Abstract

We demonstrate generation of widely tunable femtosecond pulses by utilizing the soliton self-frequency shift effect in a Tm-doped fiber amplifier, seeded by dispersion managed mode-locked Tm oscillator. The monochromatic soliton pulses with a duration of the order of 100 fs have been obtained and its wavelength can be adjusted continuously in the range of 1.9-2.36 μm by varying the pump power. The efficiency of Raman conversion is as high as 97% with output power up to 1.16 W. The experimental results are in good agreement with numerical simulations of pulse propagation in Tm-doped fiber amplifier.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1 μJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser

Fangzhou Tan, Hongxing Shi, Ruoyu Sun, Peng Wang, and Pu Wang
Opt. Express 24(20) 22461-22468 (2016)

Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber

M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg
Opt. Lett. 24(20) 1428-1430 (1999)

Tunable, femtosecond pulse source operating in the range 1.06–1.33 µm based on an Yb3+-doped holey fiber amplifier

J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson
J. Opt. Soc. Am. B 19(6) 1286-1294 (2002)

References

  • View by:
  • |
  • |
  • |

  1. I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR Ultrashort Pulsed Fiber-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 99–110 (2014).
    [Crossref]
  2. A. B. Seddon, “Mid-infrared (IR)-A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancerin vivo,” Phys. Status Solidi 250(5), 1020–1027 (2013).
    [Crossref]
  3. R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
    [Crossref]
  4. C. R. Phillips, J. Jiang, C. Mohr, A. C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J. S. Harris, M. E. Fermann, and M. M. Fejer, “Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system,” Opt. Lett. 37(14), 2928–2930 (2012).
    [Crossref] [PubMed]
  5. F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
    [Crossref]
  6. C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, “High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator,” Opt. Lett. 38(11), 1820–1822 (2013).
    [Crossref] [PubMed]
  7. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  8. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonics Technol. Lett. 11(3), 325–327 (1999).
    [Crossref]
  9. R. Herda and O. G. Okhotnikov, “All-Fiber Soliton Source Tunable over 500 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JWB39.
    [Crossref]
  10. J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
    [Crossref]
  11. J. Chen, F. O. Ilday, and F. X. Kaertner, “Soliton Self-Frequency Shift from 1.03 µm to 1.55 µm,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper TuB9.
  12. D. H. Deng, T. L. Cheng, X. J. Xue, H. T. Tong, T. Suzuki, and Y. Ohishi, “Widely tunable soliton self-frequency shift and dispersive wave generation in a highly nonlinear fiber,” Proc. SPIE 9359, 935903 (2015).
    [Crossref]
  13. P. Wang, H. X. Shi, F. Z. Tan, and P. Wang, “Tunable femtosecond pulse source from 1.6 to 2.3 μm with 100 kW peak power in an all-fiber system,” Chin. Opt. Lett. 14(9), 091405 (2016).
    [Crossref]
  14. E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012).
    [Crossref] [PubMed]
  15. E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, S. V. Muravyev, and A. V. Kim, “Generating femtosecond optical pulses tunable from 2 to 3 μm with a silica-based all-fiber laser system,” Opt. Lett. 39(10), 2963–2966 (2014).
    [Crossref] [PubMed]
  16. W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
    [Crossref]
  17. Y. X. Tang, L. G. Wright, K. Charan, T. Y. Wang, C. Xu, and F. W. Wise, “Generation of intense 100 fs solitons tunable from 2 to 4.3 μm in fluoride fiber,” Optica 3(9), 948–951 (2016).
    [Crossref]
  18. S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
    [Crossref]
  19. V. V. Dvoyrin, D. Klimentov, and I. T. Sorokina, “3W Raman Soliton Tunable between 2-2.2 µm in Tm-Doped Fiber MOPA,” in Advanced Solid-State Lasers Congress, M. Ebrahim-Zadeh and I. Sorokina, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper MTh1C.2.
    [Crossref]
  20. M. Y. Koptev, E. A. Anashkina, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Two-color optically synchronized ultrashort pulses from a Tm/Yb-co-doped fiber amplifier,” Opt. Lett. 39(7), 2008–2011 (2014).
    [Crossref] [PubMed]
  21. J. Luo, B. Sun, J. Ji, E. L. Tan, Y. Zhang, and X. Yu, “High-efficiency femtosecond Raman soliton generation with a tunable wavelength beyond 2 μm,” Opt. Lett. 42(8), 1568–1571 (2017).
    [Crossref] [PubMed]

2017 (1)

2016 (3)

2015 (1)

D. H. Deng, T. L. Cheng, X. J. Xue, H. T. Tong, T. Suzuki, and Y. Ohishi, “Widely tunable soliton self-frequency shift and dispersive wave generation in a highly nonlinear fiber,” Proc. SPIE 9359, 935903 (2015).
[Crossref]

2014 (4)

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR Ultrashort Pulsed Fiber-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 99–110 (2014).
[Crossref]

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

M. Y. Koptev, E. A. Anashkina, A. V. Andrianov, S. V. Muravyev, and A. V. Kim, “Two-color optically synchronized ultrashort pulses from a Tm/Yb-co-doped fiber amplifier,” Opt. Lett. 39(7), 2008–2011 (2014).
[Crossref] [PubMed]

E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, S. V. Muravyev, and A. V. Kim, “Generating femtosecond optical pulses tunable from 2 to 3 μm with a silica-based all-fiber laser system,” Opt. Lett. 39(10), 2963–2966 (2014).
[Crossref] [PubMed]

2013 (2)

C. Gu, M. Hu, L. Zhang, J. Fan, Y. Song, C. Wang, and D. T. Reid, “High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator,” Opt. Lett. 38(11), 1820–1822 (2013).
[Crossref] [PubMed]

A. B. Seddon, “Mid-infrared (IR)-A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancerin vivo,” Phys. Status Solidi 250(5), 1020–1027 (2013).
[Crossref]

2012 (2)

2007 (1)

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

2006 (1)

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

2000 (1)

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
[Crossref]

1999 (1)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonics Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

1986 (1)

Amarie, S.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Anashkina, E. A.

Andrianov, A. V.

Bi, W. J.

W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
[Crossref]

Bliss, D.

Charan, K.

Cheng, T. L.

D. H. Deng, T. L. Cheng, X. J. Xue, H. T. Tong, T. Suzuki, and Y. Ohishi, “Widely tunable soliton self-frequency shift and dispersive wave generation in a highly nonlinear fiber,” Proc. SPIE 9359, 935903 (2015).
[Crossref]

Deng, D. H.

D. H. Deng, T. L. Cheng, X. J. Xue, H. T. Tong, T. Suzuki, and Y. Ohishi, “Widely tunable soliton self-frequency shift and dispersive wave generation in a highly nonlinear fiber,” Proc. SPIE 9359, 935903 (2015).
[Crossref]

Dvoyrin, V. V.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR Ultrashort Pulsed Fiber-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 99–110 (2014).
[Crossref]

Fan, J.

Fang, Y. Z.

W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
[Crossref]

Fejer, M. M.

Fermann, M. E.

Gao, W. Q.

W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
[Crossref]

Giessen, H.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Goto, T.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonics Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

Gu, C.

Guina, M.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Hakulinen, T.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Harris, J. S.

Hartl, I.

Hegenbarth, R.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Hillenbrand, R.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Hu, L. L.

W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
[Crossref]

Hu, M.

Huber, A. J.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Ji, J.

Jiang, J.

Kim, A. V.

Kivistö, S.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Koptev, M. Y.

Langrock, C.

Li, X.

W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
[Crossref]

Liao, M. S.

W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
[Crossref]

Lin, A. C.

Luo, J.

Mashinsky, V. M.

Mastel, S.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Mitschke, F. M.

Mohr, C.

Mollenauer, L. F.

Muravyev, S. V.

Nishizawa, N.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonics Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

Noack, F.

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
[Crossref]

Ohishi, Y.

D. H. Deng, T. L. Cheng, X. J. Xue, H. T. Tong, T. Suzuki, and Y. Ohishi, “Widely tunable soliton self-frequency shift and dispersive wave generation in a highly nonlinear fiber,” Proc. SPIE 9359, 935903 (2015).
[Crossref]

Okhotnikov, O. G.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Petrov, V.

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
[Crossref]

Phillips, C. R.

Reid, D. T.

Rotermund, F.

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
[Crossref]

Sarkisov, S. Y.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Seddon, A. B.

A. B. Seddon, “Mid-infrared (IR)-A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancerin vivo,” Phys. Status Solidi 250(5), 1020–1027 (2013).
[Crossref]

Shi, H. X.

Snure, M.

Song, Y.

Sorokin, E.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR Ultrashort Pulsed Fiber-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 99–110 (2014).
[Crossref]

Sorokina, I. T.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR Ultrashort Pulsed Fiber-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 99–110 (2014).
[Crossref]

Steinmann, A.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Sugiura, T.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Sun, B.

Suzuki, T.

D. H. Deng, T. L. Cheng, X. J. Xue, H. T. Tong, T. Suzuki, and Y. Ohishi, “Widely tunable soliton self-frequency shift and dispersive wave generation in a highly nonlinear fiber,” Proc. SPIE 9359, 935903 (2015).
[Crossref]

Takayanagi, J.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Tan, E. L.

Tan, F. Z.

Tang, Y. X.

Tolstik, N.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR Ultrashort Pulsed Fiber-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 99–110 (2014).
[Crossref]

Tong, H. T.

D. H. Deng, T. L. Cheng, X. J. Xue, H. T. Tong, T. Suzuki, and Y. Ohishi, “Widely tunable soliton self-frequency shift and dispersive wave generation in a highly nonlinear fiber,” Proc. SPIE 9359, 935903 (2015).
[Crossref]

Wang, C.

Wang, P.

Wang, T. Y.

Wise, F. W.

Wright, L. G.

Xing, Z. J.

W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
[Crossref]

Xiong, L. M.

W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
[Crossref]

Xu, C.

Xue, X. J.

D. H. Deng, T. L. Cheng, X. J. Xue, H. T. Tong, T. Suzuki, and Y. Ohishi, “Widely tunable soliton self-frequency shift and dispersive wave generation in a highly nonlinear fiber,” Proc. SPIE 9359, 935903 (2015).
[Crossref]

Yoshida, M.

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

Yu, X.

Yu. Koptev, M.

Zhang, L.

Zhang, Y.

Zhou, Q. L.

W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
[Crossref]

Zhu, M.

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR Ultrashort Pulsed Fiber-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 99–110 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (3)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonics Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using Femtosecond Yb-Doped Fiber Laser and Photonic Crystal Fiber,” IEEE Photonics Technol. Lett. 18(21), 2284–2286 (2006).
[Crossref]

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm–Ho Fiber Laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

J. Appl. Phys. (1)

W. J. Bi, X. Li, Z. J. Xing, Q. L. Zhou, Y. Z. Fang, W. Q. Gao, L. M. Xiong, L. L. Hu, and M. S. Liao, “Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse,” J. Appl. Phys. 119(4), 043102 (2016).
[Crossref]

J. Opt. (1)

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Opt. Commun. (1)

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1–3), 177–183 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Optica (1)

Phys. Status Solidi (1)

A. B. Seddon, “Mid-infrared (IR)-A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancerin vivo,” Phys. Status Solidi 250(5), 1020–1027 (2013).
[Crossref]

Proc. SPIE (1)

D. H. Deng, T. L. Cheng, X. J. Xue, H. T. Tong, T. Suzuki, and Y. Ohishi, “Widely tunable soliton self-frequency shift and dispersive wave generation in a highly nonlinear fiber,” Proc. SPIE 9359, 935903 (2015).
[Crossref]

Other (3)

R. Herda and O. G. Okhotnikov, “All-Fiber Soliton Source Tunable over 500 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JWB39.
[Crossref]

V. V. Dvoyrin, D. Klimentov, and I. T. Sorokina, “3W Raman Soliton Tunable between 2-2.2 µm in Tm-Doped Fiber MOPA,” in Advanced Solid-State Lasers Congress, M. Ebrahim-Zadeh and I. Sorokina, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper MTh1C.2.
[Crossref]

J. Chen, F. O. Ilday, and F. X. Kaertner, “Soliton Self-Frequency Shift from 1.03 µm to 1.55 µm,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper TuB9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic of the experimental setup. UNNA: ultra-high numerical aperture fiber; TDF: thulium-doped fiber; FR: Faraday rotation mirror; PC: polarization controller.
Fig. 2
Fig. 2 Output spectrum of the dispersion management mode-locked Tm-doped fiber oscillator.
Fig. 3
Fig. 3 Output spectra from the amplifier as a function of 793 nm pump power.
Fig. 4
Fig. 4 Characteristics of wavelength shift in terms of the 793 nm pump power.
Fig. 5
Fig. 5 (a) Autocorrelation trace and (b) output spectrum of the soliton pulses when the pump power was 9.7 W.
Fig. 6
Fig. 6 Output power and conversion efficiency of Raman shifted soliton as a function of their center wavelength.
Fig. 7
Fig. 7 Wavelength shift of the generated soliton pulses in our simulation.
Fig. 8
Fig. 8 Simulated spectral evolution of the pulse propagating in 4 m long Tm-doped fiber amplifier with the output power of 0.72 W.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z = α 2 A + g ( ω ) 2 A ˜ e i ω T d ω + n 1 β n i n + 1 n ! n T n + i γ ( 1 + i τ shock ) ( A ( T ) R ( τ ) | A ( T τ ) | 2 d τ )

Metrics