Abstract

Single-pixel imaging (SPI) is a novel method for capturing high-quality 2D images of scenes using a non-spatially-resolved detector. While implementing conventional SPI, a huge number of illuminated patterns are projected onto the object to reconstruct a sharp image. For a situation in which the object occupies part of the illuminated region, we propose an adaptive regional SPI method (ARSI) to decrease the number of projected patterns. In the ARSI scheme, the object region is adaptively located based on the Fourier slice theorem. Then, the illuminated patterns are projected only onto the object region to facilitate imaging efficiency. Experiments demonstrate that the proposed ARSI method can achieve sharp image reconstruction with a substantial reduction in pattern number, thereby improving imaging efficiency.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Projector-defocusing rectification for Fourier single-pixel imaging

Bingjie Xu, Hongzhi Jiang, Huijie Zhao, Xudong Li, and Shuguang Zhu
Opt. Express 26(4) 5005-5017 (2018)

Computational-weighted Fourier single-pixel imaging via binary illumination

Jian Huang, Dongfeng Shi, Kee Yuan, Shunxing Hu, and Yingjian Wang
Opt. Express 26(13) 16547-16559 (2018)

Radon single-pixel imaging with projective sampling

Shi Dongfeng, Huang Jian, Meng Wenwen, Yin Kaixin, Sun Baoqing, Wang Yingjian, Yuan Kee, Xie Chenbo, Liu Dong, and Zhu Wenyue
Opt. Express 27(10) 14594-14609 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. M. M. Khamoushi, Y. Nosrati, and S. H. Tavassoli, “Sinusoidal ghost imaging,” Opt. Lett. 40(15), 3452–3455 (2015).
    [Crossref] [PubMed]
  2. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]
  3. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
    [Crossref] [PubMed]
  4. Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Opt. Lett. 41(11), 2497–2500 (2016).
    [Crossref] [PubMed]
  5. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref] [PubMed]
  6. W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
    [Crossref]
  7. C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
    [Crossref]
  8. L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6(1), 24752 (2016).
    [Crossref] [PubMed]
  9. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
    [Crossref] [PubMed]
  10. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
    [Crossref] [PubMed]
  11. B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64(3), 259–264 (2017).
    [Crossref]
  12. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
    [Crossref] [PubMed]
  13. E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
    [Crossref]
  14. L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18(8), 085704 (2016).
    [Crossref]
  15. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Education, 2011), Chap. 5.
  16. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Education, 2011), Chap. 10.
  17. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref] [PubMed]

2017 (1)

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64(3), 259–264 (2017).
[Crossref]

2016 (4)

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18(8), 085704 (2016).
[Crossref]

Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Opt. Lett. 41(11), 2497–2500 (2016).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6(1), 24752 (2016).
[Crossref] [PubMed]

2015 (3)

S. M. M. Khamoushi, Y. Nosrati, and S. H. Tavassoli, “Sinusoidal ghost imaging,” Opt. Lett. 40(15), 3452–3455 (2015).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

2014 (1)

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

2013 (2)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

2012 (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

2008 (3)

E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Baraniuk, R.

W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Bian, L.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6(1), 24752 (2016).
[Crossref] [PubMed]

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18(8), 085704 (2016).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

Bowman, R. W.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Candes, E. J.

E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Chan, W.

W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Charan, K.

W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Chen, F.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6(1), 24752 (2016).
[Crossref] [PubMed]

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18(8), 085704 (2016).
[Crossref]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Dai, Q.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18(8), 085704 (2016).
[Crossref]

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6(1), 24752 (2016).
[Crossref] [PubMed]

Edgar, M. P.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

Fan, J.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6(1), 24752 (2016).
[Crossref] [PubMed]

Gibson, G. M.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Hu, X.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18(8), 085704 (2016).
[Crossref]

Hunt, J.

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Jonathan, P.

Kelly, K.

W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Khamoushi, S. M. M.

Krishna, S.

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Lamb, R.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Li, Z.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6(1), 24752 (2016).
[Crossref] [PubMed]

Lipworth, G.

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Liu, B.-L.

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64(3), 259–264 (2017).
[Crossref]

Liu, X.

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64(3), 259–264 (2017).
[Crossref]

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Mitchell, K. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Mittleman, D.

W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Montoya, J.

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Nosrati, Y.

Padgett, M. J.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Padilla, W.

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Radwell, N.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Shrekenhamer, D.

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Situ, G.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6(1), 24752 (2016).
[Crossref] [PubMed]

Sleasman, T.

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Smith, D.

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Sun, B.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

Sun, M. J.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Suo, J.

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6(1), 24752 (2016).
[Crossref] [PubMed]

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18(8), 085704 (2016).
[Crossref]

Takhar, D.

W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Tavassoli, S. H.

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Wakin, M. B.

E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

Watts, C.

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Welsh, S. S.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

Wu, L.-A.

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64(3), 259–264 (2017).
[Crossref]

Yang, Z.-H.

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64(3), 259–264 (2017).
[Crossref]

Zhang, Z.

Zhong, J.

Appl. Phys. Lett. (1)

W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, and D. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

IEEE Signal Process. Mag. (1)

E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[Crossref]

J. Mod. Opt. (1)

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform,” J. Mod. Opt. 64(3), 259–264 (2017).
[Crossref]

J. Opt. (1)

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18(8), 085704 (2016).
[Crossref]

Nat. Commun. (2)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. Smith, and W. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Sci. Rep. (2)

L. Bian, J. Suo, G. Situ, Z. Li, J. Fan, F. Chen, and Q. Dai, “Multispectral imaging using a single bucket detector,” Sci. Rep. 6(1), 24752 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref] [PubMed]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref] [PubMed]

Other (2)

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Education, 2011), Chap. 5.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Education, 2011), Chap. 10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematics of conventional SPI and ARSI. (a) Conventional SPI projects illuminated patterns onto the whole scene by a spatial light modulator (SLM). (b) ARSI adaptively projects illuminated patterns onto the located object region.
Fig. 2
Fig. 2 Schematics of locating an object based on the Fourier slice theorem. (a) Scene image with the object to be located; the red rectangle represents the object location. (b) Projection of the scene image onto the y-axis; the point surrounded by a red circle is the edge of the object region. (c) Projection of the scene image onto the x-axis; the point surrounded by a red circle is the edge of the object region. (d) Fourier coefficients of the scene image.
Fig. 3
Fig. 3 Schematics of the projection of vertical and horizontal sinusoidal patterns.
Fig. 4
Fig. 4 Schematics of image reconstruction. (a) Reconstructed object image via ARSI. (b) Located object region. (c) Complete reconstructed image.
Fig. 5
Fig. 5 Experimental setup. The digital projector projects illuminated patterns onto the object, which is located 0.5 m away from the experimental system. The reflected light is collected by a lens and detected by a photodiode. An ADC transfers the detected signal to a computer. The image is reconstructed using the obtained data.
Fig. 6
Fig. 6 Schematics of object location with dark background. (a) Original scene image with an object (white toy bear). (b) The projection line of the image onto the y-axis obtained via ARSI; the red circles represent the edges of the object region. (c) The projection line of the image onto the x-axis obtained via ARSI. (d) Located object region illuminated by the digital projector.
Fig. 7
Fig. 7 Schematics of object location with colored background. (a) Original scene image with an object (white toy bear). (b) The projection line of the image onto the y-axis obtained via ARSI; the red circles represent the edges of the object region. (c) The projection line of the image onto the x-axis obtained via ARSI. (d) Located object region illuminated by the digital projector.
Fig. 8
Fig. 8 Schematics of object location with non-background. (a) Original scene image with an object (white toy bear). (b) The projection line of the image onto the y-axis obtained via ARSI; the red circles represent the edges of the object region. (c) The projection line of the image onto the x-axis obtained via ARSI. (d) Located object region illuminated by the digital projector. In order to display the located object region more clearly, a white board is placed behind the object in (d).
Fig. 9
Fig. 9 Experimental image reconstructed using the whole coefficients in the Fourier domain. (a) Image reconstructed via ARSI using 20160 patterns. (b) Image reconstructed via FSI using 128000 patterns. Both images have a resolution of 320 × 200.
Fig. 10
Fig. 10 Comparison of the reconstructed images obtained via ARSI and FSI using the same number of patterns. (a)–(d) Images reconstructed via ARSI using 1000, 2000, 5000, and 10000 patterns, respectively. (e)–(h) Images reconstructed via normal FSI using the same number of patterns used in ARSI. All the images have a resolution of 320 × 200.
Fig. 11
Fig. 11 Experimental image reconstructed using the whole coefficients in the Fourier domain. (a) Image reconstructed via ARSI using 9016 patterns. (b) Image reconstructed via FSI using 128000 patterns. The two images have a resolution of 320 × 200.
Fig. 12
Fig. 12 Comparison between the images obtained via ARSI and FSI using the same number of patterns. (a)–(d) Images reconstructed via ARSI using 1000, 2000, 4000, and 6000 patterns, respectively. (e)–(h) Images reconstructed via FSI using the same number of patterns as that in ARSI. The two images have a resolution of 320 × 200.
Fig. 13
Fig. 13 Experimental images reconstructed using the whole coefficients in the Fourier domain. (a) Image reconstructed via ARSI using 14104 patterns. (b) Image reconstructed via FSI using 128000 patterns. (c) Grayscale distribution highlighted by the dashed line. The two images have a resolution of 320 × 200.
Fig. 14
Fig. 14 Comparison between the images reconstructed via ARSI and FSI using the same number of patterns. (a)–(d) Images reconstructed via ARSI using 1000, 2000, 5000, and 10000 patterns, respectively. (e)–(h) Images reconstructed via FSI using the same number of patterns as that in ARSI. (i)–(l) Grayscale distributions highlighted by the same dashed line in Fig. 13, which reflect the contrast of the images.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

p ( x ) = I F T { F ( u , 0 ) } ,
p ( y ) = I F T { F ( 0 , v ) } ,
Ω a ( x , y ) , { x 1 x x 2 y 1 y y 2 ,
P V φ ( x , y ; u , 0 ) = a + b cos ( 2 π u x + φ ) ,
P H φ ( x , y ; 0 , v ) = a + b cos ( 2 π v y + φ ) ,
R V φ ( u ) = k Ω P V φ ( x , y ; u , 0 ) f ( x , y ) d x d y + R n ,
R H φ ( v ) = k Ω P H φ ( x , y ; 0 , v ) f ( x , y ) d x d y + R n ,
F ( u , 0 ) = 1 2 b k { [ R V 0 ( u ) R V π ( u ) ] + j [ R V π / 2 ( u ) R V 3 π / 2 ( u ) ] } ,
F ( 0 , v ) = 1 2 b k { [ R H 0 ( v ) R H π ( v ) ] + j [ R H π / 2 ( v ) R H 3 π / 2 ( v ) ] } .
f r ( x , y ) = 0 , { ( x , y ) Ω } .
f r ( x 1 + x , y 1 + y ) = f o ( x , y ) , { 0 x M 0 y N ,
C M × N .
( 1 k 1 M , 1 k 2 N ) ,
C a = C L + C S ,
C L = M + N ,
C s = 1 k 1 k 2 M N .
Ω a ( x , y ) , { 129 x 255 34 y 141 .
Ω a ( x , y ) , { 133 x 258 36 y 139 .
Ω a ( x , y ) , { 137 x 262 35 y 138 .
Ω a ( x , y ) , { 130 x 227 82 y 127
C N R = a b s ( I f I b ) / ( ( σ f + σ b ) / 2 ) ,
Ω a ( x , y ) , { 126 x 207 60 y 145

Metrics