Abstract

We have numerically investigated broadband high-energy similariton fiber lasers, demonstrated that the self-similar evolution of pulses can locate in a segment of photonic crystal fiber without gain-bandwidth limitation. The effects of various parameters, including the cavity length, the spectral filter bandwidth, the pump power, the length of the photonic crystal fiber and the output coupling ratio have also been studied in detail. Using the optimal parameters, a single pulse with spectral width of 186.6 nm, pulse energy of 23.8 nJ, dechirped pulse duration of 22.5 fs and dechirped pulse peak power of 1.26 MW was obtained. We believe that this detailed analysis of the behaviour of pulses in the similariton regime may have major implications in the development of broadband high-energy fiber lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution

A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise
Opt. Express 20(13) 14213-14220 (2012)

Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation

Vladimir I. Kruglov, Claude Aguergaray, and John D. Harvey
Opt. Express 20(8) 8741-8754 (2012)

Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz

Michel Olivier and Michel Piché
Opt. Express 24(3) 2336-2349 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Chu, H. Y. Jiang, and S. D. Yang, “High-energy femtosecond amplifier-similariton Er-doped fiber oscillator,” Opt. Lett. 40(22), 5319–5322 (2015).
    [Crossref] [PubMed]
  2. X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22(6), 6699–6706 (2014).
    [Crossref] [PubMed]
  3. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
    [Crossref] [PubMed]
  4. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25(24), 1753–1755 (2000).
    [Crossref] [PubMed]
  5. V. I. Kruglov, D. Méchin, and J. D. Harvey, “High compression of similariton pulses under the influence of higher-order effects,” J. Opt. Soc. Am. B 24(4), 833–838 (2007).
    [Crossref]
  6. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [Crossref] [PubMed]
  7. B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
    [Crossref]
  8. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
    [Crossref] [PubMed]
  9. A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution,” Opt. Express 20(13), 14213–14220 (2012).
    [Crossref] [PubMed]
  10. M. Olivier, M. Gagnon, S. Duval, M. Bernier, and M. Piché, “All-fiber amplifier similariton laser based on a fiber Bragg grating filter,” Opt. Lett. 40(23), 5650–5653 (2015).
    [Crossref] [PubMed]
  11. M. Tang, H. Wang, R. Becheker, J.-L. Oudar, D. Gaponov, T. Godin, and A. Hideur, “High-energy dissipative solitons generation from a large normal dispersion Er-fiber laser,” Opt. Lett. 40(7), 1414–1417 (2015).
    [Crossref] [PubMed]
  12. J. Shi, L. Chai, X. Zhao, B. Liu, M. Hu, Y. Li, and C. Wang, “95 nJ dispersion-mapped amplifier similariton fiber laser at 8.6 MHz repetition rate with linear cavity configuration,” Opt. Express 23(14), 18330–18337 (2015).
    [Crossref] [PubMed]
  13. M. Olivier and M. Piché, “Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz,” Opt. Express 24(3), 2336–2349 (2016).
    [Crossref] [PubMed]
  14. X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
    [Crossref]
  15. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
    [Crossref] [PubMed]
  16. Y. Meng, A. Niang, K. Guesmi, M. Salhi, and F. Sanchez, “1.61 μm high-order passive harmonic mode locking in a fiber laser based on graphene saturable absorber,” Opt. Express 22(24), 29921–29926 (2014).
    [Crossref] [PubMed]
  17. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
    [Crossref] [PubMed]
  18. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
    [Crossref]
  19. C. Finot, F. Parmigiani, P. Petropoulos, and D. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express 14(8), 3161–3170 (2006).
    [Crossref] [PubMed]
  20. H. Liu, Z. Liu, E. S. Lamb, and F. Wise, “Self-similar erbium-doped fiber laser with large normal dispersion,” Opt. Lett. 39(4), 1019–1021 (2014).
    [Crossref] [PubMed]
  21. V. G. Bucklew and C. R. Pollock, “Realizing self-similar pulses in solid-state laser systems,” J. Opt. Soc. Am. B 29(11), 3027–3033 (2012).
    [Crossref]
  22. H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
    [Crossref]
  23. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  24. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]
  25. F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19(19), 1097–1100 (1967).
    [Crossref]
  26. C. Li, G. Wang, T. Jiang, P. Li, A. Wang, and Z. Zhang, “Femtosecond amplifier similariton Yb:fiber laser at a 616 MHz repetition rate,” Opt. Lett. 39(7), 1831–1833 (2014).
    [Crossref] [PubMed]
  27. Y. Liu, Y. Cui, J. Zhang, A. Wang, and Z. Zhang, “73 nJ, 109 fs Yb-doped fiber laser at 19 MHz repetition rate in amplifier similariton regime,” Photon. Res. 3(5), 248–251 (2015).
    [Crossref]

2016 (1)

2015 (6)

2014 (5)

2012 (2)

2011 (1)

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

2010 (4)

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

2000 (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25(24), 1753–1755 (2000).
[Crossref] [PubMed]

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

1967 (1)

F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19(19), 1097–1100 (1967).
[Crossref]

Bale, B. G.

Bao, Q.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

Becheker, R.

Bernier, M.

Bucklew, V. G.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Chai, L.

Chong, A.

Chu, K. C.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Cui, Y.

Dantus, M.

Dudley, J. M.

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25(24), 1753–1755 (2000).
[Crossref] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Duval, S.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Finot, C.

Gagnon, M.

Gaponov, D.

Godin, T.

Guesmi, K.

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Han, M.

H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
[Crossref]

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Hao, Y.

Harvey, J. D.

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Hideur, A.

Hu, M.

Ilday, F. Ö.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Jiang, H. Y.

Jiang, T.

Kruglov, V. I.

Lamb, E. S.

Li, C.

Li, P.

Li, X.

H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
[Crossref]

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22(6), 6699–6706 (2014).
[Crossref] [PubMed]

Li, Y.

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Liu, B.

Liu, H.

Liu, Y.

Liu, Z.

Loh, K. P.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

Méchin, D.

Meng, Y.

Mikhailov, S. A.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Niang, A.

Nie, B.

Oktem, B.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Olivier, M.

Oudar, J.-L.

Parmigiani, F.

Peacock, A. C.

Petropoulos, P.

Piché, M.

Polavarapu, L.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Pollock, C. R.

Renninger, W. H.

Richardson, D.

Salhi, M.

Sanchez, F.

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Shen, Z.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Shi, J.

Shimizu, F.

F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19(19), 1097–1100 (1967).
[Crossref]

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Tang, D.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Tang, D. Y.

Tang, M.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Wabnitz, S.

Wang, A.

Wang, C.

Wang, G.

Wang, H.

Wang, Y.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Wen, F.

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Wise, F.

Wise, F. W.

A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution,” Opt. Express 20(13), 14213–14220 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Wu, X.

Xu, Q.

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Yang, S. D.

Yang, Z.

X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22(6), 6699–6706 (2014).
[Crossref] [PubMed]

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Zhang, H.

H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
[Crossref]

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35(21), 3622–3624 (2010).
[Crossref] [PubMed]

Zhang, J.

Zhang, S.

H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
[Crossref]

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

X. Li, S. Zhang, Y. Hao, and Z. Yang, “Pulse bursts with a controllable number of pulses from a mode-locked Yb-doped all fiber laser system,” Opt. Express 22(6), 6699–6706 (2014).
[Crossref] [PubMed]

Zhang, Z.

Zhao, L. M.

Zhao, X.

IEEE Photonics Technol. Lett. (1)

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

Nano Res. (1)

Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. Xu, D. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Nat. Photonics (1)

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Opt. Commun. (1)

H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Photon. Res. (1)

Phys. Rev. A (2)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[Crossref] [PubMed]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19(19), 1097–1100 (1967).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the similariton laser. SMF: Single mode fiber; YDF: Yb-doped fiber; PCF: Photonic crystal fiber; SA: Monolayer graphene saturable absorber; SF: Spectral filter.
Fig. 2
Fig. 2 The similariton pulse (a), spectrum (b), chirp (c) and dechirped pulse (d) at the output port, the evolution of the pulse duration and spectral bandwidth (e), and the evolution of the misfit parameter M (f) along the cavity.
Fig. 3
Fig. 3 The pulse duration and spectral width (a), the pulse energy and pulse peak power (b), and the misfit parameter M (c) as a function of the length of SMF-1.
Fig. 4
Fig. 4 The pulse duration and spectral width (a), the pulse energy and pulse peak power (b), and the misfit parameter M (c) as a function of the SFBW.
Fig. 5
Fig. 5 The pulse duration and spectral width (a), the pulse energy and pulse peak power (b), and the misfit parameter M (c) as a function of the pump power.
Fig. 6
Fig. 6 The pulse duration and spectral width (a), the pulse energy and pulse peak power (b), and the misfit parameter M (c) as a function of the length of the PCF.
Fig. 7
Fig. 7 The pulse duration and spectral width (a), the pulse energy and pulse peak power (b), and the misfit parameter M (c) as a function of the output coupling ratio.
Fig. 8
Fig. 8 The similariton pulse (a), spectrum (b), chirp (c), dechirped pulse (d) with the optimal cavity parameters.

Tables (2)

Tables Icon

Table 1 Main parameters of the monolayer graphene saturable absorber in our simulationsa

Tables Icon

Table 2 Optimal output coupling ratio with different pump powers and spectral filter bandwidths. The length of the PCF was fixed at 100 cm. (The symbol “—” means our simulation failed to converge in this situation)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U(z,t) z =g( E pulse )U(z,t)+( 1 Ω i β 2 2 ) 2 U(z,t) t 2 +iγ | U(z,t) | 2 U(z,t)
E pulse = T R /2 T R /2 | U(z,t) | 2 dt
g( E pulse )= g 0 1+ E pulse / E sat
α( I pulse )= α s 1+ I pulse / I sat + α NS
M 2 = [ | U(t) | 2 | U p (t) | 2 ] 2 dt/ | U(t) | 4 dt

Metrics