Abstract

Single cavity Fabry-Perot filters are one of the most popular designs for the production of narrow bandpass filters. The usual deposition strategy to create such filters based on optical monitoring at the filter central wavelength is well-known and has proven its strength over decades. We review in this paper the possible optical methods to monitor such a filter during production and analyze their strengths and weaknesses. Then, we discuss a new monitoring procedure, mixing different methods, to minimize the production errors of this filter while maintaining a precise filter centering. This strategy is applied on different bandpass filter designs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Semi-automated method for the determination of the all-optical monitoring strategy of complex thin-film filters

M. Vignaux, F. Lemarchand, T. Begou, C. Grezes-Besset, and J. Lumeau
Opt. Express 27(9) 12373-12390 (2019)

Z-domain techniques in the analysis of Fabry–Perot étalons and multilayer structures

Duncan L. MacFarlane and Eric M. Dowling
J. Opt. Soc. Am. A 11(1) 236-245 (1994)

Fabrication of short-wavelength infrared dual-band-pass filter based on combination of Fabry–Perot filters

Yuan Cai, Sheng Zhou, Xiaofeng Ma, and Dingquan Liu
Appl. Opt. 55(33) 9412-9416 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Flory, Thin Films for Optical Systems (CRC, 1995).
  2. H. Angus Macleod, Thin-Film Optical Filters, 4th ed. (CRC, 2010).
  3. J. Zhang, A. V. Tikhonravov, M. K. Trubetskov, Y. Liu, X. Cheng, and Z. Wang, “Design and fabrication of ultra-steep notch filters,” Opt. Express 21(18), 21523–21529 (2013).
    [Crossref] [PubMed]
  4. T. Begou, F. Lemarchand, and J. Lumeau, “Advanced optical interference filters based on metal and dielectric layers,” Opt. Express 24(18), 20925–20937 (2016).
    [Crossref] [PubMed]
  5. A. Thelen, Design of Optical Interference Coatings (Mcgraw-Hill Optical and Electro-Optical Engineering Series, 02/1989).
  6. P. Baumeister, “Bandpass filters for wavelength division multiplexing-modification of the spectral bandwidth,” Appl. Opt. 37(28), 6609–6614 (1998).
    [Crossref] [PubMed]
  7. F. Lemarquis, L. Abel-Tiberini, C. Koc, and M. Lequime, “400-1000 nm all-dielectric linear variable filters for ultra-compact spectrometers,” Proc. International Conference on Space Optics (2010).
  8. S. Nazarpour, Thin Films and Coatings in Biology (Springer Science & Business Media, 2013).
  9. C. Hodgson and C. Rathmell, “Creating Your Own Bandpass Filter” https://www.semrock.com/Data/Sites/1/semrockpdfs/smk-versachrome-wp.pdf .
  10. M. Scherer, J. Pistner, and W. Lehnert, “UV- and VIS filter coatings by plasma assisted reactive magnetron sputtering (PARMS),” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper MA7.
  11. M. Lequime, R. Parmentier, F. Lemarchand, and C. Amra, “Toward tunable thin-film filters for wavelength division multiplexing applications,” Appl. Opt. 41(16), 3277–3284 (2002).
    [Crossref] [PubMed]
  12. H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
    [Crossref]
  13. R Herrmann and A Zoller, “Automated optical coating processes with optical thickness monitoring,” Proc. SPIE 0652, 9338350 (1986).
  14. R. R. Willey, “Simulation comparisons of monitoring strategies in narrow bandpass filters and antireflection coatings,” Appl. Opt. 53(4), A27–A34 (2014).
    [Crossref] [PubMed]
  15. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31(19), 3821–3835 (1992).
    [Crossref] [PubMed]
  16. M. Lequime, S. L. Nadji, D. Stojcevski, C. Koc, C. Grézes-Besset, and J. Lumeau, “Determination of the optical constants of a dielectric layer by processing in situ spectral transmittance measurements along the time dimension,” Appl. Opt. 56(4), C181–C187 (2017).
    [Crossref] [PubMed]
  17. H. Krol, C. Grèzes-Besset, D. Torricini, and D. Stojcevski, “High performances optical coatings with dual ion beam sputtering technique,” Proc. SPIE 9627, 96270L (2015).
    [Crossref]
  18. A. V. Tikhonravov and M. K. Trubetskov, “Automated design and sensitivity analysis of wavelengh-division multiplexing filters,” Appl. Opt. 41(16), 3176–3182 (2002).
    [Crossref] [PubMed]
  19. M. Trubetskov, T. Amotchkina, and A. Tikhonravov, “Automated construction of monochromatic monitoring strategies,” Appl. Opt. 54(8), 1900–1909 (2015).
    [Crossref] [PubMed]
  20. R. R. Willey, “Monitoring error compensation in general optical coatings,” Appl. Opt. 48(22), 4475–4482 (2009).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

2015 (2)

M. Trubetskov, T. Amotchkina, and A. Tikhonravov, “Automated construction of monochromatic monitoring strategies,” Appl. Opt. 54(8), 1900–1909 (2015).
[Crossref] [PubMed]

H. Krol, C. Grèzes-Besset, D. Torricini, and D. Stojcevski, “High performances optical coatings with dual ion beam sputtering technique,” Proc. SPIE 9627, 96270L (2015).
[Crossref]

2014 (1)

2013 (1)

2009 (1)

2002 (2)

1998 (1)

1992 (1)

1986 (1)

R Herrmann and A Zoller, “Automated optical coating processes with optical thickness monitoring,” Proc. SPIE 0652, 9338350 (1986).

1972 (1)

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
[Crossref]

Abel-Tiberini, L.

F. Lemarquis, L. Abel-Tiberini, C. Koc, and M. Lequime, “400-1000 nm all-dielectric linear variable filters for ultra-compact spectrometers,” Proc. International Conference on Space Optics (2010).

Amotchkina, T.

Amra, C.

Baumeister, P.

Begou, T.

Cheng, X.

Dobrowolski, J. A.

Grézes-Besset, C.

Grèzes-Besset, C.

H. Krol, C. Grèzes-Besset, D. Torricini, and D. Stojcevski, “High performances optical coatings with dual ion beam sputtering technique,” Proc. SPIE 9627, 96270L (2015).
[Crossref]

Herrmann, R

R Herrmann and A Zoller, “Automated optical coating processes with optical thickness monitoring,” Proc. SPIE 0652, 9338350 (1986).

Koc, C.

M. Lequime, S. L. Nadji, D. Stojcevski, C. Koc, C. Grézes-Besset, and J. Lumeau, “Determination of the optical constants of a dielectric layer by processing in situ spectral transmittance measurements along the time dimension,” Appl. Opt. 56(4), C181–C187 (2017).
[Crossref] [PubMed]

F. Lemarquis, L. Abel-Tiberini, C. Koc, and M. Lequime, “400-1000 nm all-dielectric linear variable filters for ultra-compact spectrometers,” Proc. International Conference on Space Optics (2010).

Krol, H.

H. Krol, C. Grèzes-Besset, D. Torricini, and D. Stojcevski, “High performances optical coatings with dual ion beam sputtering technique,” Proc. SPIE 9627, 96270L (2015).
[Crossref]

Lemarchand, F.

Lemarquis, F.

F. Lemarquis, L. Abel-Tiberini, C. Koc, and M. Lequime, “400-1000 nm all-dielectric linear variable filters for ultra-compact spectrometers,” Proc. International Conference on Space Optics (2010).

Lequime, M.

Liu, Y.

Lumeau, J.

Macleod, H. A.

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
[Crossref]

Nadji, S. L.

Parmentier, R.

Stojcevski, D.

Sullivan, B. T.

Tikhonravov, A.

Tikhonravov, A. V.

Torricini, D.

H. Krol, C. Grèzes-Besset, D. Torricini, and D. Stojcevski, “High performances optical coatings with dual ion beam sputtering technique,” Proc. SPIE 9627, 96270L (2015).
[Crossref]

Trubetskov, M.

Trubetskov, M. K.

Wang, Z.

Willey, R. R.

Zhang, J.

Zoller, A

R Herrmann and A Zoller, “Automated optical coating processes with optical thickness monitoring,” Proc. SPIE 0652, 9338350 (1986).

Appl. Opt. (8)

P. Baumeister, “Bandpass filters for wavelength division multiplexing-modification of the spectral bandwidth,” Appl. Opt. 37(28), 6609–6614 (1998).
[Crossref] [PubMed]

R. R. Willey, “Simulation comparisons of monitoring strategies in narrow bandpass filters and antireflection coatings,” Appl. Opt. 53(4), A27–A34 (2014).
[Crossref] [PubMed]

B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31(19), 3821–3835 (1992).
[Crossref] [PubMed]

M. Lequime, S. L. Nadji, D. Stojcevski, C. Koc, C. Grézes-Besset, and J. Lumeau, “Determination of the optical constants of a dielectric layer by processing in situ spectral transmittance measurements along the time dimension,” Appl. Opt. 56(4), C181–C187 (2017).
[Crossref] [PubMed]

M. Lequime, R. Parmentier, F. Lemarchand, and C. Amra, “Toward tunable thin-film filters for wavelength division multiplexing applications,” Appl. Opt. 41(16), 3277–3284 (2002).
[Crossref] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Automated design and sensitivity analysis of wavelengh-division multiplexing filters,” Appl. Opt. 41(16), 3176–3182 (2002).
[Crossref] [PubMed]

M. Trubetskov, T. Amotchkina, and A. Tikhonravov, “Automated construction of monochromatic monitoring strategies,” Appl. Opt. 54(8), 1900–1909 (2015).
[Crossref] [PubMed]

R. R. Willey, “Monitoring error compensation in general optical coatings,” Appl. Opt. 48(22), 4475–4482 (2009).
[Crossref] [PubMed]

Opt. Acta (Lond.) (1)

H. A. Macleod, “Turning value monitoring of narrow-band all-dielectric thin-film optical filters,” Opt. Acta (Lond.) 19(1), 1–28 (1972).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

R Herrmann and A Zoller, “Automated optical coating processes with optical thickness monitoring,” Proc. SPIE 0652, 9338350 (1986).

H. Krol, C. Grèzes-Besset, D. Torricini, and D. Stojcevski, “High performances optical coatings with dual ion beam sputtering technique,” Proc. SPIE 9627, 96270L (2015).
[Crossref]

Other (7)

A. Thelen, Design of Optical Interference Coatings (Mcgraw-Hill Optical and Electro-Optical Engineering Series, 02/1989).

F. Flory, Thin Films for Optical Systems (CRC, 1995).

H. Angus Macleod, Thin-Film Optical Filters, 4th ed. (CRC, 2010).

F. Lemarquis, L. Abel-Tiberini, C. Koc, and M. Lequime, “400-1000 nm all-dielectric linear variable filters for ultra-compact spectrometers,” Proc. International Conference on Space Optics (2010).

S. Nazarpour, Thin Films and Coatings in Biology (Springer Science & Business Media, 2013).

C. Hodgson and C. Rathmell, “Creating Your Own Bandpass Filter” https://www.semrock.com/Data/Sites/1/semrockpdfs/smk-versachrome-wp.pdf .

M. Scherer, J. Pistner, and W. Lehnert, “UV- and VIS filter coatings by plasma assisted reactive magnetron sputtering (PARMS),” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper MA7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Typical parameters characterizing the spectral response of a single cavity Fabry-Perot filter. λ0 is the central wavelength, FWHMλ is the spectral bandwidth, λmin1 and λmin2 the two wavelengths where the transmittance are minimal, λa and λb the two wavelengths corresponding to the end of the rejection band (transmittance = 0.1).
Fig. 2
Fig. 2 φRMSD calculated at the end of each layer using TPM strategy and 100 predictions. Grey rectangles correspond to Quartz monitoring and orange ones to TPM.
Fig. 3
Fig. 3 φRMSD calculated at the end of layer 1 to 14 using POEM strategy in the 480-510nm range and based on 100 predictions.
Fig. 4
Fig. 4 Left: simulation of the final spectral performances in the 450-800 nm range of a filter monitored with a) TPM, b) POEM and c) Hybrid monitoring (30 predictions). Right: zoom within the bandpass region around 600 nm.
Fig. 5
Fig. 5 Evolution of φRMSD at 600 nm following the described hybrid strategy applied to the two cavity filter. Grey rectangles correspond to Quartz monitoring, orange one to TPM and blue one to POEM.
Fig. 6
Fig. 6 Simulation of the final spectral performances in the 590-610 nm range of a filter fabricated with a) TPM and b) Hybrid monitoring (30 predictions).
Fig. 7
Fig. 7 Simulation of the final spectral performances in the 590-610 nm range of a filter fabricated with a) POEM and b) Hybrid monitoring (30 predictions).

Tables (6)

Tables Icon

Table 1 Nominal values of the 9 parameters described in Fig. 1

Tables Icon

Table 2 Mean value (upper data), mean value difference (data into brackets) and standard deviation of the 9 parameters listed in Table 1 using a TPM strategy. A wavelength parameter is validated if more than 95% of the predictions are inside a predefined interval.

Tables Icon

Table 3 Mean value (upper data), mean value difference (data into brackets) and standard deviation of the 9 parameters listed in Table 1 using a POEM strategy. A wavelength parameter is validated if more than 95% of the predictions are inside a predefined interval.

Tables Icon

Table 4 Mean value (upper data), mean value difference (data into brackets) and standard deviation of the 9 parameters listed in Table1 using a hybrid strategy. All the wavelength parameters are validated with more than 95% of the predictions inside the predefined interval.

Tables Icon

Table 5 Comparison of parameters value using TPM and Hybrid strategy. The statistical data are obtained using 100 predictions.

Tables Icon

Table 6 Comparison of parameters value using POEM and Hybrid strategy.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Glass| ( HL ) q  2pH ( LH ) q |Air or Glass| ( HL ) q H 2pL ( HL ) q H | Air.
FWH M λ =2 λ 0 n s pπ n H ( n L n H ) 2q+1 .
Glass| ( HL ) 5 2H ( LH ) 5 |Air.
φ RMSD = i=1 Npr ( φ( i ) φ th ) 2 Npr .
Glass| ( HL ) 5 2H ( LH ) 5 L ( HL ) 5 2H ( LH ) 5 |Air.
Glass | ( 0.5H 1.5L ) 3 3.632H ( 1.5L 0.5H ) 3 1.345L ( 0.5H 1.5L ) 3 3.632H ( 1.5H 0.5H ) 3 1.345L ( 0.5H 1.5L ) 3 3.632H ( 1.5L 0.5H ) 2 1.19989L 0.96265H 0.90522L |air.

Metrics