lett. 33(4), 306–308 (2008).
    [Crossref] [PubMed]
  7. G. Pelegrina-Bonilla, K. Hausmann, H. Sayinc, U. Morgner, J. Neumann, and D. Kracht, “Analysis of the modal evolution in fused-type mode-selective fiber couplers,” Opt. Express 23(18), 22977–22990 (2015).
    [Crossref] [PubMed]
  8. K. J. Park, K. Y. Song, Y. K. Kim, J. H. Lee, and B. Y. Kim, “Broadband mode division multiplexer using all-fiber mode selective couplers,” Opt. Express 24(4), 3543–3549 (2016).
    [Crossref] [PubMed]
  9. A. B. Taher, P. Di Bin, F. Bahloul, E. Tartaret-Josnière, M. Jossent, S. Février, and R. Attia, “Adiabatically tapered microstructured mode converter for selective excitation of the fundamental mode in a few mode fiber,” Opt. Express 24(2), 1376–1385 (2016).
    [Crossref] [PubMed]
  10. J. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
    [Crossref]
  11. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
    [Crossref] [PubMed]
  12. K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing transmission,” Opt. Express 22(16), 19117–19130 (2014).
    [Crossref] [PubMed]
  13. Y. Huang, G. Xu, and S. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
    [Crossref]
  14. Y. Yu, M. Ye, and S. Fu, “On-chip polarization controlled mode converter with capability of WDM operation,” IEEE Photonics Technol. Lett. 27(18), 1957–1960 (2015).
    [Crossref]
  15. W. Jin and K. S. Chiang, “Mode converters based on cascaded long-period waveguide gratings,” Opt. Lett. 41(13), 3130–3133 (2016).
    [Crossref] [PubMed]
  16. Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
    [Crossref]
  17. Q. Liu and K. S. Chiang, “Design of long-period waveguide grating filter by control of waveguide cladding profile,” J. Lightwave Technol. 24(9), 3540–3546 (2006).
    [Crossref]
  18. T. Liu, I. B. Djordjevic, Z. Song, Y. Chen, R. Zhang, K. Zhang, W. Zhao, and B. Li, “Broadband wavelength converters with flattop responses based on cascaded second-harmonic generation and difference frequency generation in Bessel-chirped gratings,” Opt. Express 24(10), 10946–10955 (2016).
    [Crossref] [PubMed]
  19. Q. Liu, K. S. Chiang, and K. P. Lor, “Dual resonance in a long-period waveguide grating,” Appl. Phys. B 86(1), 147–150 (2007).
    [Crossref]
  20. H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phased-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
    [Crossref]
  21. F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
    [Crossref]
  22. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  23. Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003).
    [Crossref]

2016 (5)

2015 (4)

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
[Crossref]

G. Pelegrina-Bonilla, K. Hausmann, H. Sayinc, U. Morgner, J. Neumann, and D. Kracht, “Analysis of the modal evolution in fused-type mode-selective fiber couplers,” Opt. Express 23(18), 22977–22990 (2015).
[Crossref] [PubMed]

Y. Yu, M. Ye, and S. Fu, “On-chip polarization controlled mode converter with capability of WDM operation,” IEEE Photonics Technol. Lett. 27(18), 1957–1960 (2015).
[Crossref]

J. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (1)

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

2011 (2)

2008 (1)

2007 (1)

Q. Liu, K. S. Chiang, and K. P. Lor, “Dual resonance in a long-period waveguide grating,” Appl. Phys. B 86(1), 147–150 (2007).
[Crossref]

2006 (2)

Q. Liu and K. S. Chiang, “Design of long-period waveguide grating filter by control of waveguide cladding profile,” J. Lightwave Technol. 24(9), 3540–3546 (2006).
[Crossref]

Y. Huang, G. Xu, and S. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

2005 (1)

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[Crossref]

2003 (1)

2002 (1)

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

1998 (1)

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phased-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
[Crossref]

1997 (1)

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Astruc, M.

Attia, R.

Bahloul, F.

Bigo, S.

Birks, T. A.

Bolle, C. A.

Boutin, A.

Brindel, P.

Cerou, F.

Chan, F. Y. M.

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[Crossref]

Charlet, G.

Chen, K.

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
[Crossref]

Chen, Y.

Chiang, K. S.

W. Jin and K. S. Chiang, “Mode converters based on cascaded long-period waveguide gratings,” Opt. Lett. 41(13), 3130–3133 (2016).
[Crossref] [PubMed]

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
[Crossref]

J. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

Q. Liu, K. S. Chiang, and K. P. Lor, “Dual resonance in a long-period waveguide grating,” Appl. Phys. B 86(1), 147–150 (2007).
[Crossref]

Q. Liu and K. S. Chiang, “Design of long-period waveguide grating filter by control of waveguide cladding profile,” J. Lightwave Technol. 24(9), 3540–3546 (2006).
[Crossref]

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[Crossref]

Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol. 21(12), 3399–3405 (2003).
[Crossref]

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phased-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
[Crossref]

Choi, S.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

Chung, Y. C.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

Delbue, R.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

Di Bin, P.

Djordjevic, I. B.

Dong, J.

J. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Essiambre, R. J.

Essiambre, R.-J.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

Février, S.

Fu, S.

Y. Yu, M. Ye, and S. Fu, “On-chip polarization controlled mode converter with capability of WDM operation,” IEEE Photonics Technol. Lett. 27(18), 1957–1960 (2015).
[Crossref]

Gnauck, A. H.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Hanzawa, N.

Hausmann, K.

Ho, S.

Y. Huang, G. Xu, and S. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Huang, Y.

Y. Huang, G. Xu, and S. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Ishizaka, Y.

Jiang, X.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

Jin, W.

W. Jin and K. S. Chiang, “Mode converters based on cascaded long-period waveguide gratings,” Opt. Lett. 41(13), 3130–3133 (2016).
[Crossref] [PubMed]

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
[Crossref]

Jossent, M.

Ke, H.

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phased-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
[Crossref]

Kim, B. Y.

Kim, G. Y.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

Kim, Y. K.

Koebele, C.

Kracht, D.

Lee, J. H.

Lee, Y. G.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

Leon-Saval, S. G.

Li, B.

Lingle, R.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Liu, Q.

Liu, T.

Liu, Y.

Lor, K. P.

Q. Liu, K. S. Chiang, and K. P. Lor, “Dual resonance in a long-period waveguide grating,” Appl. Phys. B 86(1), 147–150 (2007).
[Crossref]

Mardoyan, H.

Masumoto, K.

Matsui, T.

McCurdy, A.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Mestre, M. A.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

Morgner, U.

Neumann, J.

Oh, K.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

Paek, U. C.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

Park, C. S.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

Park, K. J.

K. J. Park, K. Y. Song, Y. K. Kim, J. H. Lee, and B. Y. Kim, “Broadband mode division multiplexer using all-fiber mode selective couplers,” Opt. Express 24(4), 3543–3549 (2016).
[Crossref] [PubMed]

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

Peckham, D. W.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Pelegrina-Bonilla, G.

Peng, J. H.

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phased-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
[Crossref]

Pham, A.

Provost, L.

Pupalaikis, P.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

Randel, S.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Rastogi, V.

Ryf, R.

J. von Hoyningen-Huene, R. Ryf, and P. Winzer, “LCoS-based mode shaper for few-mode fiber,” Opt. Express 21(15), 18097–18110 (2013).
[Crossref] [PubMed]

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Saitoh, K.

Sakamoto, T.

Salsi, M.

Sayinc, H.

Schmidt, C.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

Shin, W.

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

Sierra, A.

Sillard, P.

Song, K. Y.

Song, Z.

Sperti, D.

Sun, Y.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

Sureka, A.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

Taher, A. B.

Tartaret-Josnière, E.

Tran, P.

Tsujikawa, K.

Uematsu, T.

Verluise, F.

von Hoyningen-Huene, J.

Wang, T.

Wen, J.

Winzer, P.

Winzer, P. J.

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

Witkowska, A.

Xu, G.

Y. Huang, G. Xu, and S. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Yamamoto, F.

Yang, Y.

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
[Crossref]

Ye, M.

Y. Yu, M. Ye, and S. Fu, “On-chip polarization controlled mode converter with capability of WDM operation,” IEEE Photonics Technol. Lett. 27(18), 1957–1960 (2015).
[Crossref]

Yu, Y.

Y. Yu, M. Ye, and S. Fu, “On-chip polarization controlled mode converter with capability of WDM operation,” IEEE Photonics Technol. Lett. 27(18), 1957–1960 (2015).
[Crossref]

Zhang, C.

Zhang, K.

Zhang, L.

Zhang, R.

Zhao, W.

Zhao, Y.

Appl. Phys. B (1)

Q. Liu, K. S. Chiang, and K. P. Lor, “Dual resonance in a long-period waveguide grating,” Appl. Phys. B 86(1), 147–150 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (7)

H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of phased-shifted long-period fiber gratings,” IEEE Photonics Technol. Lett. 10(11), 1596–1598 (1998).
[Crossref]

S. Choi, K. Oh, W. Shin, C. S. Park, U. C. Paek, K. J. Park, Y. C. Chung, G. Y. Kim, and Y. G. Lee, “Novel Mode Converter Based on Hollow Optical Fiber for Gigabit LAN Communication,” IEEE Photonics Technol. Lett. 14(2), 248–250 (2002).
[Crossref]

R. Ryf, M. A. Mestre, S. Randel, C. Schmidt, A. H. Gnauck, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle., “Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span,” IEEE Photonics Technol. Lett. 24(21), 1965–1968 (2012).
[Crossref]

J. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

Y. Huang, G. Xu, and S. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Y. Yu, M. Ye, and S. Fu, “On-chip polarization controlled mode converter with capability of WDM operation,” IEEE Photonics Technol. Lett. 27(18), 1957–1960 (2015).
[Crossref]

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Widely wavelength-tunable mode converter based on polymer waveguide grating,” IEEE Photonics Technol. Lett. 27(18), 1985–1988 (2015).
[Crossref]

J. Lightwave Technol. (3)

Opt. Commun. (1)

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[Crossref]

Opt. Express (9)

C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
[Crossref] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

J. von Hoyningen-Huene, R. Ryf, and P. Winzer, “LCoS-based mode shaper for few-mode fiber,” Opt. Express 21(15), 18097–18110 (2013).
[Crossref] [PubMed]

K. Saitoh, T. Uematsu, N. Hanzawa, Y. Ishizaka, K. Masumoto, T. Sakamoto, T. Matsui, K. Tsujikawa, and F. Yamamoto, “PLC-based LP11 mode rotator for mode-division multiplexing transmission,” Opt. Express 22(16), 19117–19130 (2014).
[Crossref] [PubMed]

G. Pelegrina-Bonilla, K. Hausmann, H. Sayinc, U. Morgner, J. Neumann, and D. Kracht, “Analysis of the modal evolution in fused-type mode-selective fiber couplers,” Opt. Express 23(18), 22977–22990 (2015).
[Crossref] [PubMed]

A. B. Taher, P. Di Bin, F. Bahloul, E. Tartaret-Josnière, M. Jossent, S. Février, and R. Attia, “Adiabatically tapered microstructured mode converter for selective excitation of the fundamental mode in a few mode fiber,” Opt. Express 24(2), 1376–1385 (2016).
[Crossref] [PubMed]

K. J. Park, K. Y. Song, Y. K. Kim, J. H. Lee, and B. Y. Kim, “Broadband mode division multiplexer using all-fiber mode selective couplers,” Opt. Express 24(4), 3543–3549 (2016).
[Crossref] [PubMed]

Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
[Crossref] [PubMed]

T. Liu, I. B. Djordjevic, Z. Song, Y. Chen, R. Zhang, K. Zhang, W. Zhao, and B. Li, “Broadband wavelength converters with flattop responses based on cascaded second-harmonic generation and difference frequency generation in Bessel-chirped gratings,” Opt. Express 24(10), 10946–10955 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Profile of a length-apodized LPG.
Fig. 2
Fig. 2 Structures of (a) the LP01-LP11a mode converter and (b) the LP01-LP11b mode converter.
Fig. 3
Fig. 3 Normalized transmission spectra of the LP01 mode calculated for four 3-section length-apodized LPGs with L = 30Λ, z2 = 10Λ, and κ = 530 m−1.
Fig. 4
Fig. 4 (a) Normalized transmission spectra of the LP01 mode calculated for a 3-section length-apodized LPG with z1 = 4Λ, z2 = 10Λ, and z3 = 16Λ at different values of the coupling coefficient κ and (b) variation of the −20-dB bandwidth with the coupling coefficient κ.
Fig. 5
Fig. 5 Normalized transmission spectra of the LP01 mode calculated for four 3-section length-apodized LPGs with L = 24Λ, z2 = 8Λ, and κ = 630 m−1.
Fig. 6
Fig. 6 (a) Normalized transmission spectra of the LP01 mode calculated for a 3-section length-apodized LPG with z1 = 3Λ, z2 = 8Λ, and z3 = 13Λ at different values of the coupling coefficient κ and (b) variation of the −20-dB bandwidth with the coupling coefficient κ.
Fig. 7
Fig. 7 Images (a) of sidewall corrugation and (b) an end face of a typical fabricated LP01-LP11a mode converter.
Fig. 8
Fig. 8 Images (a) of surface corrugation and (b) an end face of a typical fabricated LP01-LP11b mode converter.
Fig. 9
Fig. 9 Normalized transmission spectra of the LP01-LP11a mode converter measured at different operating temperatures for (a) the x-polarization and (b) the y-polarization.
Fig. 10
Fig. 10 Output near-field images taken at different wavelengths for the LP01-LP11a mode converter, when the LP01 mode was launched into the device.
Fig. 11
Fig. 11 Normalized transmission spectra of the LP01-LP11b mode converter measured at different operating temperatures for (a) the x-polarization and (b) the y-polarization.
Fig. 12
Fig. 12 Output near-field images taken at different wavelengths for the LP01-LP11b mode converter, when the LP01 mode was launched into the device.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ 0 = ( N 01 N 11 ) Λ ,
( E 01 ( L ) E 11 ( L ) ) = F M F 2 F 1 ( E 01 ( 0 ) E 11 ( 0 ) ) ,
F i = ( e j ( β 01 δ ) z i 0 0 e j ( β 11 + δ ) z i ) × ( cos ( Q z i ) j δ Q sin ( Q z i ) κ Q e j φ i sin ( Q z i ) κ Q e j φ i sin ( Q z i ) cos ( Q z i ) + j δ Q sin ( Q z i ) ) .
| E 01 ( L ) | 2 = cos 2 [ i = 1 i = M ( 1 ) i κ z i ] | E 01 ( 0 ) | 2 ,
| E 11 ( L ) | 2 = ( 1 cos 2 [ i = 1 i = M ( 1 ) i κ z i ] ) | E 01 ( 0 ) | 2 .
i = 1 M ( 1 ) i z i = ± π / 2 κ ,
κ = ± π / 2 [ i = 1 M ( 1 ) i z i ] for M   > 1 .

Metrics