Abstract

In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair

Yongkang Dong, Hongying Zhang, Liang Chen, and Xiaoyi Bao
Appl. Opt. 51(9) 1229-1235 (2012)

Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification

Marcelo A. Soto, Mohammad Taki, Gabriele Bolognini, and Fabrizio Di Pasquale
Opt. Express 20(7) 6860-6869 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Tayama, O. Fukuda, Y. Inoue, Y. Koike, and K. Yamamoto, “6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor,” IEEE Trans. Power Deliv. 10(4), 1718–1723 (1995).
    [Crossref]
  2. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
    [Crossref]
  3. A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
    [Crossref]
  4. A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors, vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.
    [Crossref]
  5. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFA,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
    [Crossref]
  6. L. Zou, X. Bao, Y. Wan, and L. Chen, “Coherent probe-pump-based Brillouin sensor for centimeter-crack detection,” Opt. Lett. 30(4), 370–372 (2005).
    [Crossref] [PubMed]
  7. L. Zou, X. Bao, F. Ravet, and L. Chen, “Distributed Brillouin fiber sensor for detecting pipeline buckling in an energy pipe under internal pressure,” Appl. Opt. 45(14), 3372–3377 (2006).
    [Crossref] [PubMed]
  8. H. Naruse and M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38(31), 6516–6521 (1999).
    [Crossref] [PubMed]
  9. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10 ns) pulses,” Opt. Lett. 24(8), 510–512 (1999).
    [Crossref] [PubMed]
  10. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  11. Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009).
    [Crossref] [PubMed]
  12. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [Crossref] [PubMed]
  13. J. C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011).
    [Crossref] [PubMed]
  14. F. Wang, X. Bao, L. Chen, Y. Li, J. Snoddy, and X. Zhang, “Using pulse with a dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor,” Opt. Lett. 33(22), 2707–2709 (2008).
    [Crossref] [PubMed]
  15. A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
    [Crossref]
  16. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
    [Crossref]
  17. Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Optimized four-section-bright-pulse distributed Brillouin sensor with high spatial resolution,” Proc. SPIE 9157, 91576D (2014).
  18. S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
    [Crossref]
  19. A. Dominiguez-Lopez, “Overcoming high-spatial limitations in optimized BOTDA long-range sensors,” in the 6th Asia Pacific Optical sensors conference, 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper Th3A.6.
  20. A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
    [Crossref] [PubMed]

2016 (3)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref] [PubMed]

2014 (1)

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Optimized four-section-bright-pulse distributed Brillouin sensor with high spatial resolution,” Proc. SPIE 9157, 91576D (2014).

2012 (2)

2011 (1)

2010 (1)

2009 (1)

2008 (2)

2007 (1)

2006 (1)

2005 (2)

L. Zou, X. Bao, Y. Wan, and L. Chen, “Coherent probe-pump-based Brillouin sensor for centimeter-crack detection,” Opt. Lett. 30(4), 370–372 (2005).
[Crossref] [PubMed]

A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
[Crossref]

1999 (2)

1995 (1)

H. Tayama, O. Fukuda, Y. Inoue, Y. Koike, and K. Yamamoto, “6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor,” IEEE Trans. Power Deliv. 10(4), 1718–1723 (1995).
[Crossref]

Angulo-Vinuesa, X.

Bao, X.

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFA,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
[Crossref]

Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009).
[Crossref] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

F. Wang, X. Bao, L. Chen, Y. Li, J. Snoddy, and X. Zhang, “Using pulse with a dark base to achieve high spatial and frequency resolution for the distributed Brillouin sensor,” Opt. Lett. 33(22), 2707–2709 (2008).
[Crossref] [PubMed]

L. Zou, X. Bao, F. Ravet, and L. Chen, “Distributed Brillouin fiber sensor for detecting pipeline buckling in an energy pipe under internal pressure,” Appl. Opt. 45(14), 3372–3377 (2006).
[Crossref] [PubMed]

L. Zou, X. Bao, Y. Wan, and L. Chen, “Coherent probe-pump-based Brillouin sensor for centimeter-crack detection,” Opt. Lett. 30(4), 370–372 (2005).
[Crossref] [PubMed]

X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10 ns) pulses,” Opt. Lett. 24(8), 510–512 (1999).
[Crossref] [PubMed]

Beugnot, J. C.

Brown, A.

Brown, A. W.

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
[Crossref]

A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
[Crossref]

Brown, K.

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
[Crossref]

A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
[Crossref]

Chen, L.

Colpitts, B. G.

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
[Crossref]

A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
[Crossref]

Demerchant, M.

Denisov, A.

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

Dominguez-Lopez, A.

Dong, Y.

Foaleng, S. M.

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Fukuda, O.

H. Tayama, O. Fukuda, Y. Inoue, Y. Koike, and K. Yamamoto, “6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor,” IEEE Trans. Power Deliv. 10(4), 1718–1723 (1995).
[Crossref]

Gonzalez-Herraez, M.

Guo, H.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Optimized four-section-bright-pulse distributed Brillouin sensor with high spatial resolution,” Proc. SPIE 9157, 91576D (2014).

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Hong, X.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Optimized four-section-bright-pulse distributed Brillouin sensor with high spatial resolution,” Proc. SPIE 9157, 91576D (2014).

Inoue, Y.

H. Tayama, O. Fukuda, Y. Inoue, Y. Koike, and K. Yamamoto, “6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor,” IEEE Trans. Power Deliv. 10(4), 1718–1723 (1995).
[Crossref]

Koike, Y.

H. Tayama, O. Fukuda, Y. Inoue, Y. Koike, and K. Yamamoto, “6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor,” IEEE Trans. Power Deliv. 10(4), 1718–1723 (1995).
[Crossref]

Li, W.

Li, Y.

Lin, J.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Optimized four-section-bright-pulse distributed Brillouin sensor with high spatial resolution,” Proc. SPIE 9157, 91576D (2014).

Mafang, S. F.

Martin-Lopez, S.

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Naruse, H.

Ravet, F.

Smith, J.

Snoddy, J.

Song, K. Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Soto, M. A.

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref] [PubMed]

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

Tateda, M.

Tayama, H.

H. Tayama, O. Fukuda, Y. Inoue, Y. Koike, and K. Yamamoto, “6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor,” IEEE Trans. Power Deliv. 10(4), 1718–1723 (1995).
[Crossref]

Thevenaz, L.

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref] [PubMed]

Thévenaz, L.

Tur, M.

Wan, Y.

Wang, F.

Wu, J.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Optimized four-section-bright-pulse distributed Brillouin sensor with high spatial resolution,” Proc. SPIE 9157, 91576D (2014).

Yamamoto, K.

H. Tayama, O. Fukuda, Y. Inoue, Y. Koike, and K. Yamamoto, “6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor,” IEEE Trans. Power Deliv. 10(4), 1718–1723 (1995).
[Crossref]

Yang, Z.

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref] [PubMed]

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Optimized four-section-bright-pulse distributed Brillouin sensor with high spatial resolution,” Proc. SPIE 9157, 91576D (2014).

Zhang, H.

Zhang, X.

Zou, L.

Appl. Opt. (4)

IEEE Photonics Technol. Lett. (1)

A. W. Brown, B. G. Colpitts, and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering,” IEEE Photonics Technol. Lett. 17(7), 1501–1503 (2005).
[Crossref]

IEEE Trans. Power Deliv. (1)

H. Tayama, O. Fukuda, Y. Inoue, Y. Koike, and K. Yamamoto, “6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor,” IEEE Trans. Power Deliv. 10(4), 1718–1723 (1995).
[Crossref]

J. Lightwave Technol. (3)

Light Sci. Appl. (2)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Optimized four-section-bright-pulse distributed Brillouin sensor with high spatial resolution,” Proc. SPIE 9157, 91576D (2014).

Other (2)

A. Dominiguez-Lopez, “Overcoming high-spatial limitations in optimized BOTDA long-range sensors,” in the 6th Asia Pacific Optical sensors conference, 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper Th3A.6.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors, vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic principle of BOTDA sensor’s spatial resolution.
Fig. 2
Fig. 2 SBS process in optical fiber.
Fig. 3
Fig. 3 Measured 3D spectra using, (a) 5 ns standard BOTDA; (b) 5 ns DPP-BOTDA.
Fig. 4
Fig. 4 BGSs plotted in 5 cm section using, (a) 5 ns standard BOTDA; (b) 5 ns DPP-BOTDA.
Fig. 5
Fig. 5 Measurement error as function of frequency difference.
Fig. 6
Fig. 6 Experimental setup; EOM: Electro-Optical Modulator; EDFA: Erbium Doped Fiber Amplifier; RF: Radio-frequency generator; VOA: Variable Optical Attenuator; PS: Polarization Scrambler; C: circulator; FUT: Fiber under Test.
Fig. 7
Fig. 7 Fiber arrangement at the far end.
Fig. 8
Fig. 8 3D gain spectra; (a) over the whole sensing fiber length; (b) Top view on the far end; and (c) measured Brillouin frequency shift as function of position.
Fig. 9
Fig. 9 Fiber arrangement at the far end.
Fig. 10
Fig. 10 BGS measured at room temperature: (a) top view on last part of 3D spectrum; (b) BGSs measured in 20, 10, and 5 cm inserted fiber segment respectively; (c) measured BGSs in 5 cm section at, (black-dot) room temperature, (red-dot) high temperature.
Fig. 11
Fig. 11 BFS and corresponding temperature as function of position; (black triangle dot) 5 cm section at room temperature; (red circle dot), 5 cm section at high temperature, (blue line) temperature distribution over the end of the fiber.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( z + n c t ) E p = i g 0 E s ρ ,
( z n c t ) E s = i g 0 E p ρ * ,
ρ t + Γ ρ = i g a E p E s * .
A a ( z , t ) = g a 0 t A L A S exp [ Γ ( t τ ) ] d τ .
( z + n c t ) E L = g Γ 2 σ E S 0 t E L E S * exp [ Γ ( t τ ) ] d τ ,
( z n c t ) E S = g Γ 2 σ E L 0 t E L * E S exp [ Γ ( t τ ) ] d τ .

Metrics