Abstract

We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL−1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber

Zhi-Li Li, Wen-Yuan Zhou, Ming-Ming Luo, Yan-Ge Liu, and Jian-Guo Tian
Opt. Express 23(8) 10413-10420 (2015)

Label-free detection of bovine serum albumin based on an in-fiber Mach-Zehnder interferometric biosensor

Zhengyong Li, Changrui Liao, Danni Chen, Jun Song, Wei Jin, Gang-Ding Peng, Feng Zhu, Ying Wang, Jun He, and Yiping Wang
Opt. Express 25(15) 17105-17113 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
    [Crossref] [PubMed]
  2. P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
    [Crossref] [PubMed]
  3. W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
    [Crossref] [PubMed]
  4. G. Rajan and G. D. Peng, “Polymer micro and microstructured fibre bragg gratings: Recent advancements and applications,” in optofliudics, Sensors and actuators in microstructured optical fibers, S. Pissadakis & S. Selleri, Ed. United States: Elsevier Science, 2015, pp.207–227.
  5. I. Rodríguez-Ruiz, A. Llobera, J. Vila-Planas, D. W. Johnson, J. Gómez-Morales, and J. M. García-Ruiz, “Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies,” Anal. Chem. 85(20), 9678–9685 (2013).
    [Crossref] [PubMed]
  6. H. C. Fan, J. Wang, A. Potanina, and S. R. Quake, “Whole-genome molecular haplotyping of single cells,” Nat. Biotechnol. 29(1), 51–57 (2011).
    [Crossref] [PubMed]
  7. K. Scholten, W. R. Collin, X. Fan, and E. T. Zellers, “Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis,” Nanoscale 7(20), 9282–9289 (2015).
    [Crossref] [PubMed]
  8. J. Cama, M. Schaich, K. Al Nahas, S. Hernández-Ainsa, S. Pagliara, and U. F. Keyser, “Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones,” Sci. Rep. 6(1), 32824 (2016).
    [Crossref] [PubMed]
  9. R. Zeltner, S. Xie, R. Pennetta, and P. S. J. Russell, “Broadband, Lensless and Optomechanically Stabilised Coupling into Microfluidic Hollow-Core Photonic Crystal Fiber Using Glass Nanospike,” ACS Photonics 4(2), 378–383 (2017).
    [Crossref]
  10. J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
    [Crossref] [PubMed]
  11. Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38(3), 269–271 (2013).
    [Crossref] [PubMed]
  12. Y. Wang, X. Tan, W. Jin, D. Ying, Y. L. Hoo, and S. Liu, “Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications,” Opt. Lett. 35(1), 88–90 (2010).
    [Crossref] [PubMed]
  13. D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
    [Crossref]
  14. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
    [Crossref]
  15. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
    [Crossref]
  16. W. Jin, H. Xuan, and H. Ho, “Sensing with hollow-core photonic bandgap fibers,” Meas. Sci. Technol. 21(9), 094014 (2010).
    [Crossref]
  17. S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
    [Crossref] [PubMed]
  18. S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
    [Crossref]
  19. X. Yu, Y. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt (II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
    [Crossref]
  20. X. H. Yang and L. L. Wang, “Fluorescence pH probe based on microstructured polymer optical fiber,” Opt. Express 15(25), 16478–16483 (2007).
    [Crossref] [PubMed]
  21. Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18(25), 26018–26026 (2010).
    [Crossref] [PubMed]
  22. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
    [Crossref] [PubMed]
  23. X. Wang, Y. Li, and X. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter,” Opt. Lett. 35(20), 3354–3356 (2010).
    [Crossref] [PubMed]
  24. X. Zhang and W. Peng, “Bent-fiber intermodal interference based dualchannel fiber optic refractometer,” Opt. Express 23(6), 7602–7610 (2015).
    [Crossref] [PubMed]
  25. Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
    [Crossref] [PubMed]
  26. J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
    [Crossref] [PubMed]
  27. M. Zibaii, H. Latifi, M. Karami, M. Gholami, S. Hosseini, and M. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
    [Crossref]
  28. K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1-3), 40–61 (2000).
    [Crossref]
  29. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  30. Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
    [Crossref] [PubMed]
  31. X. Yang, Y. Zheng, S. Luo, Y. Liu, and L. Yuan, “Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide,” Sens. Actuators B Chem. 182, 571–575 (2013).
    [Crossref]
  32. X. Yang, Y. Liu, F. Tian, L. Yuan, Z. Liu, S. Luo, and E. Zhao, “Optical fiber modulator derivates from hollow optical fiber with suspended core,” Opt. Lett. 37(11), 2115–2117 (2012).
    [Crossref] [PubMed]
  33. F. Peng, J. Yang, X. Li, Y. Yuan, B. Wu, A. Zhou, and L. Yuan, “In-fiber integrated accelerometer,” Opt. Lett. 36(11), 2056–2058 (2011).
    [Crossref] [PubMed]
  34. P. Di Bin and N. Mothe, “Numerical analysis of directional coupling in dual-core microstructured optical fibers,” Opt. Express 17(18), 15778–15789 (2009).
    [Crossref] [PubMed]
  35. J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009).
    [Crossref] [PubMed]
  36. A. Zhou, G. Li, Y. Zhang, Y. Wang, C. Guan, J. Yang, and L. Yuan, “Asymmetrical Twin-Core Fiber Based Michelson Interferometer for Refractive Index Sensing,” J. Lightwave Technol. 29(19), 2985–2991 (2011).
    [Crossref]

2017 (2)

R. Zeltner, S. Xie, R. Pennetta, and P. S. J. Russell, “Broadband, Lensless and Optomechanically Stabilised Coupling into Microfluidic Hollow-Core Photonic Crystal Fiber Using Glass Nanospike,” ACS Photonics 4(2), 378–383 (2017).
[Crossref]

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

2016 (2)

J. Cama, M. Schaich, K. Al Nahas, S. Hernández-Ainsa, S. Pagliara, and U. F. Keyser, “Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones,” Sci. Rep. 6(1), 32824 (2016).
[Crossref] [PubMed]

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (4)

Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[Crossref] [PubMed]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

2013 (5)

Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38(3), 269–271 (2013).
[Crossref] [PubMed]

I. Rodríguez-Ruiz, A. Llobera, J. Vila-Planas, D. W. Johnson, J. Gómez-Morales, and J. M. García-Ruiz, “Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies,” Anal. Chem. 85(20), 9678–9685 (2013).
[Crossref] [PubMed]

X. Yang, Y. Zheng, S. Luo, Y. Liu, and L. Yuan, “Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide,” Sens. Actuators B Chem. 182, 571–575 (2013).
[Crossref]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

2012 (2)

X. Yang, Y. Liu, F. Tian, L. Yuan, Z. Liu, S. Luo, and E. Zhao, “Optical fiber modulator derivates from hollow optical fiber with suspended core,” Opt. Lett. 37(11), 2115–2117 (2012).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (5)

2009 (3)

2007 (1)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

2001 (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

2000 (1)

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1-3), 40–61 (2000).
[Crossref]

1999 (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Abouraddy, A. F.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Afshar, S.

Al Nahas, K.

J. Cama, M. Schaich, K. Al Nahas, S. Hernández-Ainsa, S. Pagliara, and U. F. Keyser, “Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones,” Sci. Rep. 6(1), 32824 (2016).
[Crossref] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Banaei, E. H.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Bao, X.

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Cama, J.

J. Cama, M. Schaich, K. Al Nahas, S. Hernández-Ainsa, S. Pagliara, and U. F. Keyser, “Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones,” Sci. Rep. 6(1), 32824 (2016).
[Crossref] [PubMed]

Chen, Q.

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

Collin, W. R.

K. Scholten, W. R. Collin, X. Fan, and E. T. Zellers, “Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis,” Nanoscale 7(20), 9282–9289 (2015).
[Crossref] [PubMed]

Cubillas, A. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Deng, D. S.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Di Bin, P.

Dong, X.

Dong, Y.

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

Ebendorff-Heidepriem, H.

Etzold, B. J. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Euser, T. G.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Fan, H. C.

H. C. Fan, J. Wang, A. Potanina, and S. R. Quake, “Whole-genome molecular haplotyping of single cells,” Nat. Biotechnol. 29(1), 51–57 (2011).
[Crossref] [PubMed]

Fan, X.

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

K. Scholten, W. R. Collin, X. Fan, and E. T. Zellers, “Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis,” Nanoscale 7(20), 9282–9289 (2015).
[Crossref] [PubMed]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Fink, Y.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Frosch, T.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

Gao, W.

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

García-Ruiz, J. M.

I. Rodríguez-Ruiz, A. Llobera, J. Vila-Planas, D. W. Johnson, J. Gómez-Morales, and J. M. García-Ruiz, “Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies,” Anal. Chem. 85(20), 9678–9685 (2013).
[Crossref] [PubMed]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Ghezelayagh, M.

M. Zibaii, H. Latifi, M. Karami, M. Gholami, S. Hosseini, and M. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Gholami, M.

M. Zibaii, H. Latifi, M. Karami, M. Gholami, S. Hosseini, and M. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Gómez-Morales, J.

I. Rodríguez-Ruiz, A. Llobera, J. Vila-Planas, D. W. Johnson, J. Gómez-Morales, and J. M. García-Ruiz, “Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies,” Anal. Chem. 85(20), 9678–9685 (2013).
[Crossref] [PubMed]

Grattan, K. T. V.

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1-3), 40–61 (2000).
[Crossref]

Guan, C.

Guo, J.

Ha, W.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Hernández-Ainsa, S.

J. Cama, M. Schaich, K. Al Nahas, S. Hernández-Ainsa, S. Pagliara, and U. F. Keyser, “Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones,” Sci. Rep. 6(1), 32824 (2016).
[Crossref] [PubMed]

Ho, H.

W. Jin, H. Xuan, and H. Ho, “Sensing with hollow-core photonic bandgap fibers,” Meas. Sci. Technol. 21(9), 094014 (2010).
[Crossref]

Hoo, Y. L.

Hosseini, S.

M. Zibaii, H. Latifi, M. Karami, M. Gholami, S. Hosseini, and M. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Hou, M.

Hu, T.

Jeong, Y. S.

Jin, W.

Johnson, D. W.

I. Rodríguez-Ruiz, A. Llobera, J. Vila-Planas, D. W. Johnson, J. Gómez-Morales, and J. M. García-Ruiz, “Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies,” Anal. Chem. 85(20), 9678–9685 (2013).
[Crossref] [PubMed]

Johnson, S. G.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Jung, Y.

Karami, M.

M. Zibaii, H. Latifi, M. Karami, M. Gholami, S. Hosseini, and M. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Kaufman, J. J.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Keyser, U. F.

J. Cama, M. Schaich, K. Al Nahas, S. Hernández-Ainsa, S. Pagliara, and U. F. Keyser, “Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones,” Sci. Rep. 6(1), 32824 (2016).
[Crossref] [PubMed]

Khairudin, N. A.

X. Yu, Y. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt (II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

Kim, J.

Kim, J. K.

Kopp, D.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

Kwok, Y.

X. Yu, Y. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt (II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

Latifi, H.

M. Zibaii, H. Latifi, M. Karami, M. Gholami, S. Hosseini, and M. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Lee, S.

Lee, W.

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

Li, G.

Li, H.

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

Li, X.

Li, Y.

Li, Z.

Liang, X.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Liao, C.

Liao, C. R.

Liu, S.

Liu, Y.

X. Yang, Y. Zheng, S. Luo, Y. Liu, and L. Yuan, “Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide,” Sens. Actuators B Chem. 182, 571–575 (2013).
[Crossref]

X. Yang, Y. Liu, F. Tian, L. Yuan, Z. Liu, S. Luo, and E. Zhao, “Optical fiber modulator derivates from hollow optical fiber with suspended core,” Opt. Lett. 37(11), 2115–2117 (2012).
[Crossref] [PubMed]

Liu, Z.

Llobera, A.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

I. Rodríguez-Ruiz, A. Llobera, J. Vila-Planas, D. W. Johnson, J. Gómez-Morales, and J. M. García-Ruiz, “Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies,” Anal. Chem. 85(20), 9678–9685 (2013).
[Crossref] [PubMed]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Lu, P.

Luo, S.

X. Yang, Y. Zheng, S. Luo, Y. Liu, and L. Yuan, “Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide,” Sens. Actuators B Chem. 182, 571–575 (2013).
[Crossref]

X. Yang, Y. Liu, F. Tian, L. Yuan, Z. Liu, S. Luo, and E. Zhao, “Optical fiber modulator derivates from hollow optical fiber with suspended core,” Opt. Lett. 37(11), 2115–2117 (2012).
[Crossref] [PubMed]

Ma, J.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Monro, T. M.

Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18(25), 26018–26026 (2010).
[Crossref] [PubMed]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Mothe, N.

Müller, P.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

Oh, K.

Pagliara, S.

J. Cama, M. Schaich, K. Al Nahas, S. Hernández-Ainsa, S. Pagliara, and U. F. Keyser, “Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones,” Sci. Rep. 6(1), 32824 (2016).
[Crossref] [PubMed]

Peng, F.

Peng, W.

Pennetta, R.

R. Zeltner, S. Xie, R. Pennetta, and P. S. J. Russell, “Broadband, Lensless and Optomechanically Stabilised Coupling into Microfluidic Hollow-Core Photonic Crystal Fiber Using Glass Nanospike,” ACS Photonics 4(2), 378–383 (2017).
[Crossref]

Pletz, M. W.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

Popp, J.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

Potanina, A.

H. C. Fan, J. Wang, A. Potanina, and S. R. Quake, “Whole-genome molecular haplotyping of single cells,” Nat. Biotechnol. 29(1), 51–57 (2011).
[Crossref] [PubMed]

Quake, S. R.

H. C. Fan, J. Wang, A. Potanina, and S. R. Quake, “Whole-genome molecular haplotyping of single cells,” Nat. Biotechnol. 29(1), 51–57 (2011).
[Crossref] [PubMed]

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Rodríguez-Ruiz, I.

I. Rodríguez-Ruiz, A. Llobera, J. Vila-Planas, D. W. Johnson, J. Gómez-Morales, and J. M. García-Ruiz, “Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies,” Anal. Chem. 85(20), 9678–9685 (2013).
[Crossref] [PubMed]

Ruan, Y.

Russell, P. S. J.

R. Zeltner, S. Xie, R. Pennetta, and P. S. J. Russell, “Broadband, Lensless and Optomechanically Stabilised Coupling into Microfluidic Hollow-Core Photonic Crystal Fiber Using Glass Nanospike,” ACS Photonics 4(2), 378–383 (2017).
[Crossref]

Russell, P. St. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Schaich, M.

J. Cama, M. Schaich, K. Al Nahas, S. Hernández-Ainsa, S. Pagliara, and U. F. Keyser, “Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones,” Sci. Rep. 6(1), 32824 (2016).
[Crossref] [PubMed]

Scholten, K.

K. Scholten, W. R. Collin, X. Fan, and E. T. Zellers, “Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis,” Nanoscale 7(20), 9282–9289 (2015).
[Crossref] [PubMed]

Shabahang, S.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Shum, P.

X. Yu, Y. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt (II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

Sun, T.

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1-3), 40–61 (2000).
[Crossref]

Tan, X.

Tao, G.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Tian, F.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Tünnermann, A.

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Vila-Planas, J.

I. Rodríguez-Ruiz, A. Llobera, J. Vila-Planas, D. W. Johnson, J. Gómez-Morales, and J. M. García-Ruiz, “Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies,” Anal. Chem. 85(20), 9678–9685 (2013).
[Crossref] [PubMed]

Wang, D.

Wang, D. N.

Wang, J.

H. C. Fan, J. Wang, A. Potanina, and S. R. Quake, “Whole-genome molecular haplotyping of single cells,” Nat. Biotechnol. 29(1), 51–57 (2011).
[Crossref] [PubMed]

Wang, L. L.

Wang, Q.

Wang, X.

Wang, Y.

Wasserscheid, P.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Wei, H.

Wu, B.

Xie, S.

R. Zeltner, S. Xie, R. Pennetta, and P. S. J. Russell, “Broadband, Lensless and Optomechanically Stabilised Coupling into Microfluidic Hollow-Core Photonic Crystal Fiber Using Glass Nanospike,” ACS Photonics 4(2), 378–383 (2017).
[Crossref]

Xu, L.

Xuan, H.

W. Jin, H. Xuan, and H. Ho, “Sensing with hollow-core photonic bandgap fibers,” Meas. Sci. Technol. 21(9), 094014 (2010).
[Crossref]

Yan, D.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

Yang, J.

Yang, K.

Yang, X.

X. Yang, Y. Zheng, S. Luo, Y. Liu, and L. Yuan, “Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide,” Sens. Actuators B Chem. 182, 571–575 (2013).
[Crossref]

X. Yang, Y. Liu, F. Tian, L. Yuan, Z. Liu, S. Luo, and E. Zhao, “Optical fiber modulator derivates from hollow optical fiber with suspended core,” Opt. Lett. 37(11), 2115–2117 (2012).
[Crossref] [PubMed]

Yang, X. H.

Ying, D.

Yoon, D. K.

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

Yu, X.

X. Yu, Y. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt (II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

Yu, Y.

Yuan, L.

Yuan, Y.

Yun, S. H.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Zappe, H.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

Zellers, E. T.

K. Scholten, W. R. Collin, X. Fan, and E. T. Zellers, “Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis,” Nanoscale 7(20), 9282–9289 (2015).
[Crossref] [PubMed]

Zeltner, R.

R. Zeltner, S. Xie, R. Pennetta, and P. S. J. Russell, “Broadband, Lensless and Optomechanically Stabilised Coupling into Microfluidic Hollow-Core Photonic Crystal Fiber Using Glass Nanospike,” ACS Photonics 4(2), 378–383 (2017).
[Crossref]

Zhang, H.

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

Zhang, X.

Zhang, Y.

Zhao, E.

Zheng, Y.

X. Yang, Y. Zheng, S. Luo, Y. Liu, and L. Yuan, “Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide,” Sens. Actuators B Chem. 182, 571–575 (2013).
[Crossref]

Zhou, A.

Zhou, J.

Zibaii, M.

M. Zibaii, H. Latifi, M. Karami, M. Gholami, S. Hosseini, and M. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

ACS Photonics (2)

R. Zeltner, S. Xie, R. Pennetta, and P. S. J. Russell, “Broadband, Lensless and Optomechanically Stabilised Coupling into Microfluidic Hollow-Core Photonic Crystal Fiber Using Glass Nanospike,” ACS Photonics 4(2), 378–383 (2017).
[Crossref]

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers,” ACS Photonics 4(1), 138–145 (2017).
[Crossref]

Anal. Chem. (1)

I. Rodríguez-Ruiz, A. Llobera, J. Vila-Planas, D. W. Johnson, J. Gómez-Morales, and J. M. García-Ruiz, “Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies,” Anal. Chem. 85(20), 9678–9685 (2013).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. St. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Electron. Lett. (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

J. Lightwave Technol. (1)

Lab Chip (2)

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid-liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref] [PubMed]

W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab Chip 16(24), 4770–4776 (2016).
[Crossref] [PubMed]

Meas. Sci. Technol. (3)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[Crossref]

W. Jin, H. Xuan, and H. Ho, “Sensing with hollow-core photonic bandgap fibers,” Meas. Sci. Technol. 21(9), 094014 (2010).
[Crossref]

M. Zibaii, H. Latifi, M. Karami, M. Gholami, S. Hosseini, and M. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Meas. Sci. Technol. 21(10), 105801 (2010).
[Crossref]

Nanoscale (1)

K. Scholten, W. R. Collin, X. Fan, and E. T. Zellers, “Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis,” Nanoscale 7(20), 9282–9289 (2015).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. C. Fan, J. Wang, A. Potanina, and S. R. Quake, “Whole-genome molecular haplotyping of single cells,” Nat. Biotechnol. 29(1), 51–57 (2011).
[Crossref] [PubMed]

Nat. Methods (1)

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Nature (2)

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Laser Technol. (1)

S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt. Laser Technol. 64, 140–144 (2014).
[Crossref]

Opt. Lett. (7)

J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009).
[Crossref] [PubMed]

Y. Wang, X. Tan, W. Jin, D. Ying, Y. L. Hoo, and S. Liu, “Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications,” Opt. Lett. 35(1), 88–90 (2010).
[Crossref] [PubMed]

X. Wang, Y. Li, and X. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter,” Opt. Lett. 35(20), 3354–3356 (2010).
[Crossref] [PubMed]

F. Peng, J. Yang, X. Li, Y. Yuan, B. Wu, A. Zhou, and L. Yuan, “In-fiber integrated accelerometer,” Opt. Lett. 36(11), 2056–2058 (2011).
[Crossref] [PubMed]

X. Yang, Y. Liu, F. Tian, L. Yuan, Z. Liu, S. Luo, and E. Zhao, “Optical fiber modulator derivates from hollow optical fiber with suspended core,” Opt. Lett. 37(11), 2115–2117 (2012).
[Crossref] [PubMed]

Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38(3), 269–271 (2013).
[Crossref] [PubMed]

Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Cama, M. Schaich, K. Al Nahas, S. Hernández-Ainsa, S. Pagliara, and U. F. Keyser, “Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones,” Sci. Rep. 6(1), 32824 (2016).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators A Phys. 82(1-3), 40–61 (2000).
[Crossref]

Sens. Actuators B Chem. (2)

X. Yang, Y. Zheng, S. Luo, Y. Liu, and L. Yuan, “Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide,” Sens. Actuators B Chem. 182, 571–575 (2013).
[Crossref]

X. Yu, Y. Kwok, N. A. Khairudin, and P. Shum, “Absorption detection of cobalt (II) ions in an index-guiding microstructured optical fiber,” Sens. Actuators B Chem. 137(2), 462–466 (2009).
[Crossref]

Other (1)

G. Rajan and G. D. Peng, “Polymer micro and microstructured fibre bragg gratings: Recent advancements and applications,” in optofliudics, Sensors and actuators in microstructured optical fibers, S. Pissadakis & S. Selleri, Ed. United States: Elsevier Science, 2015, pp.207–227.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The cross-section view of the HTCF by microscope. (b) 3D imaging of the RI by the optical fiber RI profiler (measured by S14). (c) The one dimentional RI distribution along the diameter which passes through the two cores.
Fig. 2
Fig. 2 (a) A sketch of the optofluidic in-fiber integrated optical fiber Michelson interferometer based on specially designed hollow optical fiber with two cores. Inset: microhole on the surface of HTCF for microfluidic sampling, microtube encapsulation, taper region and the end of the optical fiber after coating with Au film for reflection. (b) A sketch of the coupling between single mode optical fiber and the HTCF. (c) A sketch of the setup for etching a microhole on the surface of HTCF.
Fig. 3
Fig. 3 Simulation result of the HTCF coupling with a taper region around 1520 nm by the beam propagation method (BPM). Left: power transfer simulation result; Right: The percent of the power kept inside the cores.
Fig. 4
Fig. 4 (a) Typical wide spectrum of the fabricated device. (b) Interference spectra of the Michelson interferometer with different length of HTCF from 7.5 cm to 15 cm and the corresponding FSR from 9.8 nm to 5 nm.
Fig. 5
Fig. 5 Interference spectra of the optofluidic in-fiber integrated optical fiber interferometer based on HTCF with different RIs of NaCl solutions.
Fig. 6
Fig. 6 Wavelength shift of a peak in the interference spectrum versus the RI of the NaCl solutions.
Fig. 7
Fig. 7 Wavelength shifts of a dip in the interference spectrum versus the RI of the ascorbic acid solutions.
Fig. 8
Fig. 8 Wavelength shifts of interference dip versus temperature. Inset: interference spectra changes when the temperature increases from 30 °C to 50 °C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos Δ ϕ
Δ ϕ = 2 π ( n 1 eff n 2 eff ) 2 L λ = 4 π Δ n L λ
λ = 2 2 k + 1 ( n 1 eff n 2 eff ) 2 L = 4 2 k + 1 Δ n L

Metrics