Abstract

High-frequency fiber laser sensor is a new acoustic detector for photoacoustic imaging. However, its performance has not been thoroughly studied. Here, we present a comprehensive characterization of a fiber laser sensor for photoacoustic imaging. Ultrasound waves deform the fiber laser cavity and induce frequency changes in the heterodyning output signal. The sensitivity peaks at 22 MHz, which is associated with an azimuthal mode number l = 2 and a radial mode number n = 1. The broadband acoustic sensitivity in terms of frequency shift is 2.25 MHz/kPa and the noise-equivalent pressure reaches 45 Pa with a sampling rate of 100 MHz. The 3-dB bandwidth is 18 MHz for spherical-wave detection. We characterized the spatial distribution of acoustic sensitivity. The sensitivity along the fiber longitudinal direction varies with the laser spatial mode and is determined by the grating and cavity parameters. The sensitivity at the azimuthal direction presents a |cos(2θ)| dependence as a result of fiber core asymmetry. In the radial direction, the sensitivity is inversely proportional to the square root of the distance between the source and the detector. The acoustic sensitivity can be enhanced by reducing the cavity length. We experimentally show that a short sensor can enhance the contrast and penetration depth of PAM than a long one.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging

Stefan Preisser, Wolfgang Rohringer, Mengyang Liu, Christian Kollmann, Stefan Zotter, Balthasar Fischer, and Wolfgang Drexler
Biomed. Opt. Express 7(10) 4171-4186 (2016)

Photoacoustic computed tomography with lens-free focused fiber-laser ultrasound sensor

Xue Bai, Yumeng Qi, Yizhi Liang, Jun Ma, Long Jin, and Bai-ou Guan
Biomed. Opt. Express 10(5) 2504-2512 (2019)

Fast-scanning photoacoustic microscopy with a side-looking fiber optic ultrasound sensor

Yizhi Liang, Jin-wei Liu, Long Jin, Bai-Ou Guan, and Lidai Wang
Biomed. Opt. Express 9(11) 5809-5816 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
    [Crossref] [PubMed]
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  3. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  4. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  5. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  6. S. L. Chen, L. J. Guo, and X. D. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3(4), 143–150 (2015).
    [Crossref]
  7. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  8. T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).
    [Crossref]
  9. J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
    [Crossref] [PubMed]
  10. G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
    [Crossref] [PubMed]
  11. H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(4), 4496 (2014).
    [PubMed]
  12. C. Zhang, S. L. Chen, T. Ling, and L. J. Guo, “Imprinted polymer microrings as high-performance ultrasound detectors in photoacoustic imaging,” J. Lightwave Technol. 33(20), 4318–4328 (2015).
    [Crossref]
  13. T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
    [Crossref] [PubMed]
  14. X. Zhu, Z. Huang, G. Wang, W. Li, D. Zou, and C. Li, “Ultrasonic detection based on polarization-dependent optical reflection,” Opt. Lett. 42(3), 439–441 (2017).
    [Crossref] [PubMed]
  15. S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
    [Crossref] [PubMed]
  16. A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
    [Crossref]
  17. H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
    [Crossref] [PubMed]
  18. J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
    [Crossref] [PubMed]
  19. R. Depaula, L. Flax, J. Cole, and J. Bucaro, “Single-mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 30(4), 680–683 (1982).
    [Crossref]
  20. L. Flax, J. H. Cole, R. P. De Paula, and J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72(9), 1159–1162 (1982).
    [Crossref]
  21. Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7, 40849 (2017).
    [Crossref] [PubMed]
  22. A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
    [Crossref] [PubMed]
  23. F. Zhou, L. Jin, Y. Z. Liang, L. H. Cheng, and B. O. Guan, “Spatial sensitivity characterization of dual-polarization fiber grating laser sensors,” J. Lightwave Technol. 33(19), 4151–4155 (2015).
    [Crossref]
  24. L. Flax, L. R. Dragonette, and H. Überall, “Theory of elastic resonance excitation by sound scattering,” J. Acoust. Soc. Am. 63(3), 723–731 (1978).
    [Crossref]
  25. Y. Fan, F. Honarvar, A. N. Sinclair, and M. R. Jafari, “Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves,” J. Acoust. Soc. Am. 113(1), 102–113 (2003).
    [Crossref] [PubMed]
  26. L. Flax, V. K. Varadan, and V. V. Varadan, “Scattering of an obliquely incident acoustic wave by an infinite cylinder,” J. Acoust. Soc. Am. 68(6), 1832–1835 (1980).
    [Crossref]
  27. F. Honarvar, E. Enjilela, and A. N. Sinclair, “Correlation between helical surface waves and guided modes of an infinite immersed elastic cylinder,” Ultrasonics 51(2), 238–244 (2011).
    [Crossref] [PubMed]
  28. W. Huang, Y. J. Wang, and S. I. Rokhlin, “Oblique scattering of an elastic wave from a multilayered cylinder in a solid. Transfer matrix approach,” J. Acoust. Soc. Am. 99(5), 2742–2754 (1996).
    [Crossref]
  29. J. L. Rose and P. B. Nagy, “Ultrasonic waves in solid media,” J. Acoust. Soc. Am. 107(4), 1807–1808 (2000).
    [Crossref]
  30. T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
    [Crossref] [PubMed]
  31. I. A. Veres, P. Burgholzer, T. Berer, A. Rosenthal, G. Wissmeyer, and V. Ntziachristos, “Characterization of the spatio-temporal response of optical fiber sensors to incident spherical waves,” J. Acoust. Soc. Am. 135(4), 1853–1862 (2014).
    [Crossref] [PubMed]
  32. A. Rosenthal, M. A. Caballero, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Spatial characterization of the response of a silica optical fiber to wideband ultrasound,” Opt. Lett. 37(15), 3174–3176 (2012).
    [Crossref] [PubMed]

2017 (3)

X. Zhu, Z. Huang, G. Wang, W. Li, D. Zou, and C. Li, “Ultrasonic detection based on polarization-dependent optical reflection,” Opt. Lett. 42(3), 439–441 (2017).
[Crossref] [PubMed]

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7, 40849 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (6)

C. Zhang, S. L. Chen, T. Ling, and L. J. Guo, “Imprinted polymer microrings as high-performance ultrasound detectors in photoacoustic imaging,” J. Lightwave Technol. 33(20), 4318–4328 (2015).
[Crossref]

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

S. L. Chen, L. J. Guo, and X. D. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3(4), 143–150 (2015).
[Crossref]

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).
[Crossref]

F. Zhou, L. Jin, Y. Z. Liang, L. H. Cheng, and B. O. Guan, “Spatial sensitivity characterization of dual-polarization fiber grating laser sensors,” J. Lightwave Technol. 33(19), 4151–4155 (2015).
[Crossref]

2014 (3)

I. A. Veres, P. Burgholzer, T. Berer, A. Rosenthal, G. Wissmeyer, and V. Ntziachristos, “Characterization of the spatio-temporal response of optical fiber sensors to incident spherical waves,” J. Acoust. Soc. Am. 135(4), 1853–1862 (2014).
[Crossref] [PubMed]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(4), 4496 (2014).
[PubMed]

2013 (2)

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref] [PubMed]

2012 (4)

A. Rosenthal, M. A. Caballero, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Spatial characterization of the response of a silica optical fiber to wideband ultrasound,” Opt. Lett. 37(15), 3174–3176 (2012).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref] [PubMed]

2011 (3)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

F. Honarvar, E. Enjilela, and A. N. Sinclair, “Correlation between helical surface waves and guided modes of an infinite immersed elastic cylinder,” Ultrasonics 51(2), 238–244 (2011).
[Crossref] [PubMed]

2009 (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

2003 (1)

Y. Fan, F. Honarvar, A. N. Sinclair, and M. R. Jafari, “Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves,” J. Acoust. Soc. Am. 113(1), 102–113 (2003).
[Crossref] [PubMed]

2000 (1)

J. L. Rose and P. B. Nagy, “Ultrasonic waves in solid media,” J. Acoust. Soc. Am. 107(4), 1807–1808 (2000).
[Crossref]

1996 (1)

W. Huang, Y. J. Wang, and S. I. Rokhlin, “Oblique scattering of an elastic wave from a multilayered cylinder in a solid. Transfer matrix approach,” J. Acoust. Soc. Am. 99(5), 2742–2754 (1996).
[Crossref]

1982 (2)

R. Depaula, L. Flax, J. Cole, and J. Bucaro, “Single-mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 30(4), 680–683 (1982).
[Crossref]

L. Flax, J. H. Cole, R. P. De Paula, and J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72(9), 1159–1162 (1982).
[Crossref]

1980 (1)

L. Flax, V. K. Varadan, and V. V. Varadan, “Scattering of an obliquely incident acoustic wave by an infinite cylinder,” J. Acoust. Soc. Am. 68(6), 1832–1835 (1980).
[Crossref]

1978 (1)

L. Flax, L. R. Dragonette, and H. Überall, “Theory of elastic resonance excitation by sound scattering,” J. Acoust. Soc. Am. 63(3), 723–731 (1978).
[Crossref]

Allen, T. J.

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).
[Crossref]

Bai, X.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7, 40849 (2017).
[Crossref] [PubMed]

Bauer-Marschallinger, J.

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

Beard, P.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref] [PubMed]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Beard, P. C.

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).
[Crossref]

Berer, T.

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

I. A. Veres, P. Burgholzer, T. Berer, A. Rosenthal, G. Wissmeyer, and V. Ntziachristos, “Characterization of the spatio-temporal response of optical fiber sensors to incident spherical waves,” J. Acoust. Soc. Am. 135(4), 1853–1862 (2014).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

Bucaro, J.

R. Depaula, L. Flax, J. Cole, and J. Bucaro, “Single-mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 30(4), 680–683 (1982).
[Crossref]

Bucaro, J. A.

Burgholzer, P.

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

I. A. Veres, P. Burgholzer, T. Berer, A. Rosenthal, G. Wissmeyer, and V. Ntziachristos, “Characterization of the spatio-temporal response of optical fiber sensors to incident spherical waves,” J. Acoust. Soc. Am. 135(4), 1853–1862 (2014).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

Caballero, M. A.

Cao, R.

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

Chen, S. L.

Cheng, L.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7, 40849 (2017).
[Crossref] [PubMed]

Cheng, L. H.

Cole, J.

R. Depaula, L. Flax, J. Cole, and J. Bucaro, “Single-mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 30(4), 680–683 (1982).
[Crossref]

Cole, J. H.

Cox, B.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref] [PubMed]

de Jong, N.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

De Paula, R. P.

Depaula, R.

R. Depaula, L. Flax, J. Cole, and J. Bucaro, “Single-mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 30(4), 680–683 (1982).
[Crossref]

Dixon, A. J.

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

Dong, B.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(4), 4496 (2014).
[PubMed]

Dragonette, L. R.

L. Flax, L. R. Dragonette, and H. Überall, “Theory of elastic resonance excitation by sound scattering,” J. Acoust. Soc. Am. 63(3), 723–731 (1978).
[Crossref]

Enjilela, E.

F. Honarvar, E. Enjilela, and A. N. Sinclair, “Correlation between helical surface waves and guided modes of an infinite immersed elastic cylinder,” Ultrasonics 51(2), 238–244 (2011).
[Crossref] [PubMed]

Estrada, H.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

Fan, Y.

Y. Fan, F. Honarvar, A. N. Sinclair, and M. R. Jafari, “Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves,” J. Acoust. Soc. Am. 113(1), 102–113 (2003).
[Crossref] [PubMed]

Felbermayer, K.

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

Flax, L.

L. Flax, J. H. Cole, R. P. De Paula, and J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72(9), 1159–1162 (1982).
[Crossref]

R. Depaula, L. Flax, J. Cole, and J. Bucaro, “Single-mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 30(4), 680–683 (1982).
[Crossref]

L. Flax, V. K. Varadan, and V. V. Varadan, “Scattering of an obliquely incident acoustic wave by an infinite cylinder,” J. Acoust. Soc. Am. 68(6), 1832–1835 (1980).
[Crossref]

L. Flax, L. R. Dragonette, and H. Überall, “Theory of elastic resonance excitation by sound scattering,” J. Acoust. Soc. Am. 63(3), 723–731 (1978).
[Crossref]

Gallego, D.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

Grün, H.

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

Guan, B. O.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7, 40849 (2017).
[Crossref] [PubMed]

F. Zhou, L. Jin, Y. Z. Liang, L. H. Cheng, and B. O. Guan, “Spatial sensitivity characterization of dual-polarization fiber grating laser sensors,” J. Lightwave Technol. 33(19), 4151–4155 (2015).
[Crossref]

Guo, L. J.

Gutierrez, R.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

Höllinger, A.

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

Honarvar, F.

F. Honarvar, E. Enjilela, and A. N. Sinclair, “Correlation between helical surface waves and guided modes of an infinite immersed elastic cylinder,” Ultrasonics 51(2), 238–244 (2011).
[Crossref] [PubMed]

Y. Fan, F. Honarvar, A. N. Sinclair, and M. R. Jafari, “Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves,” J. Acoust. Soc. Am. 113(1), 102–113 (2003).
[Crossref] [PubMed]

Hossack, J. A.

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

Hu, S.

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Huang, W.

W. Huang, Y. J. Wang, and S. I. Rokhlin, “Oblique scattering of an elastic wave from a multilayered cylinder in a solid. Transfer matrix approach,” J. Acoust. Soc. Am. 99(5), 2742–2754 (1996).
[Crossref]

Huang, Z.

Jafari, M. R.

Y. Fan, F. Honarvar, A. N. Sinclair, and M. R. Jafari, “Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves,” J. Acoust. Soc. Am. 113(1), 102–113 (2003).
[Crossref] [PubMed]

Jakoby, B.

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

Jin, L.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7, 40849 (2017).
[Crossref] [PubMed]

F. Zhou, L. Jin, Y. Z. Liang, L. H. Cheng, and B. O. Guan, “Spatial sensitivity characterization of dual-polarization fiber grating laser sensors,” J. Lightwave Technol. 33(19), 4151–4155 (2015).
[Crossref]

Johnson, P.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref] [PubMed]

Kellnberger, S.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, M. A. Caballero, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Spatial characterization of the response of a silica optical fiber to wideband ultrasound,” Opt. Lett. 37(15), 3174–3176 (2012).
[Crossref] [PubMed]

Klibanov, A. L.

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

Lamela, H.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

Laufer, J.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref] [PubMed]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Leinders, S. M.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Li, C.

Li, H.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(4), 4496 (2014).
[PubMed]

Li, W.

Liang, Y.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7, 40849 (2017).
[Crossref] [PubMed]

Liang, Y. Z.

Ling, T.

Maslov, K.

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nagy, P. B.

J. L. Rose and P. B. Nagy, “Ultrasonic waves in solid media,” J. Acoust. Soc. Am. 107(4), 1807–1808 (2000).
[Crossref]

Ning, B.

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

Ntziachristos, V.

G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
[Crossref] [PubMed]

I. A. Veres, P. Burgholzer, T. Berer, A. Rosenthal, G. Wissmeyer, and V. Ntziachristos, “Characterization of the spatio-temporal response of optical fiber sensors to incident spherical waves,” J. Acoust. Soc. Am. 135(4), 1853–1862 (2014).
[Crossref] [PubMed]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, M. A. Caballero, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Spatial characterization of the response of a silica optical fiber to wideband ultrasound,” Opt. Lett. 37(15), 3174–3176 (2012).
[Crossref] [PubMed]

O’Brien, P.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Omar, M.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

Oraevsky, A.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

Pedley, B.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref] [PubMed]

Pozo, J.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Razansky, D.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, M. A. Caballero, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Spatial characterization of the response of a silica optical fiber to wideband ultrasound,” Opt. Lett. 37(15), 3174–3176 (2012).
[Crossref] [PubMed]

Rokhlin, S. I.

W. Huang, Y. J. Wang, and S. I. Rokhlin, “Oblique scattering of an elastic wave from a multilayered cylinder in a solid. Transfer matrix approach,” J. Acoust. Soc. Am. 99(5), 2742–2754 (1996).
[Crossref]

Rose, J. L.

J. L. Rose and P. B. Nagy, “Ultrasonic waves in solid media,” J. Acoust. Soc. Am. 107(4), 1807–1808 (2000).
[Crossref]

Rosenthal, A.

G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
[Crossref] [PubMed]

I. A. Veres, P. Burgholzer, T. Berer, A. Rosenthal, G. Wissmeyer, and V. Ntziachristos, “Characterization of the spatio-temporal response of optical fiber sensors to incident spherical waves,” J. Acoust. Soc. Am. 135(4), 1853–1862 (2014).
[Crossref] [PubMed]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, M. A. Caballero, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Spatial characterization of the response of a silica optical fiber to wideband ultrasound,” Opt. Lett. 37(15), 3174–3176 (2012).
[Crossref] [PubMed]

Shnaiderman, R.

Sinclair, A. N.

F. Honarvar, E. Enjilela, and A. N. Sinclair, “Correlation between helical surface waves and guided modes of an infinite immersed elastic cylinder,” Ultrasonics 51(2), 238–244 (2011).
[Crossref] [PubMed]

Y. Fan, F. Honarvar, A. N. Sinclair, and M. R. Jafari, “Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves,” J. Acoust. Soc. Am. 113(1), 102–113 (2003).
[Crossref] [PubMed]

Snyder, B.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Soliman, D.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Sun, C.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(4), 4496 (2014).
[PubMed]

Treeby, B.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref] [PubMed]

Überall, H.

L. Flax, L. R. Dragonette, and H. Überall, “Theory of elastic resonance excitation by sound scattering,” J. Acoust. Soc. Am. 63(3), 723–731 (1978).
[Crossref]

Urbach, H. P.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

van Neer, P. L. M. J.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Varadan, V. K.

L. Flax, V. K. Varadan, and V. V. Varadan, “Scattering of an obliquely incident acoustic wave by an infinite cylinder,” J. Acoust. Soc. Am. 68(6), 1832–1835 (1980).
[Crossref]

Varadan, V. V.

L. Flax, V. K. Varadan, and V. V. Varadan, “Scattering of an obliquely incident acoustic wave by an infinite cylinder,” J. Acoust. Soc. Am. 68(6), 1832–1835 (1980).
[Crossref]

Veres, I. A.

I. A. Veres, P. Burgholzer, T. Berer, A. Rosenthal, G. Wissmeyer, and V. Ntziachristos, “Characterization of the spatio-temporal response of optical fiber sensors to incident spherical waves,” J. Acoust. Soc. Am. 135(4), 1853–1862 (2014).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

Verweij, M. D.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Wang, A.

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

Wang, G.

Wang, L.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7, 40849 (2017).
[Crossref] [PubMed]

Wang, L. V.

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Wang, T.

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

Wang, X. D.

S. L. Chen, L. J. Guo, and X. D. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3(4), 143–150 (2015).
[Crossref]

Wang, Y. J.

W. Huang, Y. J. Wang, and S. I. Rokhlin, “Oblique scattering of an elastic wave from a multilayered cylinder in a solid. Transfer matrix approach,” J. Acoust. Soc. Am. 99(5), 2742–2754 (1996).
[Crossref]

Westerveld, W. J.

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Winkler, A. M.

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref] [PubMed]

Wissmeyer, G.

G. Wissmeyer, D. Soliman, R. Shnaiderman, A. Rosenthal, and V. Ntziachristos, “All-optical optoacoustic microscope based on wideband pulse interferometry,” Opt. Lett. 41(9), 1953–1956 (2016).
[Crossref] [PubMed]

I. A. Veres, P. Burgholzer, T. Berer, A. Rosenthal, G. Wissmeyer, and V. Ntziachristos, “Characterization of the spatio-temporal response of optical fiber sensors to incident spherical waves,” J. Acoust. Soc. Am. 135(4), 1853–1862 (2014).
[Crossref] [PubMed]

Yao, J.

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

Zhang, C.

Zhang, E.

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).
[Crossref]

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref] [PubMed]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Zhang, H. F.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(4), 4496 (2014).
[PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zhang, Z.

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(4), 4496 (2014).
[PubMed]

Zhou, F.

Zhou, Q.

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

Zhu, X.

Zou, D.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. Wang, R. Cao, B. Ning, A. J. Dixon, J. A. Hossack, A. L. Klibanov, Q. Zhou, A. Wang, and S. Hu, “All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound,” Appl. Phys. Lett. 107(15), 153702 (2015).
[Crossref] [PubMed]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Depaula, L. Flax, J. Cole, and J. Bucaro, “Single-mode fiber ultrasonic sensor,” IEEE J. Quantum Electron. 30(4), 680–683 (1982).
[Crossref]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (6)

L. Flax, L. R. Dragonette, and H. Überall, “Theory of elastic resonance excitation by sound scattering,” J. Acoust. Soc. Am. 63(3), 723–731 (1978).
[Crossref]

Y. Fan, F. Honarvar, A. N. Sinclair, and M. R. Jafari, “Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves,” J. Acoust. Soc. Am. 113(1), 102–113 (2003).
[Crossref] [PubMed]

L. Flax, V. K. Varadan, and V. V. Varadan, “Scattering of an obliquely incident acoustic wave by an infinite cylinder,” J. Acoust. Soc. Am. 68(6), 1832–1835 (1980).
[Crossref]

W. Huang, Y. J. Wang, and S. I. Rokhlin, “Oblique scattering of an elastic wave from a multilayered cylinder in a solid. Transfer matrix approach,” J. Acoust. Soc. Am. 99(5), 2742–2754 (1996).
[Crossref]

J. L. Rose and P. B. Nagy, “Ultrasonic waves in solid media,” J. Acoust. Soc. Am. 107(4), 1807–1808 (2000).
[Crossref]

I. A. Veres, P. Burgholzer, T. Berer, A. Rosenthal, G. Wissmeyer, and V. Ntziachristos, “Characterization of the spatio-temporal response of optical fiber sensors to incident spherical waves,” J. Acoust. Soc. Am. 135(4), 1853–1862 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref] [PubMed]

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt. 17(5), 056016 (2012).
[Crossref] [PubMed]

J. Biophotonics (2)

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (1)

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser Photonics Rev. 7(5), 758–778 (2013).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Photoacoustics (2)

S. L. Chen, L. J. Guo, and X. D. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3(4), 143–150 (2015).
[Crossref]

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

Proc. SPIE (1)

T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 9323, 93230Z (2015).
[Crossref]

Sci. Rep. (3)

H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun, “A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy,” Sci. Rep. 4(4), 4496 (2014).
[PubMed]

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B. O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7, 40849 (2017).
[Crossref] [PubMed]

S. M. Leinders, W. J. Westerveld, J. Pozo, P. L. M. J. van Neer, B. Snyder, P. O’Brien, H. P. Urbach, N. de Jong, and M. D. Verweij, “A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane,” Sci. Rep. 5(1), 14328 (2015).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Ultrasonics (1)

F. Honarvar, E. Enjilela, and A. N. Sinclair, “Correlation between helical surface waves and guided modes of an infinite immersed elastic cylinder,” Ultrasonics 51(2), 238–244 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of an ideal line detector and a point source S which emits spherical ultrasound waves. (b) Real part of received acoustic pressure along the detector. (b) Calculated response of the integrated line detector with different distances to S.
Fig. 2
Fig. 2 Experimental setup for ultrasound detection with a fiber laser sensor. PAM imaging uses the same setup for spherical-wave detection by raster scanning the sample. L: Lens; WDM: Wavelength-division multiplexer; PD: Photodetector.
Fig. 3
Fig. 3 (a) Transient response to a pulsed planar wave. (b) Measured and calculated frequency responses. (c) Calculated displacement of excited fiber vibrations at 22 and 39 MHz, i. e, the (2, 1) and (2, 2) modes.
Fig. 4
Fig. 4 (a) Recorded signals in response to spherical ultrasound waves. (b) Measured and calculated frequency responses.
Fig. 5
Fig. 5 Measured acoustic responses along (a) longitudinal, (b) radial and (c) azimuthal.
Fig. 6
Fig. 6 (a) Schematic of scanning acoustic source to measure the spatial distribution of the fiber sensor bandwidth. (b) and (c) Measured frequency responses with scanning source along x and z axis, respectively.
Fig. 7
Fig. 7 Record PA signals by the 5-mm (a) and 2-mm (b) fiber laser detector. PAM results of the same target with the 5-mm (c) and 2-mm (d) fiber laser.
Fig. 8
Fig. 8 Reconstructed images of two human hairs embedded in the chicken breast by using the Ls = 5 mm (a) and Ls = 2 mm (b) sensors. (c) and (d) show the side views of the sample. The white dashed lines represent the tissue surface.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

4π c f x,y n x,y L C =2Mπ
f b = c n 0 λ B
δ f b = c n 0 λ L/2 +L/2 δB(| p |,ω,z) | e(z) | 2 exp(i k a r) r dz
δ f b = c n 0 λ L eq (ω)δB(| p |,ω,0) | e(z) | 2

Metrics