Abstract

High speed modulation based on bandwidth limited devices is desired for cost-effective PON capacity upgrade. In this paper, we investigate the equalization techniques for enabling 25-Gb/s transmission with 10G-class optics. A comparison between FFE and DFE based equalizer and MLSE based digital equalizer is made, where 13-tap FFE and 3-tap DFE are required to obtain similar performances with MLSE based detection. In addition, to verify the cost introduced by the ADC, the demand for the ADC parameters in the MLSE based detector, including the sampling rate, resolution, and timing jitter is investigated. Experimental results show that using a 25-GS/s ADC with 4-bit resolution, 25-Gb/s transmission is realized using 10-G TOSA and ROSA, and 28-/30-dB loss budget can be achieved in C-/O-band respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
100 Gbit/s PAM4 signal transmission and reception for 2-km interconnect with adaptive notch filter for narrowband interference

Fan Li, Dongdong Zou, Li Ding, Yidan Sun, Jianping Li, Qi Sui, Liangchuan Li, Xingwen Yi, and Zhaohui Li
Opt. Express 26(18) 24066-24074 (2018)

Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission

Kuo Zhang, Qunbi Zhuge, Haiyun Xin, Mohamed Morsy-Osman, Eslam El-Fiky, Lilin Yi, Weisheng Hu, and David V. Plant
Opt. Express 25(23) 28123-28135 (2017)

Chromatic dispersion compensation and fiber nonlinearity mitigation of OOK signals with diverse-VSB-filtering FFE and DFE

Ming Li, Fan Zhang, Zhangyuan Chen, and Anshi Xu
Opt. Express 16(26) 21991-21996 (2008)

References

  • View by:
  • |
  • |
  • |

  1. IEEE 802.3 Ethernet Working Group, “Feasibility Assessment for the Next Generation of EPON,” 2015.
  2. R. Bonk, R. Borkowski, W. Poehlmann, J. Van Kerrebrouck, C. Chase, R. Lucas, T. De Keulenaer, J. Bauwelinck, D. Van Veen, V. Houtsma, X. Yin, and T. Pfeiffer, “Real-time demonstration of 28 Gbit/s electrical duobinary TDM-PON extension using remote nodes,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th2A. 27.
    [Crossref]
  3. B. Moeneclaey, F. Blache, J. Van Kerrebrouck, R. Brenot, G. Coudyzer, M. Achouche, X.-Z. Qiu, J. Bauwelinck, and X. Yin, “40-Gb/s TDM-PON downstream link with low-cost EML transmitter and APD-based electrical duobinary receiver,” J. Lightwave Technol. 35(4), 1083–1089 (2017).
    [Crossref]
  4. V. Houtsma, D. V. Veen, and H. Chow, “Demonstration of symmetrical 25 Gb/s TDM-PON with multilevel interleaving of users,” J. Lightwave Technol. 34(8), 2005–2010 (2016).
    [Crossref]
  5. M. D. Santa, C. Antony, M. Power, A. Jain, P. Ossieur, G. Talli, and P. D. Townsend, “25Gb/s PAM4 burst-mode system for upstream transmission in passive optical networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper M3H. 7.
    [Crossref]
  6. H. Ji, L. Yi, Z. Li, L. Xue, X. Li, Q. Yang, S. Wang, Y. Yang, S. Yu, and W. Hu, “Field demonstration of a real-time 100-Gb/s PON based on 10G-class optical devices,” J. Lightwave Technol. 35(10), 1914–1921 (2017).
    [Crossref]
  7. C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
    [Crossref]
  8. X. Li, S. Zhou, F. Gao, M. Luo, Q. Yang, Q. Mo, Y. Yu, and S. Fu, “4× 28 Gb/s PAM4 long-reach PON using low complexity nonlinear compensation,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper M3H. 4.
    [Crossref]
  9. J. Man, S. Fu, H. Zhang, J. Gao, L. Zeng, and X. Liu, “Downstream transmission of pre-distorted 25-Gb/s faster-than-Nyquist PON with 10G-class optics achieving over 31 dB Link Budget without Optical Amplification,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper Th1I. 5.
    [Crossref]
  10. M. Tao, L. Zhou, S. Yao, D. Zou, S. Li, S. Li, H. Lin, and X. Liu, “28-Gb/s/λ TDM-PON with narrow filter compensation and enhanced FEC supporting 31.5 dB link loss budget after 20-km downstream transmission in the C-band,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper Th1I. 4.
  11. Z. Li, Q. Zhang, Y. Guo, Y. Yin, T. Xu, Y. Li, J. Chen, Y. Song, and M. Wang, “Requirements on Resolution and Sampling Jitter of ADC in 10G-Class Optics and MLSD based NG-EPON,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Tu3G. 8.
    [Crossref]
  12. Z. Tan, C. Yang, Y. Zhu, Z. Xu, K. Zou, F. Zhang, and Z. Wang, “High speed band-limited 850nm VCSEL Link based on time-domain interference elimination,” IEEE Photonics Technol. Lett. 29(9), 751–754 (2017).
    [Crossref]
  13. D. Che, F. Yuan, and W. Shieh, “Towards high-order modulation using complex modulation of semiconductor lasers,” Opt. Express 24(6), 6644–6649 (2016).
    [Crossref] [PubMed]
  14. W. R. Bennett, “Statistics of regenerative digital transmission,” Bell Labs Tech. J. 37(6), 1501–1542 (1958).
    [Crossref]

2017 (4)

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Z. Tan, C. Yang, Y. Zhu, Z. Xu, K. Zou, F. Zhang, and Z. Wang, “High speed band-limited 850nm VCSEL Link based on time-domain interference elimination,” IEEE Photonics Technol. Lett. 29(9), 751–754 (2017).
[Crossref]

B. Moeneclaey, F. Blache, J. Van Kerrebrouck, R. Brenot, G. Coudyzer, M. Achouche, X.-Z. Qiu, J. Bauwelinck, and X. Yin, “40-Gb/s TDM-PON downstream link with low-cost EML transmitter and APD-based electrical duobinary receiver,” J. Lightwave Technol. 35(4), 1083–1089 (2017).
[Crossref]

H. Ji, L. Yi, Z. Li, L. Xue, X. Li, Q. Yang, S. Wang, Y. Yang, S. Yu, and W. Hu, “Field demonstration of a real-time 100-Gb/s PON based on 10G-class optical devices,” J. Lightwave Technol. 35(10), 1914–1921 (2017).
[Crossref]

2016 (2)

1958 (1)

W. R. Bennett, “Statistics of regenerative digital transmission,” Bell Labs Tech. J. 37(6), 1501–1542 (1958).
[Crossref]

Achouche, M.

Bae, S. H.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Bauwelinck, J.

Bennett, W. R.

W. R. Bennett, “Statistics of regenerative digital transmission,” Bell Labs Tech. J. 37(6), 1501–1542 (1958).
[Crossref]

Blache, F.

Brenot, R.

Che, D.

Chow, H.

Coudyzer, G.

Houtsma, V.

Hu, W.

Ji, H.

Kim, H.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Li, X.

Li, Z.

Moeneclaey, B.

Qiu, X.-Z.

Shieh, W.

Sun, C.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Tan, Z.

Z. Tan, C. Yang, Y. Zhu, Z. Xu, K. Zou, F. Zhang, and Z. Wang, “High speed band-limited 850nm VCSEL Link based on time-domain interference elimination,” IEEE Photonics Technol. Lett. 29(9), 751–754 (2017).
[Crossref]

Van Kerrebrouck, J.

Veen, D. V.

Wang, S.

Wang, Z.

Z. Tan, C. Yang, Y. Zhu, Z. Xu, K. Zou, F. Zhang, and Z. Wang, “High speed band-limited 850nm VCSEL Link based on time-domain interference elimination,” IEEE Photonics Technol. Lett. 29(9), 751–754 (2017).
[Crossref]

Xu, Z.

Z. Tan, C. Yang, Y. Zhu, Z. Xu, K. Zou, F. Zhang, and Z. Wang, “High speed band-limited 850nm VCSEL Link based on time-domain interference elimination,” IEEE Photonics Technol. Lett. 29(9), 751–754 (2017).
[Crossref]

Xue, L.

Yang, C.

Z. Tan, C. Yang, Y. Zhu, Z. Xu, K. Zou, F. Zhang, and Z. Wang, “High speed band-limited 850nm VCSEL Link based on time-domain interference elimination,” IEEE Photonics Technol. Lett. 29(9), 751–754 (2017).
[Crossref]

Yang, Q.

Yang, Y.

Yi, L.

Yin, X.

Yu, S.

Yuan, F.

Zhang, F.

Z. Tan, C. Yang, Y. Zhu, Z. Xu, K. Zou, F. Zhang, and Z. Wang, “High speed band-limited 850nm VCSEL Link based on time-domain interference elimination,” IEEE Photonics Technol. Lett. 29(9), 751–754 (2017).
[Crossref]

Zhu, Y.

Z. Tan, C. Yang, Y. Zhu, Z. Xu, K. Zou, F. Zhang, and Z. Wang, “High speed band-limited 850nm VCSEL Link based on time-domain interference elimination,” IEEE Photonics Technol. Lett. 29(9), 751–754 (2017).
[Crossref]

Zou, K.

Z. Tan, C. Yang, Y. Zhu, Z. Xu, K. Zou, F. Zhang, and Z. Wang, “High speed band-limited 850nm VCSEL Link based on time-domain interference elimination,” IEEE Photonics Technol. Lett. 29(9), 751–754 (2017).
[Crossref]

Bell Labs Tech. J. (1)

W. R. Bennett, “Statistics of regenerative digital transmission,” Bell Labs Tech. J. 37(6), 1501–1542 (1958).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Tan, C. Yang, Y. Zhu, Z. Xu, K. Zou, F. Zhang, and Z. Wang, “High speed band-limited 850nm VCSEL Link based on time-domain interference elimination,” IEEE Photonics Technol. Lett. 29(9), 751–754 (2017).
[Crossref]

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s Duobinary and PAM-4 Signals Using DML for Optical Access Network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (7)

M. D. Santa, C. Antony, M. Power, A. Jain, P. Ossieur, G. Talli, and P. D. Townsend, “25Gb/s PAM4 burst-mode system for upstream transmission in passive optical networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper M3H. 7.
[Crossref]

IEEE 802.3 Ethernet Working Group, “Feasibility Assessment for the Next Generation of EPON,” 2015.

R. Bonk, R. Borkowski, W. Poehlmann, J. Van Kerrebrouck, C. Chase, R. Lucas, T. De Keulenaer, J. Bauwelinck, D. Van Veen, V. Houtsma, X. Yin, and T. Pfeiffer, “Real-time demonstration of 28 Gbit/s electrical duobinary TDM-PON extension using remote nodes,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th2A. 27.
[Crossref]

X. Li, S. Zhou, F. Gao, M. Luo, Q. Yang, Q. Mo, Y. Yu, and S. Fu, “4× 28 Gb/s PAM4 long-reach PON using low complexity nonlinear compensation,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper M3H. 4.
[Crossref]

J. Man, S. Fu, H. Zhang, J. Gao, L. Zeng, and X. Liu, “Downstream transmission of pre-distorted 25-Gb/s faster-than-Nyquist PON with 10G-class optics achieving over 31 dB Link Budget without Optical Amplification,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper Th1I. 5.
[Crossref]

M. Tao, L. Zhou, S. Yao, D. Zou, S. Li, S. Li, H. Lin, and X. Liu, “28-Gb/s/λ TDM-PON with narrow filter compensation and enhanced FEC supporting 31.5 dB link loss budget after 20-km downstream transmission in the C-band,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper Th1I. 4.

Z. Li, Q. Zhang, Y. Guo, Y. Yin, T. Xu, Y. Li, J. Chen, Y. Song, and M. Wang, “Requirements on Resolution and Sampling Jitter of ADC in 10G-Class Optics and MLSD based NG-EPON,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Tu3G. 8.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup for 10G-class optics based 25Gb/s NRZ transmission system. Insets: (a) Electrical eye diagram before 10G EML; (b) Electrical eye diagram received by 10G APD for BtB. (c) Electrical eye diagram received by 10G APD for 25-km fiber transmission.
Fig. 2
Fig. 2 Receiver sensitivity as a function of FFE and DFE filter taps at BER = 1 × 10-3 (a) FFE only vs FFE + DFE-1 in BtB case; (b) Different taps of DFE and FFE in BtB case; (c) Different taps of DFE and FFE after 25-km SMF transmission;
Fig. 3
Fig. 3 (a) Eye diagrams of the received and equalized signal in BtB case and (b) 25 km transmission case.
Fig. 4
Fig. 4 BER curves as a function of (a) MLSE state number (b) timing offset (c) timing jitter and (d) ADC resolution

Tables (1)

Tables Icon

Table 1 Sensitivity at BER of 1 × 10−3 vs. resolution and timing jitter of ADC

Metrics