Abstract

Synchrotron radiation-based nano-FTIR spectroscopy utilizes the highly brilliant and ultra-broadband infrared (IR) radiation provided by electron storage rings for the infrared spectroscopic characterization of samples at the nanoscale. In order to exploit the full potential of this approach we investigated the influence of the properties of the radiation source, such as the electron bunch shape and spectral bandwidth of the emitted radiation, on near-field infrared spectra of silicon-carbide (SiC). The adapted configuration of the storage ring optics enables a modification of the transverse electron bunch profile allowing an increase of the measured near-field signal amplitude. Additionally, the decay of the signal amplitude due to the decreasing storage ring current is also eliminated. Further options for improving the sensitivity of nano-FTIR spectroscopy, which can also be applied to other broadband radiation sources, are the adaption of the spectral bandwidth to the wavelength range of interest or the use of polarization optics. The sensitivity enhancement emerging from these options is verified by comparing near-field spectra collected from crystalline SiC samples. The improvement in sensitivity by combining these approaches is demonstrated by acquiring nano-FTIR spectra from thin organic films, which show weak resonances in the IR-regime.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compressed sensing FTIR nano-spectroscopy and nano-imaging

Bernd Kästner, Franko Schmähling, Andrea Hornemann, Georg Ulrich, Arne Hoehl, Mattias Kruskopf, Klaus Pierz, Markus B. Raschke, Gerd Wübbeler, and Clemens Elster
Opt. Express 26(14) 18115-18124 (2018)

Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation

Peter Hermann, Arne Hoehl, Piotr Patoka, Florian Huth, Eckart Rühl, and Gerhard Ulm
Opt. Express 21(3) 2913-2919 (2013)

Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation

Brian T. O’Callahan, William E. Lewis, Silke Möbius, Jared C. Stanley, Eric A. Muller, and Markus B. Raschke
Opt. Express 23(25) 32063-32074 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Helmut Günzler and Hans-Ulrich Gremlich, IR Spectroscopy: An Introduction (Wiley-VCH, 2012).
  2. Yujun Zhong, Shyamala Devi Malagari, Travis Hamilton, and Daniel Wassermann, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9, 093791 (2015).
    [Crossref]
  3. B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
    [Crossref]
  4. F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. Zayats and D. Richard, eds. (Artech House, 2009).
  5. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed 47, 8178–8191 (2008).
    [Crossref]
  6. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012).
    [Crossref] [PubMed]
  7. A. J. Huber, J. Wittborn, and R. Hillenbrand, “Infrared spectroscopic near-field mapping of single nanotransistors,” Nanotechnol. 21, 235702 (2010).
    [Crossref]
  8. S. Berweger, Duc M. Nguyen, E. A. Muller, H. A. Bechtel, T. T. Perkins, and M. B. Raschke, “Nano-chemical infrared imaging of membrane proteins in lipid bilayers,” J. Am. Chem. Soc. 135, 18292–18295 (2013).
    [Crossref] [PubMed]
  9. S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404 (2011).
    [Crossref]
  10. X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanoscopy: From monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
    [Crossref] [PubMed]
  11. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
    [Crossref]
  12. C. Calabrese, A. M. Stingel, L. Shen, and P. B. Petersen, “Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution,” Opt. Lett. 37, 2265–2267 (2012).
    [Crossref] [PubMed]
  13. M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19, 12469–12479 (2011).
    [Crossref] [PubMed]
  14. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10, 352–356 (2011).
    [Crossref] [PubMed]
  15. A. C. Jones and M. B. Raschke, “Thermal Infrared Near-Field Spectroscopy,” Nano Lett. 12, 1475–1481 (2012).
    [Crossref] [PubMed]
  16. B. T. O’Callahan, W. E. Lewis, A. C. Jones, and M. B. Raschke, “Spectral frustration and spatial coherence in thermal near-field spectroscopy,” Phys. Rev. B 89, 245446 (2014).
    [Crossref]
  17. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
    [Crossref] [PubMed]
  18. F. Kuschewski, H.-G. von Ribbeck, J. Döring, S. Winnerl, L. M. Eng, and S. C. Kehr, “Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz,” Appl. Phys. Lett. 108, 113102 (2016).
    [Crossref]
  19. U. Schade, K. Holldack, P. Kuske, G. Wüstefeld, and H.-W. Hübers, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422 (2004).
    [Crossref]
  20. Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotechnol. 9, 63–66 (2011).
    [Crossref]
  21. D. A. Schmidt, E. Bründermann, and M. Havenith, “Combined far- and near-field chemical nanoscope at ANKA-IR2: applications and detection schemes,” J. Phys. Conf. Ser. 359, 12015 (2012).
    [Crossref]
  22. P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express 21, 2913–2919 (2013).
    [Crossref] [PubMed]
  23. H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectro-scopic imaging,” Proc. Nat. Acad. Sci. U.S.A. 111, 7191–7196 (2014).
    [Crossref]
  24. E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales,” The Journal of Physical Chemistry Letters 7, 1275–1284 (2015).
    [Crossref]
  25. P. Hermann, A. Hoehl, G. Ulrich, C. Fleischmann, A. Hermelink, B. Kästner, P. Patoka, A. Hornemann, B. Beckhoff, E. Rühl, and G. Ulm, “Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy,” Opt. Express 22, 17948–17958 (2014).
    [Crossref] [PubMed]
  26. F. Peragut, J.-B. Brubach, P. Roy, and Y. De Wilde, “Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation,” Appl. Phys. Lett. 104, 251118 (2014).
    [Crossref]
  27. B. Pollard, F. C. B. Maia, M. B. Raschke, and R. O. Freitas, “Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry,” Nano Lett. 16, 55–61 (2016).
    [Crossref]
  28. P. M. Donaldson, C. S. Kelley, M. D. Frogley, J. Filik, K. Wehbe, and C Gianfelice, “Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation,” Opt. Express 24, 1852–1864 (2016).
    [Crossref] [PubMed]
  29. A. Gottwald, R. Klein, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “Current capabilities at the Metrology Light Source,” Metrologia 49, S146–S151 (2012).
    [Crossref]
  30. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
    [Crossref] [PubMed]
  31. K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
    [Crossref] [PubMed]
  32. J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).
  33. F. Schäfers, “The BESSY Raytrace Program RAY,” in Modern Developments in X-Ray and Neutron Optics, A. Erko, M. Idir, T. Krist, and A. G. Michette, eds. (Springer, 2008).
    [Crossref]
  34. E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared region,” Applied Optics 43, 4182–4188 (2004).
    [Crossref] [PubMed]
  35. U. Schade, A. Röseler, E. H. Korte, M. Scheer, and W. B. Peatman, “Measured characteristics of infrared edge radiation from BESSY II,” Nucl. Instrum. Meth. A 455, 476–486 (2000).
    [Crossref]
  36. G. Santoro, I. Yousef, F. Jamme, P. Dumas, and G. Ellis, “Infrared synchrotron radiation from bending magnet and edge radiation sources for the study of orientation and conformation in anisotropic materials,” Rev. Sci. Instrum. 82, 10–15 (2011).
    [Crossref]
  37. A. Er, I. K. Öztürk, G. Baar, S. Kröger, A. Jarmola, R. Ferber, and M. Tamanis, “Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy,” J. Phys. B 44, 205001 (2011).
    [Crossref]
  38. M. Kehrt, C. Monte, J. Beyer, and J. Hollandt, “A highly linear superconducting bolometer for quantitative THz Fourier transform spectroscopy,” Opt. Express 23, 11170–11182 (2015).
    [Crossref] [PubMed]
  39. Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
    [Crossref]
  40. S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106, 023113 (2015).
    [Crossref]
  41. K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
    [Crossref]

2016 (3)

F. Kuschewski, H.-G. von Ribbeck, J. Döring, S. Winnerl, L. M. Eng, and S. C. Kehr, “Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz,” Appl. Phys. Lett. 108, 113102 (2016).
[Crossref]

B. Pollard, F. C. B. Maia, M. B. Raschke, and R. O. Freitas, “Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry,” Nano Lett. 16, 55–61 (2016).
[Crossref]

P. M. Donaldson, C. S. Kelley, M. D. Frogley, J. Filik, K. Wehbe, and C Gianfelice, “Broadband near-field infrared spectromicroscopy using photothermal probes and synchrotron radiation,” Opt. Express 24, 1852–1864 (2016).
[Crossref] [PubMed]

2015 (5)

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales,” The Journal of Physical Chemistry Letters 7, 1275–1284 (2015).
[Crossref]

Yujun Zhong, Shyamala Devi Malagari, Travis Hamilton, and Daniel Wassermann, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9, 093791 (2015).
[Crossref]

M. Kehrt, C. Monte, J. Beyer, and J. Hollandt, “A highly linear superconducting bolometer for quantitative THz Fourier transform spectroscopy,” Opt. Express 23, 11170–11182 (2015).
[Crossref] [PubMed]

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106, 023113 (2015).
[Crossref]

2014 (4)

B. T. O’Callahan, W. E. Lewis, A. C. Jones, and M. B. Raschke, “Spectral frustration and spatial coherence in thermal near-field spectroscopy,” Phys. Rev. B 89, 245446 (2014).
[Crossref]

P. Hermann, A. Hoehl, G. Ulrich, C. Fleischmann, A. Hermelink, B. Kästner, P. Patoka, A. Hornemann, B. Beckhoff, E. Rühl, and G. Ulm, “Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy,” Opt. Express 22, 17948–17958 (2014).
[Crossref] [PubMed]

F. Peragut, J.-B. Brubach, P. Roy, and Y. De Wilde, “Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation,” Appl. Phys. Lett. 104, 251118 (2014).
[Crossref]

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectro-scopic imaging,” Proc. Nat. Acad. Sci. U.S.A. 111, 7191–7196 (2014).
[Crossref]

2013 (2)

P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express 21, 2913–2919 (2013).
[Crossref] [PubMed]

S. Berweger, Duc M. Nguyen, E. A. Muller, H. A. Bechtel, T. T. Perkins, and M. B. Raschke, “Nano-chemical infrared imaging of membrane proteins in lipid bilayers,” J. Am. Chem. Soc. 135, 18292–18295 (2013).
[Crossref] [PubMed]

2012 (6)

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanoscopy: From monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref] [PubMed]

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012).
[Crossref] [PubMed]

C. Calabrese, A. M. Stingel, L. Shen, and P. B. Petersen, “Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution,” Opt. Lett. 37, 2265–2267 (2012).
[Crossref] [PubMed]

A. C. Jones and M. B. Raschke, “Thermal Infrared Near-Field Spectroscopy,” Nano Lett. 12, 1475–1481 (2012).
[Crossref] [PubMed]

D. A. Schmidt, E. Bründermann, and M. Havenith, “Combined far- and near-field chemical nanoscope at ANKA-IR2: applications and detection schemes,” J. Phys. Conf. Ser. 359, 12015 (2012).
[Crossref]

A. Gottwald, R. Klein, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “Current capabilities at the Metrology Light Source,” Metrologia 49, S146–S151 (2012).
[Crossref]

2011 (7)

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotechnol. 9, 63–66 (2011).
[Crossref]

G. Santoro, I. Yousef, F. Jamme, P. Dumas, and G. Ellis, “Infrared synchrotron radiation from bending magnet and edge radiation sources for the study of orientation and conformation in anisotropic materials,” Rev. Sci. Instrum. 82, 10–15 (2011).
[Crossref]

A. Er, I. K. Öztürk, G. Baar, S. Kröger, A. Jarmola, R. Ferber, and M. Tamanis, “Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy,” J. Phys. B 44, 205001 (2011).
[Crossref]

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19, 12469–12479 (2011).
[Crossref] [PubMed]

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10, 352–356 (2011).
[Crossref] [PubMed]

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404 (2011).
[Crossref]

2010 (1)

A. J. Huber, J. Wittborn, and R. Hillenbrand, “Infrared spectroscopic near-field mapping of single nanotransistors,” Nanotechnol. 21, 235702 (2010).
[Crossref]

2008 (2)

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed 47, 8178–8191 (2008).
[Crossref]

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

2006 (1)

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

2004 (2)

U. Schade, K. Holldack, P. Kuske, G. Wüstefeld, and H.-W. Hübers, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422 (2004).
[Crossref]

E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared region,” Applied Optics 43, 4182–4188 (2004).
[Crossref] [PubMed]

2000 (4)

U. Schade, A. Röseler, E. H. Korte, M. Scheer, and W. B. Peatman, “Measured characteristics of infrared edge radiation from BESSY II,” Nucl. Instrum. Meth. A 455, 476–486 (2000).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref] [PubMed]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

Abo-Bakr, Michael

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Ahlberg, S.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Aizawa, K.

Amarie, S.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012).
[Crossref] [PubMed]

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404 (2011).
[Crossref]

Amenabar, I.

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106, 023113 (2015).
[Crossref]

Baar, G.

A. Er, I. K. Öztürk, G. Baar, S. Kröger, A. Jarmola, R. Ferber, and M. Tamanis, “Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy,” J. Phys. B 44, 205001 (2011).
[Crossref]

Bachmann, S.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Bechtel, H. A.

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectro-scopic imaging,” Proc. Nat. Acad. Sci. U.S.A. 111, 7191–7196 (2014).
[Crossref]

S. Berweger, Duc M. Nguyen, E. A. Muller, H. A. Bechtel, T. T. Perkins, and M. B. Raschke, “Nano-chemical infrared imaging of membrane proteins in lipid bilayers,” J. Am. Chem. Soc. 135, 18292–18295 (2013).
[Crossref] [PubMed]

Bechtel, M.

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Beckhoff, B.

Berweger, S.

S. Berweger, Duc M. Nguyen, E. A. Muller, H. A. Bechtel, T. T. Perkins, and M. B. Raschke, “Nano-chemical infrared imaging of membrane proteins in lipid bilayers,” J. Am. Chem. Soc. 135, 18292–18295 (2013).
[Crossref] [PubMed]

Beyer, J.

Blume-Peytavi, U.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Brandt, Guido

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Brodschelm, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

Brubach, J.-B.

F. Peragut, J.-B. Brubach, P. Roy, and Y. De Wilde, “Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation,” Appl. Phys. Lett. 104, 251118 (2014).
[Crossref]

Bründermann, E.

D. A. Schmidt, E. Bründermann, and M. Havenith, “Combined far- and near-field chemical nanoscope at ANKA-IR2: applications and detection schemes,” J. Phys. Conf. Ser. 359, 12015 (2012).
[Crossref]

Bykova, I.

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Calabrese, C.

Carminati, R.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

Chen, Y.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

Craig, I. M.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanoscopy: From monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref] [PubMed]

de Oliveira, T. V. A. G.

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106, 023113 (2015).
[Crossref]

Donaldson, P. M.

Döring, J.

F. Kuschewski, H.-G. von Ribbeck, J. Döring, S. Winnerl, L. M. Eng, and S. C. Kehr, “Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz,” Appl. Phys. Lett. 108, 113102 (2016).
[Crossref]

Dumas, P.

G. Santoro, I. Yousef, F. Jamme, P. Dumas, and G. Ellis, “Infrared synchrotron radiation from bending magnet and edge radiation sources for the study of orientation and conformation in anisotropic materials,” Rev. Sci. Instrum. 82, 10–15 (2011).
[Crossref]

Ellis, G.

G. Santoro, I. Yousef, F. Jamme, P. Dumas, and G. Ellis, “Infrared synchrotron radiation from bending magnet and edge radiation sources for the study of orientation and conformation in anisotropic materials,” Rev. Sci. Instrum. 82, 10–15 (2011).
[Crossref]

Eng, L. M.

F. Kuschewski, H.-G. von Ribbeck, J. Döring, S. Winnerl, L. M. Eng, and S. C. Kehr, “Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz,” Appl. Phys. Lett. 108, 113102 (2016).
[Crossref]

Er, A.

A. Er, I. K. Öztürk, G. Baar, S. Kröger, A. Jarmola, R. Ferber, and M. Tamanis, “Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy,” J. Phys. B 44, 205001 (2011).
[Crossref]

Feikes, J.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).

Feikes, Jörg

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Ferber, R.

A. Er, I. K. Öztürk, G. Baar, S. Kröger, A. Jarmola, R. Ferber, and M. Tamanis, “Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy,” J. Phys. B 44, 205001 (2011).
[Crossref]

Filik, J.

Fleischmann, C.

Flesch, R.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Fliegauf, Rolf

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Formanek, F.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

Fox, N. P.

E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared region,” Applied Optics 43, 4182–4188 (2004).
[Crossref] [PubMed]

Freitas, R. O.

B. Pollard, F. C. B. Maia, M. B. Raschke, and R. O. Freitas, “Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry,” Nano Lett. 16, 55–61 (2016).
[Crossref]

Frogley, M. D.

Gianfelice, C

Gottwald, A.

A. Gottwald, R. Klein, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “Current capabilities at the Metrology Light Source,” Metrologia 49, S146–S151 (2012).
[Crossref]

Govyadinov, A.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012).
[Crossref] [PubMed]

Govyadinov, A. A.

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106, 023113 (2015).
[Crossref]

Gralak, B.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

Greffet, J.-J.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

Gremlich, Hans-Ulrich

Helmut Günzler and Hans-Ulrich Gremlich, IR Spectroscopy: An Introduction (Wiley-VCH, 2012).

Günzler, Helmut

Helmut Günzler and Hans-Ulrich Gremlich, IR Spectroscopy: An Introduction (Wiley-VCH, 2012).

Hamilton, Travis

Yujun Zhong, Shyamala Devi Malagari, Travis Hamilton, and Daniel Wassermann, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9, 093791 (2015).
[Crossref]

Hartrott, Michael V.

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Hartschuh, A.

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed 47, 8178–8191 (2008).
[Crossref]

Havenith, M.

D. A. Schmidt, E. Bründermann, and M. Havenith, “Combined far- and near-field chemical nanoscope at ANKA-IR2: applications and detection schemes,” J. Phys. Conf. Ser. 359, 12015 (2012).
[Crossref]

Hedtrich, S.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Hermann, P.

Hermelink, A.

Hillenbrand, R.

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106, 023113 (2015).
[Crossref]

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012).
[Crossref] [PubMed]

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10, 352–356 (2011).
[Crossref] [PubMed]

A. J. Huber, J. Wittborn, and R. Hillenbrand, “Infrared spectroscopic near-field mapping of single nanotransistors,” Nanotechnol. 21, 235702 (2010).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref] [PubMed]

F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. Zayats and D. Richard, eds. (Artech House, 2009).

Hoehl, A.

Hoehl, Arne

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Hollandt, J.

Holldack, K.

U. Schade, K. Holldack, P. Kuske, G. Wüstefeld, and H.-W. Hübers, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422 (2004).
[Crossref]

Holldack, Karsten

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Hornemann, A.

Huber, A. J.

A. J. Huber, J. Wittborn, and R. Hillenbrand, “Infrared spectroscopic near-field mapping of single nanotransistors,” Nanotechnol. 21, 235702 (2010).
[Crossref]

Huber, R.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

Hübers, H.-W.

U. Schade, K. Holldack, P. Kuske, G. Wüstefeld, and H.-W. Hübers, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422 (2004).
[Crossref]

Huth, F.

P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express 21, 2913–2919 (2013).
[Crossref] [PubMed]

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012).
[Crossref] [PubMed]

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10, 352–356 (2011).
[Crossref] [PubMed]

Ikemoto, Y.

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotechnol. 9, 63–66 (2011).
[Crossref]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19, 12469–12479 (2011).
[Crossref] [PubMed]

Inoue, T.

Ishii, J.

E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared region,” Applied Optics 43, 4182–4188 (2004).
[Crossref] [PubMed]

Ishikawa, M.

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotechnol. 9, 63–66 (2011).
[Crossref]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19, 12469–12479 (2011).
[Crossref] [PubMed]

Jamme, F.

G. Santoro, I. Yousef, F. Jamme, P. Dumas, and G. Ellis, “Infrared synchrotron radiation from bending magnet and edge radiation sources for the study of orientation and conformation in anisotropic materials,” Rev. Sci. Instrum. 82, 10–15 (2011).
[Crossref]

Jarmola, A.

A. Er, I. K. Öztürk, G. Baar, S. Kröger, A. Jarmola, R. Ferber, and M. Tamanis, “Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy,” J. Phys. B 44, 205001 (2011).
[Crossref]

Jones, A. C.

B. T. O’Callahan, W. E. Lewis, A. C. Jones, and M. B. Raschke, “Spectral frustration and spatial coherence in thermal near-field spectroscopy,” Phys. Rev. B 89, 245446 (2014).
[Crossref]

A. C. Jones and M. B. Raschke, “Thermal Infrared Near-Field Spectroscopy,” Nano Lett. 12, 1475–1481 (2012).
[Crossref] [PubMed]

Joulain, K.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

Kästner, B.

Katsura, M.

Kehr, S. C.

F. Kuschewski, H.-G. von Ribbeck, J. Döring, S. Winnerl, L. M. Eng, and S. C. Kehr, “Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz,” Appl. Phys. Lett. 108, 113102 (2016).
[Crossref]

Kehrt, M.

Keilmann, F.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012).
[Crossref] [PubMed]

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404 (2011).
[Crossref]

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref] [PubMed]

F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. Zayats and D. Richard, eds. (Artech House, 2009).

Kelley, C. S.

Kinoshita, T.

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotechnol. 9, 63–66 (2011).
[Crossref]

Klein, R.

A. Gottwald, R. Klein, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “Current capabilities at the Metrology Light Source,” Metrologia 49, S146–S151 (2012).
[Crossref]

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).

Klein, Roman

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Klossek, A.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Knoll, B.

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

Korte, E. H.

U. Schade, A. Röseler, E. H. Korte, M. Scheer, and W. B. Peatman, “Measured characteristics of infrared edge radiation from BESSY II,” Nucl. Instrum. Meth. A 455, 476–486 (2000).
[Crossref]

Kosugi, N.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

Kröger, S.

A. Er, I. K. Öztürk, G. Baar, S. Kröger, A. Jarmola, R. Ferber, and M. Tamanis, “Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy,” J. Phys. B 44, 205001 (2011).
[Crossref]

Kuschewski, F.

F. Kuschewski, H.-G. von Ribbeck, J. Döring, S. Winnerl, L. M. Eng, and S. C. Kehr, “Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz,” Appl. Phys. Lett. 108, 113102 (2016).
[Crossref]

Kuske, P.

U. Schade, K. Holldack, P. Kuske, G. Wüstefeld, and H.-W. Hübers, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422 (2004).
[Crossref]

Leitenstorfer, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

Lemoine, P.-A.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

Lewis, W. E.

B. T. O’Callahan, W. E. Lewis, A. C. Jones, and M. B. Raschke, “Spectral frustration and spatial coherence in thermal near-field spectroscopy,” Phys. Rev. B 89, 245446 (2014).
[Crossref]

Maia, F. C. B.

B. Pollard, F. C. B. Maia, M. B. Raschke, and R. O. Freitas, “Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry,” Nano Lett. 16, 55–61 (2016).
[Crossref]

Malagari, Shyamala Devi

Yujun Zhong, Shyamala Devi Malagari, Travis Hamilton, and Daniel Wassermann, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9, 093791 (2015).
[Crossref]

Martin, M. C.

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectro-scopic imaging,” Proc. Nat. Acad. Sci. U.S.A. 111, 7191–7196 (2014).
[Crossref]

Mastel, S.

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106, 023113 (2015).
[Crossref]

Monte, C.

Moriwaki, T.

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotechnol. 9, 63–66 (2011).
[Crossref]

Mulet, J.-P.

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

Muller, E. A.

E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales,” The Journal of Physical Chemistry Letters 7, 1275–1284 (2015).
[Crossref]

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectro-scopic imaging,” Proc. Nat. Acad. Sci. U.S.A. 111, 7191–7196 (2014).
[Crossref]

S. Berweger, Duc M. Nguyen, E. A. Muller, H. A. Bechtel, T. T. Perkins, and M. B. Raschke, “Nano-chemical infrared imaging of membrane proteins in lipid bilayers,” J. Am. Chem. Soc. 135, 18292–18295 (2013).
[Crossref] [PubMed]

Müller, R.

A. Gottwald, R. Klein, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “Current capabilities at the Metrology Light Source,” Metrologia 49, S146–S151 (2012).
[Crossref]

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).

Müller, Ralph

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Nakashima, S.

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotechnol. 9, 63–66 (2011).
[Crossref]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19, 12469–12479 (2011).
[Crossref] [PubMed]

Nguyen, Duc M.

S. Berweger, Duc M. Nguyen, E. A. Muller, H. A. Bechtel, T. T. Perkins, and M. B. Raschke, “Nano-chemical infrared imaging of membrane proteins in lipid bilayers,” J. Am. Chem. Soc. 135, 18292–18295 (2013).
[Crossref] [PubMed]

Nuansing, W.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012).
[Crossref] [PubMed]

O’Callahan, B. T.

B. T. O’Callahan, W. E. Lewis, A. C. Jones, and M. B. Raschke, “Spectral frustration and spatial coherence in thermal near-field spectroscopy,” Phys. Rev. B 89, 245446 (2014).
[Crossref]

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10, 352–356 (2011).
[Crossref] [PubMed]

Ohigashi, T.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

Okamura, H.

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotechnol. 9, 63–66 (2011).
[Crossref]

M. Ishikawa, M. Katsura, S. Nakashima, K. Aizawa, T. Inoue, H. Okamura, and Y. Ikemoto, “Modulated near-field spectral extraction of broadband mid-infrared signals with a ceramic light source,” Opt. Express 19, 12469–12479 (2011).
[Crossref] [PubMed]

Olmon, R. L.

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectro-scopic imaging,” Proc. Nat. Acad. Sci. U.S.A. 111, 7191–7196 (2014).
[Crossref]

Öztürk, I. K.

A. Er, I. K. Öztürk, G. Baar, S. Kröger, A. Jarmola, R. Ferber, and M. Tamanis, “Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy,” J. Phys. B 44, 205001 (2011).
[Crossref]

Patoka, P.

Peatman, W. B.

U. Schade, A. Röseler, E. H. Korte, M. Scheer, and W. B. Peatman, “Measured characteristics of infrared edge radiation from BESSY II,” Nucl. Instrum. Meth. A 455, 476–486 (2000).
[Crossref]

Peragut, F.

F. Peragut, J.-B. Brubach, P. Roy, and Y. De Wilde, “Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation,” Appl. Phys. Lett. 104, 251118 (2014).
[Crossref]

Perkins, T. T.

S. Berweger, Duc M. Nguyen, E. A. Muller, H. A. Bechtel, T. T. Perkins, and M. B. Raschke, “Nano-chemical infrared imaging of membrane proteins in lipid bilayers,” J. Am. Chem. Soc. 135, 18292–18295 (2013).
[Crossref] [PubMed]

Petersen, P. B.

Pollard, B.

B. Pollard, F. C. B. Maia, M. B. Raschke, and R. O. Freitas, “Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry,” Nano Lett. 16, 55–61 (2016).
[Crossref]

E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales,” The Journal of Physical Chemistry Letters 7, 1275–1284 (2015).
[Crossref]

Rancan, F.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Rang, M.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanoscopy: From monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref] [PubMed]

Raschke, M. B.

B. Pollard, F. C. B. Maia, M. B. Raschke, and R. O. Freitas, “Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry,” Nano Lett. 16, 55–61 (2016).
[Crossref]

E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales,” The Journal of Physical Chemistry Letters 7, 1275–1284 (2015).
[Crossref]

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectro-scopic imaging,” Proc. Nat. Acad. Sci. U.S.A. 111, 7191–7196 (2014).
[Crossref]

B. T. O’Callahan, W. E. Lewis, A. C. Jones, and M. B. Raschke, “Spectral frustration and spatial coherence in thermal near-field spectroscopy,” Phys. Rev. B 89, 245446 (2014).
[Crossref]

S. Berweger, Duc M. Nguyen, E. A. Muller, H. A. Bechtel, T. T. Perkins, and M. B. Raschke, “Nano-chemical infrared imaging of membrane proteins in lipid bilayers,” J. Am. Chem. Soc. 135, 18292–18295 (2013).
[Crossref] [PubMed]

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanoscopy: From monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref] [PubMed]

A. C. Jones and M. B. Raschke, “Thermal Infrared Near-Field Spectroscopy,” Nano Lett. 12, 1475–1481 (2012).
[Crossref] [PubMed]

Richter, M.

A. Gottwald, R. Klein, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “Current capabilities at the Metrology Light Source,” Metrologia 49, S146–S151 (2012).
[Crossref]

Ries, M.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).

Röseler, A.

U. Schade, A. Röseler, E. H. Korte, M. Scheer, and W. B. Peatman, “Measured characteristics of infrared edge radiation from BESSY II,” Nucl. Instrum. Meth. A 455, 476–486 (2000).
[Crossref]

Roy, P.

F. Peragut, J.-B. Brubach, P. Roy, and Y. De Wilde, “Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation,” Appl. Phys. Lett. 104, 251118 (2014).
[Crossref]

Rühl, E.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

P. Hermann, A. Hoehl, G. Ulrich, C. Fleischmann, A. Hermelink, B. Kästner, P. Patoka, A. Hornemann, B. Beckhoff, E. Rühl, and G. Ulm, “Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy,” Opt. Express 22, 17948–17958 (2014).
[Crossref] [PubMed]

P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express 21, 2913–2919 (2013).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Santoro, G.

G. Santoro, I. Yousef, F. Jamme, P. Dumas, and G. Ellis, “Infrared synchrotron radiation from bending magnet and edge radiation sources for the study of orientation and conformation in anisotropic materials,” Rev. Sci. Instrum. 82, 10–15 (2011).
[Crossref]

Schade, U.

U. Schade, K. Holldack, P. Kuske, G. Wüstefeld, and H.-W. Hübers, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422 (2004).
[Crossref]

U. Schade, A. Röseler, E. H. Korte, M. Scheer, and W. B. Peatman, “Measured characteristics of infrared edge radiation from BESSY II,” Nucl. Instrum. Meth. A 455, 476–486 (2000).
[Crossref]

Schäfer-Korting, M.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Schäfers, F.

F. Schäfers, “The BESSY Raytrace Program RAY,” in Modern Developments in X-Ray and Neutron Optics, A. Erko, M. Idir, T. Krist, and A. G. Michette, eds. (Springer, 2008).
[Crossref]

Scheer, M.

U. Schade, A. Röseler, E. H. Korte, M. Scheer, and W. B. Peatman, “Measured characteristics of infrared edge radiation from BESSY II,” Nucl. Instrum. Meth. A 455, 476–486 (2000).
[Crossref]

Schmid, P.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).

Schmidt, D. A.

D. A. Schmidt, E. Bründermann, and M. Havenith, “Combined far- and near-field chemical nanoscope at ANKA-IR2: applications and detection schemes,” J. Phys. Conf. Ser. 359, 12015 (2012).
[Crossref]

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10, 352–356 (2011).
[Crossref] [PubMed]

Scholze, F.

A. Gottwald, R. Klein, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “Current capabilities at the Metrology Light Source,” Metrologia 49, S146–S151 (2012).
[Crossref]

Schrade, P.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Shen, L.

Stingel, A. M.

Tamanis, M.

A. Er, I. K. Öztürk, G. Baar, S. Kröger, A. Jarmola, R. Ferber, and M. Tamanis, “Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy,” J. Phys. B 44, 205001 (2011).
[Crossref]

Tauser, F.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

Theocharous, E.

E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared region,” Applied Optics 43, 4182–4188 (2004).
[Crossref] [PubMed]

Thornagel, R.

A. Gottwald, R. Klein, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “Current capabilities at the Metrology Light Source,” Metrologia 49, S146–S151 (2012).
[Crossref]

Thornagel, Reiner

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Ulm, G.

P. Hermann, A. Hoehl, G. Ulrich, C. Fleischmann, A. Hermelink, B. Kästner, P. Patoka, A. Hornemann, B. Beckhoff, E. Rühl, and G. Ulm, “Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy,” Opt. Express 22, 17948–17958 (2014).
[Crossref] [PubMed]

P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express 21, 2913–2919 (2013).
[Crossref] [PubMed]

A. Gottwald, R. Klein, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “Current capabilities at the Metrology Light Source,” Metrologia 49, S146–S151 (2012).
[Crossref]

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).

Ulm, Gerhard

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Ulrich, G.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

P. Hermann, A. Hoehl, G. Ulrich, C. Fleischmann, A. Hermelink, B. Kästner, P. Patoka, A. Hornemann, B. Beckhoff, E. Rühl, and G. Ulm, “Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy,” Opt. Express 22, 17948–17958 (2014).
[Crossref] [PubMed]

Vogt, A.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

von Hartrott, M.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).

von Ribbeck, H.-G.

F. Kuschewski, H.-G. von Ribbeck, J. Döring, S. Winnerl, L. M. Eng, and S. C. Kehr, “Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz,” Appl. Phys. Lett. 108, 113102 (2016).
[Crossref]

Wassermann, Daniel

Yujun Zhong, Shyamala Devi Malagari, Travis Hamilton, and Daniel Wassermann, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9, 093791 (2015).
[Crossref]

Wehbe, K.

Weigand, M.

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Wilde, Y. De

F. Peragut, J.-B. Brubach, P. Roy, and Y. De Wilde, “Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation,” Appl. Phys. Lett. 104, 251118 (2014).
[Crossref]

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

Winnerl, S.

F. Kuschewski, H.-G. von Ribbeck, J. Döring, S. Winnerl, L. M. Eng, and S. C. Kehr, “Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz,” Appl. Phys. Lett. 108, 113102 (2016).
[Crossref]

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10, 352–356 (2011).
[Crossref] [PubMed]

A. J. Huber, J. Wittborn, and R. Hillenbrand, “Infrared spectroscopic near-field mapping of single nanotransistors,” Nanotechnol. 21, 235702 (2010).
[Crossref]

Wüstefeld, G.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).

U. Schade, K. Holldack, P. Kuske, G. Wüstefeld, and H.-W. Hübers, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422 (2004).
[Crossref]

Wüstefeld, Godehard

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Xu, X. G.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanoscopy: From monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref] [PubMed]

Yamamoto, K.

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Yousef, I.

G. Santoro, I. Yousef, F. Jamme, P. Dumas, and G. Ellis, “Infrared synchrotron radiation from bending magnet and edge radiation sources for the study of orientation and conformation in anisotropic materials,” Rev. Sci. Instrum. 82, 10–15 (2011).
[Crossref]

Zhong, Yujun

Yujun Zhong, Shyamala Devi Malagari, Travis Hamilton, and Daniel Wassermann, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9, 093791 (2015).
[Crossref]

Anal. Chem. (1)

K. Yamamoto, R. Flesch, T. Ohigashi, S. Hedtrich, A. Klossek, P. Patoka, G. Ulrich, S. Ahlberg, F. Rancan, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, M. Schäfer-Korting, N. Kosugi, and E. Rühl, “Selective Probing of the Penetration of Dexamethasone into Human Skin by Soft X-ray Spectromicroscopy,” Anal. Chem. 87, 6173–6179 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed (1)

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed 47, 8178–8191 (2008).
[Crossref]

Appl. Phys. Lett. (6)

B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77, 3980–3982 (2000).
[Crossref]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000).
[Crossref]

S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, “Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references,” Appl. Phys. Lett. 106, 023113 (2015).
[Crossref]

F. Kuschewski, H.-G. von Ribbeck, J. Döring, S. Winnerl, L. M. Eng, and S. C. Kehr, “Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz,” Appl. Phys. Lett. 108, 113102 (2016).
[Crossref]

U. Schade, K. Holldack, P. Kuske, G. Wüstefeld, and H.-W. Hübers, “THz near-field imaging employing synchrotron radiation,” Appl. Phys. Lett. 84, 1422 (2004).
[Crossref]

F. Peragut, J.-B. Brubach, P. Roy, and Y. De Wilde, “Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation,” Appl. Phys. Lett. 104, 251118 (2014).
[Crossref]

Applied Optics (1)

E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared region,” Applied Optics 43, 4182–4188 (2004).
[Crossref] [PubMed]

e-J. Surf. Sci. Nanotechnol. (1)

Y. Ikemoto, T. Moriwaki, T. Kinoshita, M. Ishikawa, S. Nakashima, and H. Okamura, “Near-Field Spectroscopy with Infrared Synchrotron Radiation Source,” e-J. Surf. Sci. Nanotechnol. 9, 63–66 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

S. Berweger, Duc M. Nguyen, E. A. Muller, H. A. Bechtel, T. T. Perkins, and M. B. Raschke, “Nano-chemical infrared imaging of membrane proteins in lipid bilayers,” J. Am. Chem. Soc. 135, 18292–18295 (2013).
[Crossref] [PubMed]

J. Nanophotonics (1)

Yujun Zhong, Shyamala Devi Malagari, Travis Hamilton, and Daniel Wassermann, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9, 093791 (2015).
[Crossref]

J. Phys. B (1)

A. Er, I. K. Öztürk, G. Baar, S. Kröger, A. Jarmola, R. Ferber, and M. Tamanis, “Hyperfine structure study of atomic niobium with enhanced sensitivity of Fourier transform spectroscopy,” J. Phys. B 44, 205001 (2011).
[Crossref]

J. Phys. Chem. Lett. (1)

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanoscopy: From monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref] [PubMed]

J. Phys. Conf. Ser. (1)

D. A. Schmidt, E. Bründermann, and M. Havenith, “Combined far- and near-field chemical nanoscope at ANKA-IR2: applications and detection schemes,” J. Phys. Conf. Ser. 359, 12015 (2012).
[Crossref]

Metrologia (1)

A. Gottwald, R. Klein, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “Current capabilities at the Metrology Light Source,” Metrologia 49, S146–S151 (2012).
[Crossref]

Nano Lett. (3)

B. Pollard, F. C. B. Maia, M. B. Raschke, and R. O. Freitas, “Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry,” Nano Lett. 16, 55–61 (2016).
[Crossref]

A. C. Jones and M. B. Raschke, “Thermal Infrared Near-Field Spectroscopy,” Nano Lett. 12, 1475–1481 (2012).
[Crossref] [PubMed]

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett. 12, 3973–3978 (2012).
[Crossref] [PubMed]

Nanotechnol. (1)

A. J. Huber, J. Wittborn, and R. Hillenbrand, “Infrared spectroscopic near-field mapping of single nanotransistors,” Nanotechnol. 21, 235702 (2010).
[Crossref]

Nat. Mater. (1)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10, 352–356 (2011).
[Crossref] [PubMed]

Nature (1)

Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444, 740–743 (2006).
[Crossref] [PubMed]

Nucl. Instrum. Meth. A (1)

U. Schade, A. Röseler, E. H. Korte, M. Scheer, and W. B. Peatman, “Measured characteristics of infrared edge radiation from BESSY II,” Nucl. Instrum. Meth. A 455, 476–486 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (2)

B. T. O’Callahan, W. E. Lewis, A. C. Jones, and M. B. Raschke, “Spectral frustration and spatial coherence in thermal near-field spectroscopy,” Phys. Rev. B 89, 245446 (2014).
[Crossref]

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404 (2011).
[Crossref]

Phys. Rev. Lett. (1)

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[Crossref] [PubMed]

Phys. Rev. S. T. (1)

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. S. T. 14, 030705 (2011).

Physical Review Special Topics - Accelerators and Beams (1)

Roman Klein, Guido Brandt, Rolf Fliegauf, Arne Hoehl, Ralph Müller, Reiner Thornagel, Gerhard Ulm, Michael Abo-Bakr, Jörg Feikes, Michael V. Hartrott, Karsten Holldack, and Godehard Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Physical Review Special Topics - Accelerators and Beams 11, 110701 (2008).
[Crossref]

Proc. Nat. Acad. Sci. U.S.A. (1)

H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, “Ultrabroadband infrared nanospectro-scopic imaging,” Proc. Nat. Acad. Sci. U.S.A. 111, 7191–7196 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

G. Santoro, I. Yousef, F. Jamme, P. Dumas, and G. Ellis, “Infrared synchrotron radiation from bending magnet and edge radiation sources for the study of orientation and conformation in anisotropic materials,” Rev. Sci. Instrum. 82, 10–15 (2011).
[Crossref]

The Journal of Physical Chemistry Letters (1)

E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales,” The Journal of Physical Chemistry Letters 7, 1275–1284 (2015).
[Crossref]

Other (4)

F. Schäfers, “The BESSY Raytrace Program RAY,” in Modern Developments in X-Ray and Neutron Optics, A. Erko, M. Idir, T. Krist, and A. G. Michette, eds. (Springer, 2008).
[Crossref]

K. Yamamoto, A. Klossek, R. Flesch, F. Rancan, M. Weigand, I. Bykova, M. Bechtel, S. Ahlberg, A. Vogt, U. Blume-Peytavi, P. Schrade, S. Bachmann, S. Hedtrich, M. Schäfer-Korting, and E. Rühl, “Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft x-ray spectromicroscopy,” Eur. J. Pharm. Biopharm. (2017). , in press.
[Crossref]

Helmut Günzler and Hans-Ulrich Gremlich, IR Spectroscopy: An Introduction (Wiley-VCH, 2012).

F. Keilmann and R. Hillenbrand, “Near-field nanoscopy by elastic light scattering from a tip,” in Nano-Optics and Near-Field Optical Microscopy, A. Zayats and D. Richard, eds. (Artech House, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the experimental IR s-SNOM/nano-FTIR setup at the MLS, from [25]. The broadband IR synchrotron radiation is coupled out from a bending magnet and is directed by a set of mirrors (not shown in the image) to the nano-FTIR setup. The ZnSe beamsplitter separates the radiation into a reference beam and a second beam which is focused by a parabolic mirror on tip and sample. The reference mirror can be moved over a distance of up to 1500 µm. The signal is detected by a liquid nitrogen cooled MCT detector.
Fig. 2
Fig. 2 Summary of the different storage ring modes.
Fig. 3
Fig. 3 Comparison of beam size for different storage ring optics of the MLS facility. The scale bar corresponds to a length of 100 µm. By reducing the size of the electron bunches the focal spot of the emitted SR can also be significantly reduced. This is illustrated for three different storage ring optics: (a) standard user optics (electron bunch size: 380 µm (horizontal) and 260 µm (vertical)), (b) low-alpha optics (electron bunch size: 400 µm (horizontal) and 850 µm (vertical)), and (c) low-emittance optics (electron bunch size: 190 µm (horizontal) and 180 µm (vertical)). The images recorded with a focal plane array are normalized to the ring current.
Fig. 4
Fig. 4 Intensity distribution of the IR radiation focused onto the sample obtained from ray tracing calculations [33] for the three different storage ring optics illustrated in Fig. 3. The scale bar corresponds to a length of 100 µm. The electron bunch size for standard user optics is illustrated in (a). The lowest intensity values as well as the largest SR spot are obtained from low-alpha optics (b). For further decreasing electron bunch size the focused IR beam becomes increasingly asymmetric and the peak intensity increases as compared to standard user optics (c).
Fig. 5
Fig. 5 Influence of the storage ring optics and beam size on intensity of 6H-SiC nano-FTIR spectrum. The variation of the beam size compared to the standard user optics results in an enhanced signal intensity of about 200% for low-emittance optics and a signal decay of 50% for low-alpha optics. For a better comparison the spectra are normalized to a ring current of 90 mA.
Fig. 6
Fig. 6 Comparison of 6H-SiC near-field spectra recorded by the (a) standard and (b) the optimized low-emittance storage ring optics of MLS. Due to the relatively short life time in the low-emittance mode the signal amplitude in subsequently recorded near-field spectra decreases due to the decay of the storage ring current. This variation of the signal amplitude can be minimized by allowing a change of the electron bunch size with decreasing ring current thus providing an almost constant photon flux. The change in the peak intensity as function of ring current is shown in the inset of (b).
Fig. 7
Fig. 7 Dependence of MCT signal amplitude from storage ring current (a) and recorded nano-FTIR spectra from SiC recorded with and without a polarizer (b). For the measurements the number of electrons in the storage ring was gradually reduced so that the optical beam path remained unchanged. The amplitude shows a strong non-linear behavior for ring currents under which the MCT detector was typically operated (between 80 mA and 170 mA). A nearly linear increase in signal amplitude is observed only for ring current values below 10 mA. The incident SR contains to a certain portion also waves with a vertical polarization (perpendicular to tip axis). However, these waves do not contribute significantly to the electric field enhancement at the illuminated tip apex, but rather drive the detector more into the non-linear regime. By using a polarizer these waves can be removed from the incident SR beam resulting in a signal enhancement of about 100% in the recorded SiC near-field spectra (b) compared to the measurement without polarizer.
Fig. 8
Fig. 8 Influence of reduced spectral bandwidth on interferograms (a) and near-field IR spectra (b) recorded from bulk 6H-SiC (5th harmonic). The reduction of the spectral bandwidth of ultrabroadband synchrotron radiation by spectral filters to the wavelength range of interest has significant influence on the signal amplitude in the interferograms (a) and corresponding near-field spectra (b). The limitation of the spectral range by using edge filters in front of the asymmetric Michelson-Interferometer can significantly increase the intensity in the near-field spectra. The values in (b) indicate the upper limit of the wavenumber position above which the light intensity is reduced to almost zero, corresponding to the line color of the respective IR-spectrum and interferogram. A stepwise reduction of the spectral range by using different optical filters provides a signal enhancement of up to 2000% for the edge filter at 1818 cm−1.
Fig. 9
Fig. 9 Near-field spectra from poly(methyl methacrylate) (PMMA) (a) and polymethlysilox-ane (PDMS) (b) recorded using the optimized low-emittance optics of the MLS storage ring and a spectral bandwidth reduced to the wavenumber range from about 1820 cm−1 to 750 cm−1. The 40 nm PMMA layer was deposited on a Au substrate. The PDMS layer had a thickness of about 60 nm and was deposited on a Si substrate.
Fig. 10
Fig. 10 SR-based imaging and nano-FTIR spectroscopy on dexamethasone. Topography (a) and corresponding 3rd harm. near-field image (b) from a 5 µm × 5 µm large sample area. The optically dark wire-like structures are formed by dexamethasone crystals whereas the optically light regions indicate the exposed Au surface. Diagrams in (c) and (d) show the magnitude and phase of the near-field spectrum, respectively. The spectra corresponding to the red bar in (a) are shown as magnitude in (e) and phase in (f).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S ( ω ) = [ n 0 + e i ω Δ l / c n SNOM ( ω , t ) ] S 0 ( ω ) ,
P ( Δ l , t ) | S ( ω ) | 2 d ω = ( n 0 2 + 2 Re [ e i ω Δ l / c n SNOM ( ω , t ) ] + | n SNOM ( ω , t ) | 2 ) | S 0 ( ω ) | 2 d ω = n 0 2 | S 0 ( ω ) | 2 d ω + 2 Re [ n 0 e i ω Δ l / c n SNOM ( ω , t ) | S 0 ( ω ) | 2 d ω ] + | n SNOM ( ω , t ) | 2 | S 0 ( ω ) | 2 d ω .

Metrics