Abstract

We present a subwavelength grating slot (SWGS) waveguide on silicon platform. The SWGS waveguide is characterized by the merging of a slot structure and a subwavelength grating (SWG) structure. The mode guiding mechanism (SWG slot mode) relies on the combination of surface enhanced supermode (slot mode) in a slot waveguide and Bloch mode (SWG mode) in an SWG waveguide. The mode properties and nonlinearities of silicon-based strip waveguide, slot waveguide, SWG waveguide and SWGS waveguide are studied in detail for comparison. It is found that the designed SWGS waveguide with SiO2/air cladding features greatly reduced nonlinearity due to the delocalized light from the silicon region. We also optimize the SWGS waveguide with varied geometries (silicon width, slot width, period, duty cycle) using the mode confinement factor and evaluation factor. An ultralow nonlinearity of 3.20 /W/m is obtained. Moreover, we design two types of compatible strip-to-SWGS mode converters, showing favorable performance with broadband high conversion efficiency. The obtained results indicate that the proposed SWGS waveguide with greatly reduced nonlinearity may find potential applications in chip-scale data transmission for optical interconnects. The SWGS waveguide with air cladding or low-refractive-index nonlinear material cladding may also see possible applications in optical sensing and nonlinear optical signal processing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?

Derek M. Kita, Jérôme Michon, Steven G. Johnson, and Juejun Hu
Optica 5(9) 1046-1054 (2018)

Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides

Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Samantha M. Grist, Sahba Talebi Fard, and Lukas Chrostowski
Opt. Express 23(4) 4791-4803 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
    [Crossref] [PubMed]
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [Crossref]
  3. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).
  4. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [Crossref]
  5. J. Wang, “Chip-scale optical interconnects and optical data processing using silicon photonic devices,” Photonic Netw. Commun. 31(2), 353–372 (2016).
    [Crossref]
  6. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  7. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
  8. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  9. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(2), 3069 (2014).
    [PubMed]
  10. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
  11. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  12. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  13. M. Lipson, “Guiding, modulation, and emitting light on silicon challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  14. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  15. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [Crossref] [PubMed]
  16. C. Xiang and J. Wang, “Long-range hybrid plasmonic slot waveguide,” IEEE Photonics J. 5(2), 4800311 (2013).
    [Crossref]
  17. C. Xiang, C.-K. Chan, and J. Wang, “Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications,” Sci. Rep. 4(1), 3720 (2015).
    [Crossref] [PubMed]
  18. Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide,” Sci. Rep. 4(1), 6870 (2014).
    [Crossref] [PubMed]
  19. J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).
    [Crossref]
  20. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  21. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [Crossref] [PubMed]
  22. C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
    [Crossref] [PubMed]
  23. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
    [Crossref] [PubMed]
  24. W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
    [Crossref] [PubMed]
  25. J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
    [Crossref]
  26. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  27. L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18(12), 13187–13193 (2010).
    [Crossref] [PubMed]
  28. C. Gui and J. Wang, “Optical data exchange of m-QAM signals using a silicon-organic hybrid slot waveguide: proposal and simulation,” Opt. Express 22(20), 24796–24807 (2014).
    [Crossref] [PubMed]
  29. C. Gui and J. Wang, “Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction,” Sci. Rep. 4(1), 7491 (2014).
    [Crossref] [PubMed]
  30. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
    [Crossref] [PubMed]
  31. Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
    [Crossref] [PubMed]
  32. H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
    [Crossref] [PubMed]
  33. L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41(7), 1648–1651 (2016).
    [Crossref] [PubMed]
  34. V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
    [Crossref] [PubMed]
  35. J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
    [Crossref] [PubMed]
  36. Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
    [Crossref] [PubMed]
  37. Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-Pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 1–7 (2015).
    [Crossref]
  38. G. Gao, M. Luo, X. Li, Y. Zhang, Q. Huang, Y. Wang, X. Xiao, Q. Yang, and J. Xia, “Transmission of 2.86 Tb/s data stream in silicon subwavelength grating waveguides,” Opt. Express 25(3), 2918–2927 (2017).
    [Crossref]
  39. Y. Yue, L. Zhang, J. Wang, R. G. Beausoleil, and A. E. Willner, “Highly efficient nonlinearity reduction in silicon-on-insulator waveguides using vertical slots,” Opt. Express 18(21), 22061–22066 (2010).
    [Crossref] [PubMed]
  40. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [Crossref] [PubMed]
  41. X. Zeng and M. A. Popović, “Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity,” Opt. Express 22(13), 15837–15867 (2014).
    [Crossref] [PubMed]
  42. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
    [Crossref] [PubMed]
  43. C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665–668 (2015).
    [Crossref]
  44. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529 (2011).
    [Crossref] [PubMed]
  45. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34(10), 1498–1500 (2009).
    [Crossref] [PubMed]
  46. Y. Xu and J. Xiao, “Ultracompact and broadband strip-to-slot mode converter using subwavelength gratings,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper IW3B.

2017 (1)

2016 (6)

J. Wang, “Chip-scale optical interconnects and optical data processing using silicon photonic devices,” Photonic Netw. Commun. 31(2), 353–372 (2016).
[Crossref]

W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
[Crossref] [PubMed]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41(7), 1648–1651 (2016).
[Crossref] [PubMed]

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

2015 (7)

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-Pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
[Crossref] [PubMed]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[Crossref] [PubMed]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

C. Xiang, C.-K. Chan, and J. Wang, “Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications,” Sci. Rep. 4(1), 3720 (2015).
[Crossref] [PubMed]

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665–668 (2015).
[Crossref]

2014 (6)

X. Zeng and M. A. Popović, “Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity,” Opt. Express 22(13), 15837–15867 (2014).
[Crossref] [PubMed]

Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide,” Sci. Rep. 4(1), 6870 (2014).
[Crossref] [PubMed]

J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(2), 3069 (2014).
[PubMed]

C. Gui and J. Wang, “Optical data exchange of m-QAM signals using a silicon-organic hybrid slot waveguide: proposal and simulation,” Opt. Express 22(20), 24796–24807 (2014).
[Crossref] [PubMed]

C. Gui and J. Wang, “Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction,” Sci. Rep. 4(1), 7491 (2014).
[Crossref] [PubMed]

2013 (1)

C. Xiang and J. Wang, “Long-range hybrid plasmonic slot waveguide,” IEEE Photonics J. 5(2), 4800311 (2013).
[Crossref]

2011 (2)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529 (2011).
[Crossref] [PubMed]

2010 (5)

2009 (5)

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[Crossref] [PubMed]

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34(10), 1498–1500 (2009).
[Crossref] [PubMed]

2008 (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (2)

2006 (2)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

2005 (3)

M. Lipson, “Guiding, modulation, and emitting light on silicon challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

2004 (3)

2000 (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

Adams, R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Aers, G. C.

Afshar V, S.

Agrawal, G. P.

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Almeida, V. R.

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Ashrafi, R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

Barnett, B. C.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Barrios, C. A.

Beausoleil, R. G.

Bergmen, K.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(2), 3069 (2014).
[PubMed]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

Block, B. A.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Bock, P. J.

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bojko, R.

Brosi, J. M.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

Cadien, K.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Capmany, J.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Casquel, R.

Cassan, E.

Caverley, M.

Chan, C.-K.

C. Xiang, C.-K. Chan, and J. Wang, “Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications,” Sci. Rep. 4(1), 3720 (2015).
[Crossref] [PubMed]

Cheben, P.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-Pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Chen, C. P.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(2), 3069 (2014).
[PubMed]

Chen, L. R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Chen, Y. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Chrostowski, L.

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Dai, D.

Delâge, A.

Deng, Q.

Densmore, A.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

Donzella, V.

Dumon, P.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).

Fard, S. T.

Fathpour, S.

Flueckiger, J.

Frank, B.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(2), 3069 (2014).
[PubMed]

Gao, G.

Gasulla, I.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Glesk, I.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Griol, A.

Grist, S. M.

Gui, C.

Gylfason, K. B.

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).

Hall, T. J.

He, S.

Holgado, M.

Huang, Q.

Jaeger, N. A. F.

Jalali, B.

Janz, S.

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).

Kobrinsky, M. J.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Lapointe, J.

Le Roux, X.

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Li, C.

Li, X.

Lin, Q.

Lin, S.

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Lipson, M.

List, S.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).

Liu, L.

Loncar, M.

Lu, Z.

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(2), 3069 (2014).
[PubMed]

Luo, M.

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

Mohammed, E.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Monro, T. M.

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(2), 3069 (2014).
[PubMed]

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665–668 (2015).
[Crossref]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Painter, O. J.

Panepucci, R. R.

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(2), 3069 (2014).
[PubMed]

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665–668 (2015).
[Crossref]

X. Zeng and M. A. Popović, “Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity,” Opt. Express 22(13), 15837–15867 (2014).
[Crossref] [PubMed]

Poulton, C. V.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665–668 (2015).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Quan, Q.

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Reshotko, M.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Robertson, F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).

Sánchez, B.

Schmid, J. H.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-Pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Scimeca, M. L.

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

Serna, S.

Shainline, J. M.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665–668 (2015).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sherwali, A.

Shi, W.

Sohlström, H.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Tang, Y.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Vivien, L.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665–668 (2015).
[Crossref]

Wang, J.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

J. Wang, “Chip-scale optical interconnects and optical data processing using silicon photonic devices,” Photonic Netw. Commun. 31(2), 353–372 (2016).
[Crossref]

C. Xiang, C.-K. Chan, and J. Wang, “Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications,” Sci. Rep. 4(1), 3720 (2015).
[Crossref] [PubMed]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[Crossref] [PubMed]

C. Gui and J. Wang, “Optical data exchange of m-QAM signals using a silicon-organic hybrid slot waveguide: proposal and simulation,” Opt. Express 22(20), 24796–24807 (2014).
[Crossref] [PubMed]

C. Gui and J. Wang, “Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction,” Sci. Rep. 4(1), 7491 (2014).
[Crossref] [PubMed]

Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide,” Sci. Rep. 4(1), 6870 (2014).
[Crossref] [PubMed]

J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).
[Crossref]

C. Xiang and J. Wang, “Long-range hybrid plasmonic slot waveguide,” IEEE Photonics J. 5(2), 4800311 (2013).
[Crossref]

Y. Yue, L. Zhang, J. Wang, R. G. Beausoleil, and A. E. Willner, “Highly efficient nonlinearity reduction in silicon-on-insulator waveguides using vertical slots,” Opt. Express 18(21), 22061–22066 (2010).
[Crossref] [PubMed]

L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18(12), 13187–13193 (2010).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Wang, Z.

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Willner, A. E.

Wosinski, L.

Xia, J.

Xiang, C.

C. Xiang, C.-K. Chan, and J. Wang, “Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications,” Sci. Rep. 4(1), 3720 (2015).
[Crossref] [PubMed]

C. Xiang and J. Wang, “Long-range hybrid plasmonic slot waveguide,” IEEE Photonics J. 5(2), 4800311 (2013).
[Crossref]

Xiao, J.

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

Xiao, X.

Xiao-Li, Y.

Xiong, Y.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-Pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Xu, D. X.

Xu, D.-X.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-Pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Xu, Q.

Xu, Y.

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

Yang, Q.

Ye, W. N.

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-Pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

Young, I.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Yue, Y.

Yun, H.

Zeng, X.

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665–668 (2015).
[Crossref]

X. Zeng and M. A. Popović, “Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity,” Opt. Express 22(13), 15837–15867 (2014).
[Crossref] [PubMed]

Zhang, F.

Zhang, L.

Zhang, W.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhang, Y.

Zhang, Z.

Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide,” Sci. Rep. 4(1), 6870 (2014).
[Crossref] [PubMed]

Zheng, J.-F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Zhou, Z.

Zhu, N.

Front. Optoelectron. (1)

J. Wang, “A review of recent progress in plasmon-assisted nanophotonic devices,” Front. Optoelectron. 7(3), 320–337 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Photonics J. (2)

C. Xiang and J. Wang, “Long-range hybrid plasmonic slot waveguide,” IEEE Photonics J. 5(2), 4800311 (2013).
[Crossref]

Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-Pass polarizer using subwavelength grating index engineering,” IEEE Photonics J. 7(5), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. V. Poulton, X. Zeng, M. T. Wade, J. M. Shainline, J. S. Orcutt, and M. A. Popovic, “Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology,” IEEE Photonics Technol. Lett. 27(6), 665–668 (2015).
[Crossref]

Intel Tech. Jour. (1)

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

J. Lightwave Technol. (2)

Nat. Commun. (1)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(2), 3069 (2014).
[PubMed]

Nat. Photonics (5)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Nature (3)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (12)

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref] [PubMed]

L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18(12), 13187–13193 (2010).
[Crossref] [PubMed]

C. Gui and J. Wang, “Optical data exchange of m-QAM signals using a silicon-organic hybrid slot waveguide: proposal and simulation,” Opt. Express 22(20), 24796–24807 (2014).
[Crossref] [PubMed]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[Crossref] [PubMed]

G. Gao, M. Luo, X. Li, Y. Zhang, Q. Huang, Y. Wang, X. Xiao, Q. Yang, and J. Xia, “Transmission of 2.86 Tb/s data stream in silicon subwavelength grating waveguides,” Opt. Express 25(3), 2918–2927 (2017).
[Crossref]

Y. Yue, L. Zhang, J. Wang, R. G. Beausoleil, and A. E. Willner, “Highly efficient nonlinearity reduction in silicon-on-insulator waveguides using vertical slots,” Opt. Express 18(21), 22061–22066 (2010).
[Crossref] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[Crossref] [PubMed]

X. Zeng and M. A. Popović, “Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity,” Opt. Express 22(13), 15837–15867 (2014).
[Crossref] [PubMed]

S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D. X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529 (2011).
[Crossref] [PubMed]

Opt. Lett. (8)

Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34(10), 1498–1500 (2009).
[Crossref] [PubMed]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41(7), 1648–1651 (2016).
[Crossref] [PubMed]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
[Crossref] [PubMed]

W. Zhang, S. Serna, X. Le Roux, L. Vivien, and E. Cassan, “Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators,” Opt. Lett. 41(3), 532–535 (2016).
[Crossref] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[Crossref] [PubMed]

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
[Crossref] [PubMed]

Photonic Netw. Commun. (1)

J. Wang, “Chip-scale optical interconnects and optical data processing using silicon photonic devices,” Photonic Netw. Commun. 31(2), 353–372 (2016).
[Crossref]

Proc. IEEE (2)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

J. Leuthold, W. Freude, J. M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—a platform for practical nonlinear optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[Crossref]

Sci. Rep. (5)

C. Gui and J. Wang, “Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction,” Sci. Rep. 4(1), 7491 (2014).
[Crossref] [PubMed]

C. Xiang, C.-K. Chan, and J. Wang, “Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications,” Sci. Rep. 4(1), 3720 (2015).
[Crossref] [PubMed]

Z. Zhang and J. Wang, “Long-range hybrid wedge plasmonic waveguide,” Sci. Rep. 4(1), 6870 (2014).
[Crossref] [PubMed]

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

Other (1)

Y. Xu and J. Xiao, “Ultracompact and broadband strip-to-slot mode converter using subwavelength gratings,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2016), paper IW3B.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Illustration of a silicon-on-insulator (SOI) wafer to form various silicon waveguides. (b)-(e) Top view structures of silicon-based (b) strip waveguide, (c) slot waveguide, (d) subwavelength grating (SWG) waveguide, and (e) subwavelength grating slot (SWGS) waveguide. (f) 3D structure of a SWGS waveguide.
Fig. 2
Fig. 2 Mode profiles and normalized intensities along the x direction of the guided and propagated fundamental TE mode in (a) strip waveguide, (b) slot waveguide, (c)(d) SWG waveguide, and (e)(f) SWGS waveguide with SiO2 cladding. (c)(e) Si segment. (d)(f) SiO2 segment.
Fig. 3
Fig. 3 (a) Calculated effective refractive index of SWGS waveguide with SiO2 cladding at 1550 nm versus mesh resolution. (b) Calculated effective refractive index of strip waveguide, slot waveguide, SWG waveguide and SWGS waveguide with SiO2 cladding versus wavelength. The mesh resolution is set as 20 nm.
Fig. 4
Fig. 4 Calculated effective nonlinear coefficients of strip waveguide, slot waveguide, SWG waveguide and SWGS waveguide with (a) SiO2 and (b) air cladding versus wavelength.
Fig. 5
Fig. 5 (a)-(c) Calculated mode confinement factor Γ versus (a) silicon width, (b) slot width, and (c) period. (d)(e) Calculated (d) mode confinement factor Γ and (e) evaluation factor EF versus duty cycle. (a) slot width: 100 nm, period: 200 nm, duty cycle: 50%. (b) silicon width: 300 nm, period: 200 nm, duty cycle: 50%. (c) silicon width: 300 nm, slot width: 100 nm, duty cycle: 50%. (d)(e) silicon width: 300 nm, slot width: 100 nm, period: 200 nm.
Fig. 6
Fig. 6 Calculated mode confinement factor Γ and extra loss versus silicon width (slot width: 150 nm, period: 200 nm, duty cycle: 30%).
Fig. 7
Fig. 7 Calculated effective nonlinearity of SWGS waveguide with SiO2 cladding versus wavelength using optimized waveguide geometric parameters (silicon width: 300 nm, slot width: 150 nm, period: 200 nm, duty cycle: 30%).
Fig. 8
Fig. 8 (a)-(e) Top view structures and mode evolutions of (a) strip waveguide propagation, (b) strip-to-slot mode converter, (c) strip-to-SWG mode converter, and (d)(e) two types of strip-to-SWGS mode converters. (f)(g) 3D structures of two types of strip-to-SWGS mode converters. Both two types of strip-to-SWGS mode converters consist of two parts, i.e. part I of strip-to-slot mode converter and part II of strip-to-SWG mode converter. (d)(f) The strip-to-slot mode converter is based on (b). (e)(g) The strip-to-slot mode converter employs an SWG multimode waveguide.
Fig. 9
Fig. 9 Simulated results of the type 1 strip-to-SWGS mode converter. (a) 3D structure of type 1 strip-to-SWGS mode converter and mode evolution from input strip mode to middle slot mode by part I converter and then from slot mode to finally output SWGS mode by part II converter. (b) Mode evolution process when passing through the part I of strip-to-slot converter and part II of strip-to-SWG converter. (c) Effective refractive indices of strip waveguide TE mode and slot waveguide TE mode versus width of central silicon region. (d) Total conversion efficiency of the type 1 strip-to-SWGS mode converter versus wavelength.
Fig. 10
Fig. 10 Simulated results of the type 2 strip-to-SWGS mode converter. (a) 3D structure of type 2 strip-to-SWGS mode converter and mode evolution from input strip mode to middle slot mode by part I converter and then from slot mode to finally output SWGS mode by part II converter. (b) Mode evolution process when passing through the part I of strip-to-slot converter and part II of strip-to-SWG converter. (c) Conversion efficiency of strip-to-slot mode converter (part I) versus number of 2-μm wide SWG multimode blocks. (d) Total conversion efficiency of the type 2 strip-to-SWGS mode converter versus wavelength.

Tables (2)

Tables Icon

Table 1 Typical waveguide geometries, cladding materials and other simulation parameters

Tables Icon

Table 2 Calculated mode confinement factor for strip, slot, SWG and SWGS waveguides with equal waveguide cross-section dimensions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A eff = | ( e v × h v * ) z ^ dA | 2 | ( e v × h v * ) z ^ | 2 dA
γ= 2π n ¯ 2 λ A eff
n ¯ 2 =k( ε 0 μ 0 ) n 2 ( x,y ) n 2 ( x,y )[ 2 | e v | 4 + | e v 2 | 2 ]dA 3 | ( e v × h v * ) z ^ | 2 dA
γ ¯ = L γ(z)dz L dz
Γ= Si ( e v × h v * ) z ^ dA Total ( e v × h v * ) z ^ dA
EF=Γδ

Metrics