Abstract

In recent years, singular light beams with orbital angular momentum are one of the most striking examples of structured light that have been widely applied in modern science. The transition from the generation of a single vortex beam to the generation of multiple such beams progressed the development of singular optics. This paper presents a new efficient method of vortex laser beam splitting using a two-level pure-phase diffractive optical element. The proposed compact element, which can be easily implemented with a low-cost binary spatial light modulator or fabricated by electron beam lithography or photolithography, is a useful tool for the reconfigurable generation of multiple closed-packed vortex beams. Furthermore, the proposed splitter can efficiently operate in the wavelength range of approximately 8% of the central wavelength, thus providing an efficient method to generate optical vortex arrays with various potential applications in modern optics and photonics.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Alexey P. Porfirev and Svetlana N. Khonina, "Simple method for efficient reconfigurable optical vortex beam splitting: erratum," Opt. Express 25, 32214-32214 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-25-32214

OSA Recommended Articles
Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication

Xu Yan, Lixin Guo, Mingjian Cheng, and Jiangting Li
Opt. Express 26(10) 12605-12619 (2018)

Generation of optical vortex array along arbitrary curvilinear arrangement

Lin Li, Chenliang Chang, Xiangzheng Yuan, Caojin Yuan, Shaotong Feng, Shouping Nie, and Jianping Ding
Opt. Express 26(8) 9798-9812 (2018)

Reconfigurable vortex beam generator based on the Fourier transformation principle

Aiping Liu, Chang-Ling Zou, Xifeng Ren, Wen He, Mengze Wu, Guangcan Guo, and Qin Wang
Opt. Express 26(24) 31880-31888 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
    [Crossref] [PubMed]
  3. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  4. P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).
    [Crossref] [PubMed]
  5. I. Augustyniak, A. Popiołek-Masajada, J. Masajada, and S. Drobczyński, “New scanning technique for the optical vortex microscope,” Appl. Opt. 51(10), C117–C124 (2012).
    [Crossref] [PubMed]
  6. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Power-dependent shaping of vortex solitons in optical lattices with spatially modulated nonlinear refractive index,” Opt. Lett. 33(19), 2173–2175 (2008).
    [Crossref] [PubMed]
  7. A. Dreischuh, S. Chervenkov, D. Neshev, G. G. Paulus, and H. Walther, “Generation of lattice structures of optical vortices,” J. Opt. Soc. Am. B 19(3), 550–556 (2002).
    [Crossref]
  8. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
    [Crossref] [PubMed]
  9. G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004).
    [Crossref] [PubMed]
  10. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  11. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  12. O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express 21(18), 21198–21207 (2013).
    [Crossref] [PubMed]
  13. S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser manipulation for advanced material processing,” Adv. Opt. Technol. 5(1), 39–54 (2016).
  14. Y. Jin, O. J. Allegre, W. Perrie, K. Abrams, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions,” Opt. Express 21(21), 25333–25343 (2013).
    [Crossref] [PubMed]
  15. X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
    [Crossref]
  16. T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
    [Crossref]
  17. K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
    [Crossref] [PubMed]
  18. C.-S. Guo, Y.-N. Yu, and Z. Hong, “Optical sorting using an array of optical vortices with fractional topological charge,” Opt. Commun. 283(9), 1889–1893 (2010).
    [Crossref]
  19. C.-F. Kuo and S.-C. Chu, “Numerical study of the properties of optical vortex array laser tweezers,” Opt. Express 21(22), 26418–26431 (2013).
    [Crossref] [PubMed]
  20. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
    [Crossref]
  21. L.-G. Wang, L.-Q. Wang, and S.-Y. Zhu, “Formation of optical vortices using coherent laser beam arrays,” Opt. Commun. 282(6), 1088–1094 (2009).
    [Crossref]
  22. S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Appl. Opt. 46(32), 7862–7867 (2007).
    [Crossref] [PubMed]
  23. J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1–3), 21–27 (2001).
    [Crossref]
  24. S.-C. Chu, Y.-T. Chen, K.-F. Tsai, and K. Otsuka, “Generation of high-order Hermite-Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation,” Opt. Express 20(7), 7128–7141 (2012).
    [Crossref] [PubMed]
  25. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46(15), 2893–2898 (2007).
    [Crossref] [PubMed]
  26. J. Masajada, A. Popiolek-Masajada, and M. Leniec, “Creation of vortex lattices by a wavefront division,” Opt. Express 15(8), 5196–5207 (2007).
    [Crossref] [PubMed]
  27. S.-C. Chu, C.-S. Yang, and K. Otsuka, “Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer,” Opt. Express 16(24), 19934–19949 (2008).
    [Crossref] [PubMed]
  28. G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
    [Crossref] [PubMed]
  29. G.-X. Wei, L.-L. Lu, and C.-S. Guo, “Generation of optical vortex array based on the fractional Talbot effect,” Opt. Commun. 282(14), 2665–2669 (2009).
    [Crossref]
  30. S. Fu, T. Wang, and C. Gao, “Perfect optical vortex array with controllable diffraction order and topological charge,” J. Opt. Soc. Am. A 33(9), 1836–1842 (2016).
    [Crossref] [PubMed]
  31. Y. Lu, B. Jiang, S. Lu, Y. Liu, S. Li, Z. Cao, and X. Qi, “Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram,” Opt. Commun. 363, 85–90 (2016).
    [Crossref]
  32. A. Kapoor, M. Kumar, P. Senthilkumaran, and J. Joseph, “Optical vortex array in spatially varying lattice,” Opt. Commun. 365, 99–102 (2016).
    [Crossref]
  33. P. García-Martínez, M. M. Sánchez-López, J. A. Davis, D. M. Cottrell, D. Sand, and I. Moreno, “Generation of Bessel beam arrays through Dammann gratings,” Appl. Opt. 51(9), 1375–1381 (2012).
    [Crossref] [PubMed]
  34. Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A 83(5), 053813 (2011).
    [Crossref]
  35. G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(6), 066613 (2007).
    [Crossref] [PubMed]
  36. A. Sabatyan, S. M. Taheri Balanoji, and S. M. Taheri Balanoji, “Square array of optical vortices generated by multiregion spiral square zone plate,” J. Opt. Soc. Am. A 33(9), 1793–1797 (2016).
    [Crossref] [PubMed]
  37. A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
    [Crossref] [PubMed]
  38. R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, “Harnessing optical vortex lattices in nematic liquid crystals,” Phys. Rev. Lett. 111(9), 093902 (2013).
    [Crossref] [PubMed]
  39. E. Brasselet, “Tunable optical vortex arrays from a single nematic topological defect,” Phys. Rev. Lett. 108(8), 087801 (2012).
    [Crossref] [PubMed]
  40. B. Yang and E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15(4), 044021 (2013).
    [Crossref]
  41. J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
    [Crossref]
  42. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref] [PubMed]
  43. M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  44. S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The rotor phase filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
    [Crossref]
  45. D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Optical vortex beam generator at nanoscale level,” Sci. Rep. 6(1), 29547 (2016).
    [Crossref] [PubMed]
  46. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, J. Lautanen, M. Honkanen, and J. P. Turunen, “Generation of Gauss-Hermite modes using binary DOEs,” Proc. SPIE 4016, 234–239 (1999).
    [Crossref]
  47. E. G. Abramochkin and V. G. Volostnikov, “Beam transformation and nontransformed beams,” Opt. Commun. 83(1–2), 123–125 (1991).
    [Crossref]
  48. M. W. Beijersbergen, L. Allen, H. E. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
    [Crossref]
  49. V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “Vortex Hermite-Gaussian laser beams,” Opt. Lett. 40(5), 701–704 (2015).
    [Crossref] [PubMed]
  50. A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
    [Crossref] [PubMed]
  51. A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
    [Crossref] [PubMed]
  52. S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
    [Crossref] [PubMed]
  53. T. Alieva, M. J. Bastiaans, and M. L. Calvo, “Fractional transforms in optical information processing,” EURASIP J. Adv. Signal Process. 10, 1–22 (2005).
  54. S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A, Pure Appl. Opt. 11(6), 065702 (2009).
    [Crossref]
  55. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48(10), 1543–1557 (2001).
    [Crossref]
  56. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [Crossref] [PubMed]
  57. G. Molina-Terriza, J. Recolons, and L. Torner, “The curious arithmetic of optical vortices,” Opt. Lett. 25(16), 1135–1137 (2000).
    [Crossref] [PubMed]
  58. J. N. Mait, “Design of Dammann gratings for two-dimensional, nonseparable, noncentrosymmetric responses,” Opt. Lett. 14(4), 196–198 (1989).
    [Crossref] [PubMed]
  59. D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80(3), 211–215 (2012).
    [Crossref]
  60. S. P. Kotova, V. V. Patlan, and S. A. Samagin, “Focusing light into a line segment of arbitrary orientation using a four-channel liquid crystal light modulator,” J. Opt. 15(3), 035706 (2013).
    [Crossref]
  61. A. Cofré, P. Garcia-Martinez, A. Vargas, and I. Moreno, “Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-crystal display with limited phase modulation,” Eur. J. Phys. 38(1), 014005 (2017).
    [Crossref]
  62. V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52(8), 429–431 (1990).
  63. E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
    [Crossref]
  64. D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip,” Nano Lett. 16(10), 6636–6643 (2016).
    [Crossref] [PubMed]
  65. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
    [Crossref] [PubMed]
  66. S. Paul, V. S. Lyubopytov, M. F. Schumann, J. Cesar, A. Chipouline, M. Wegener, and F. Küppers, “Wavelength-selective orbital-angular-momentum beam generation using MEMS tunable Fabry-Perot filter,” Opt. Lett. 41(14), 3249–3252 (2016).
    [Crossref] [PubMed]
  67. H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2(6), 547–552 (2015).
    [Crossref]

2017 (3)

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

A. Cofré, P. Garcia-Martinez, A. Vargas, and I. Moreno, “Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-crystal display with limited phase modulation,” Eur. J. Phys. 38(1), 014005 (2017).
[Crossref]

2016 (13)

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip,” Nano Lett. 16(10), 6636–6643 (2016).
[Crossref] [PubMed]

S. Paul, V. S. Lyubopytov, M. F. Schumann, J. Cesar, A. Chipouline, M. Wegener, and F. Küppers, “Wavelength-selective orbital-angular-momentum beam generation using MEMS tunable Fabry-Perot filter,” Opt. Lett. 41(14), 3249–3252 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
[Crossref] [PubMed]

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Optical vortex beam generator at nanoscale level,” Sci. Rep. 6(1), 29547 (2016).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser manipulation for advanced material processing,” Adv. Opt. Technol. 5(1), 39–54 (2016).

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

S. Fu, T. Wang, and C. Gao, “Perfect optical vortex array with controllable diffraction order and topological charge,” J. Opt. Soc. Am. A 33(9), 1836–1842 (2016).
[Crossref] [PubMed]

Y. Lu, B. Jiang, S. Lu, Y. Liu, S. Li, Z. Cao, and X. Qi, “Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram,” Opt. Commun. 363, 85–90 (2016).
[Crossref]

A. Kapoor, M. Kumar, P. Senthilkumaran, and J. Joseph, “Optical vortex array in spatially varying lattice,” Opt. Commun. 365, 99–102 (2016).
[Crossref]

A. Sabatyan, S. M. Taheri Balanoji, and S. M. Taheri Balanoji, “Square array of optical vortices generated by multiregion spiral square zone plate,” J. Opt. Soc. Am. A 33(9), 1793–1797 (2016).
[Crossref] [PubMed]

A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
[Crossref] [PubMed]

2015 (3)

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2(6), 547–552 (2015).
[Crossref]

V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “Vortex Hermite-Gaussian laser beams,” Opt. Lett. 40(5), 701–704 (2015).
[Crossref] [PubMed]

2013 (7)

S. P. Kotova, V. V. Patlan, and S. A. Samagin, “Focusing light into a line segment of arbitrary orientation using a four-channel liquid crystal light modulator,” J. Opt. 15(3), 035706 (2013).
[Crossref]

B. Yang and E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15(4), 044021 (2013).
[Crossref]

Y. Jin, O. J. Allegre, W. Perrie, K. Abrams, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions,” Opt. Express 21(21), 25333–25343 (2013).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express 21(18), 21198–21207 (2013).
[Crossref] [PubMed]

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, “Harnessing optical vortex lattices in nematic liquid crystals,” Phys. Rev. Lett. 111(9), 093902 (2013).
[Crossref] [PubMed]

C.-F. Kuo and S.-C. Chu, “Numerical study of the properties of optical vortex array laser tweezers,” Opt. Express 21(22), 26418–26431 (2013).
[Crossref] [PubMed]

2012 (7)

S.-C. Chu, Y.-T. Chen, K.-F. Tsai, and K. Otsuka, “Generation of high-order Hermite-Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation,” Opt. Express 20(7), 7128–7141 (2012).
[Crossref] [PubMed]

E. Brasselet, “Tunable optical vortex arrays from a single nematic topological defect,” Phys. Rev. Lett. 108(8), 087801 (2012).
[Crossref] [PubMed]

P. García-Martínez, M. M. Sánchez-López, J. A. Davis, D. M. Cottrell, D. Sand, and I. Moreno, “Generation of Bessel beam arrays through Dammann gratings,” Appl. Opt. 51(9), 1375–1381 (2012).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

I. Augustyniak, A. Popiołek-Masajada, J. Masajada, and S. Drobczyński, “New scanning technique for the optical vortex microscope,” Appl. Opt. 51(10), C117–C124 (2012).
[Crossref] [PubMed]

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80(3), 211–215 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

2011 (3)

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A 83(5), 053813 (2011).
[Crossref]

2010 (2)

C.-S. Guo, Y.-N. Yu, and Z. Hong, “Optical sorting using an array of optical vortices with fractional topological charge,” Opt. Commun. 283(9), 1889–1893 (2010).
[Crossref]

E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

2009 (3)

G.-X. Wei, L.-L. Lu, and C.-S. Guo, “Generation of optical vortex array based on the fractional Talbot effect,” Opt. Commun. 282(14), 2665–2669 (2009).
[Crossref]

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A, Pure Appl. Opt. 11(6), 065702 (2009).
[Crossref]

L.-G. Wang, L.-Q. Wang, and S.-Y. Zhu, “Formation of optical vortices using coherent laser beam arrays,” Opt. Commun. 282(6), 1088–1094 (2009).
[Crossref]

2008 (2)

2007 (4)

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

2005 (1)

T. Alieva, M. J. Bastiaans, and M. L. Calvo, “Fractional transforms in optical information processing,” EURASIP J. Adv. Signal Process. 10, 1–22 (2005).

2004 (3)

2002 (3)

A. Dreischuh, S. Chervenkov, D. Neshev, G. G. Paulus, and H. Walther, “Generation of lattice structures of optical vortices,” J. Opt. Soc. Am. B 19(3), 550–556 (2002).
[Crossref]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

2001 (2)

J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1–3), 21–27 (2001).
[Crossref]

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48(10), 1543–1557 (2001).
[Crossref]

2000 (1)

1999 (1)

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, J. Lautanen, M. Honkanen, and J. P. Turunen, “Generation of Gauss-Hermite modes using binary DOEs,” Proc. SPIE 4016, 234–239 (1999).
[Crossref]

1997 (1)

1993 (1)

M. W. Beijersbergen, L. Allen, H. E. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

1992 (2)

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The rotor phase filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1991 (1)

E. G. Abramochkin and V. G. Volostnikov, “Beam transformation and nontransformed beams,” Opt. Commun. 83(1–2), 123–125 (1991).
[Crossref]

1990 (1)

V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52(8), 429–431 (1990).

1989 (1)

1966 (1)

Abramochkin, E. G.

E. G. Abramochkin and V. G. Volostnikov, “Beam transformation and nontransformed beams,” Opt. Commun. 83(1–2), 123–125 (1991).
[Crossref]

Abrams, K.

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Alieva, T.

T. Alieva, M. J. Bastiaans, and M. L. Calvo, “Fractional transforms in optical information processing,” EURASIP J. Adv. Signal Process. 10, 1–22 (2005).

Allegre, O. J.

Allen, L.

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[Crossref] [PubMed]

M. W. Beijersbergen, L. Allen, H. E. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Assanto, G.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, “Harnessing optical vortex lattices in nematic liquid crystals,” Phys. Rev. Lett. 111(9), 093902 (2013).
[Crossref] [PubMed]

Augustyniak, I.

Balalayev, S. A.

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A, Pure Appl. Opt. 11(6), 065702 (2009).
[Crossref]

Barboza, R.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, “Harnessing optical vortex lattices in nematic liquid crystals,” Phys. Rev. Lett. 111(9), 093902 (2013).
[Crossref] [PubMed]

Bastiaans, M. J.

T. Alieva, M. J. Bastiaans, and M. L. Calvo, “Fractional transforms in optical information processing,” EURASIP J. Adv. Signal Process. 10, 1–22 (2005).

Bazhenov, V. Yu.

V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52(8), 429–431 (1990).

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. E. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Beresna, M.

Bortolozzo, U.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, “Harnessing optical vortex lattices in nematic liquid crystals,” Phys. Rev. Lett. 111(9), 093902 (2013).
[Crossref] [PubMed]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brasselet, E.

B. Yang and E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15(4), 044021 (2013).
[Crossref]

E. Brasselet, “Tunable optical vortex arrays from a single nematic topological defect,” Phys. Rev. Lett. 108(8), 087801 (2012).
[Crossref] [PubMed]

E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

Cai, X.

H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2(6), 547–552 (2015).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Calvo, M. L.

T. Alieva, M. J. Bastiaans, and M. L. Calvo, “Fractional transforms in optical information processing,” EURASIP J. Adv. Signal Process. 10, 1–22 (2005).

Cao, Z.

Y. Lu, B. Jiang, S. Lu, Y. Liu, S. Li, Z. Cao, and X. Qi, “Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram,” Opt. Commun. 363, 85–90 (2016).
[Crossref]

Cesar, J.

Chen, L.

Chen, Y. F.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A 83(5), 053813 (2011).
[Crossref]

Chen, Y.-T.

Chervenkov, S.

Chipouline, A.

Chu, D.

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

Chu, J.

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

Chu, S.-C.

Clerc, M. G.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, “Harnessing optical vortex lattices in nematic liquid crystals,” Phys. Rev. Lett. 111(9), 093902 (2013).
[Crossref] [PubMed]

Cofré, A.

A. Cofré, P. Garcia-Martinez, A. Vargas, and I. Moreno, “Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-crystal display with limited phase modulation,” Eur. J. Phys. 38(1), 014005 (2017).
[Crossref]

Cottrell, D. M.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Danilov, P.

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

Davis, J. A.

De Angelis, F.

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip,” Nano Lett. 16(10), 6636–6643 (2016).
[Crossref] [PubMed]

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Optical vortex beam generator at nanoscale level,” Sci. Rep. 6(1), 29547 (2016).
[Crossref] [PubMed]

Dearden, G.

Dholakia, K.

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dreischuh, A.

Drobczynski, S.

Dubik, B.

J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1–3), 21–27 (2001).
[Crossref]

Edwardson, S. P.

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Fearon, E.

Fu, S.

Gao, C.

Gao, P.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Garcia-Martinez, P.

A. Cofré, P. Garcia-Martinez, A. Vargas, and I. Moreno, “Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-crystal display with limited phase modulation,” Eur. J. Phys. 38(1), 014005 (2017).
[Crossref]

García-Martínez, P.

Garoli, D.

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip,” Nano Lett. 16(10), 6636–6643 (2016).
[Crossref] [PubMed]

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Optical vortex beam generator at nanoscale level,” Sci. Rep. 6(1), 29547 (2016).
[Crossref] [PubMed]

Gecevicius, M.

Gorodetski, Y.

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip,” Nano Lett. 16(10), 6636–6643 (2016).
[Crossref] [PubMed]

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Optical vortex beam generator at nanoscale level,” Sci. Rep. 6(1), 29547 (2016).
[Crossref] [PubMed]

Grier, D.

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Guo, C.-S.

C.-S. Guo, Y.-N. Yu, and Z. Hong, “Optical sorting using an array of optical vortices with fractional topological charge,” Opt. Commun. 283(9), 1889–1893 (2010).
[Crossref]

G.-X. Wei, L.-L. Lu, and C.-S. Guo, “Generation of optical vortex array based on the fractional Talbot effect,” Opt. Commun. 282(14), 2665–2669 (2009).
[Crossref]

Gurbatov, S.

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

Hasegawa, S.

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser manipulation for advanced material processing,” Adv. Opt. Technol. 5(1), 39–54 (2016).

Hayasaki, Y.

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser manipulation for advanced material processing,” Adv. Opt. Technol. 5(1), 39–54 (2016).

Ho, Y.-L. D.

Hong, Z.

C.-S. Guo, Y.-N. Yu, and Z. Hong, “Optical sorting using an array of optical vortices with fractional topological charge,” Opt. Commun. 283(9), 1889–1893 (2010).
[Crossref]

Honkanen, M.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, J. Lautanen, M. Honkanen, and J. P. Turunen, “Generation of Gauss-Hermite modes using binary DOEs,” Proc. SPIE 4016, 234–239 (1999).
[Crossref]

Hradil, Z.

G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004).
[Crossref] [PubMed]

Huang, D.

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80(3), 211–215 (2012).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, K. F.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A 83(5), 053813 (2011).
[Crossref]

Ionin, A.

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

Jia, P.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Jiang, B.

Y. Lu, B. Jiang, S. Lu, Y. Liu, S. Li, Z. Cao, and X. Qi, “Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram,” Opt. Commun. 363, 85–90 (2016).
[Crossref]

Jin, J.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Jin, Y.

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Joseph, J.

A. Kapoor, M. Kumar, P. Senthilkumaran, and J. Joseph, “Optical vortex array in spatially varying lattice,” Opt. Commun. 365, 99–102 (2016).
[Crossref]

Juodkazis, S.

E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

Kapoor, A.

A. Kapoor, M. Kumar, P. Senthilkumaran, and J. Joseph, “Optical vortex array in spatially varying lattice,” Opt. Commun. 365, 99–102 (2016).
[Crossref]

Kartashov, Y. V.

Kazansky, P. G.

Khonina, S.

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

Khonina, S. N.

A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
[Crossref] [PubMed]

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A, Pure Appl. Opt. 11(6), 065702 (2009).
[Crossref]

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48(10), 1543–1557 (2001).
[Crossref]

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, J. Lautanen, M. Honkanen, and J. P. Turunen, “Generation of Gauss-Hermite modes using binary DOEs,” Proc. SPIE 4016, 234–239 (1999).
[Crossref]

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The rotor phase filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

Kogelnik, H.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Kotlyar, V. V.

V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “Vortex Hermite-Gaussian laser beams,” Opt. Lett. 40(5), 701–704 (2015).
[Crossref] [PubMed]

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A, Pure Appl. Opt. 11(6), 065702 (2009).
[Crossref]

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48(10), 1543–1557 (2001).
[Crossref]

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, J. Lautanen, M. Honkanen, and J. P. Turunen, “Generation of Gauss-Hermite modes using binary DOEs,” Proc. SPIE 4016, 234–239 (1999).
[Crossref]

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The rotor phase filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

Kotova, S. P.

S. P. Kotova, V. V. Patlan, and S. A. Samagin, “Focusing light into a line segment of arbitrary orientation using a four-channel liquid crystal light modulator,” J. Opt. 15(3), 035706 (2013).
[Crossref]

Kovalev, A. A.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Kuchmizhak, A.

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

Kudryashov, S.

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

Kulchin, Y.

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

Kumar, M.

A. Kapoor, M. Kumar, P. Senthilkumaran, and J. Joseph, “Optical vortex array in spatially varying lattice,” Opt. Commun. 365, 99–102 (2016).
[Crossref]

Kuo, C.-F.

Küppers, F.

Ladavac, K.

Lautanen, J.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, J. Lautanen, M. Honkanen, and J. P. Turunen, “Generation of Gauss-Hermite modes using binary DOEs,” Proc. SPIE 4016, 234–239 (1999).
[Crossref]

Lei, T.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Leniec, M.

Li, H.

Li, S.

Y. Lu, B. Jiang, S. Lu, Y. Liu, S. Li, Z. Cao, and X. Qi, “Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram,” Opt. Commun. 363, 85–90 (2016).
[Crossref]

Li, T.

Li, X.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

Li, Y.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Li, Z.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liang, H. C.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A 83(5), 053813 (2011).
[Crossref]

Lin, J.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Lin, Y. C.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A 83(5), 053813 (2011).
[Crossref]

Liu, G. N.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liu, Y.

Y. Lu, B. Jiang, S. Lu, Y. Liu, S. Li, Z. Cao, and X. Qi, “Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram,” Opt. Commun. 363, 85–90 (2016).
[Crossref]

Lu, L.-L.

G.-X. Wei, L.-L. Lu, and C.-S. Guo, “Generation of optical vortex array based on the fractional Talbot effect,” Opt. Commun. 282(14), 2665–2669 (2009).
[Crossref]

Lu, S.

Y. Lu, B. Jiang, S. Lu, Y. Liu, S. Li, Z. Cao, and X. Qi, “Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram,” Opt. Commun. 363, 85–90 (2016).
[Crossref]

Lu, Y.

Y. Lu, B. Jiang, S. Lu, Y. Liu, S. Li, Z. Cao, and X. Qi, “Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram,” Opt. Commun. 363, 85–90 (2016).
[Crossref]

Luo, J.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Luo, X.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Lyubopytov, V. S.

Ma, X.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Mait, J. N.

Makarov, S.

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

Malinauskas, M.

E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Masajada, J.

Massari, M.

G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
[Crossref] [PubMed]

Milichko, V.

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

Min, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Molina-Terriza, G.

G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004).
[Crossref] [PubMed]

G. Molina-Terriza, J. Recolons, and L. Torner, “The curious arithmetic of optical vortices,” Opt. Lett. 25(16), 1135–1137 (2000).
[Crossref] [PubMed]

Moreno, I.

A. Cofré, P. Garcia-Martinez, A. Vargas, and I. Moreno, “Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-crystal display with limited phase modulation,” Eur. J. Phys. 38(1), 014005 (2017).
[Crossref]

P. García-Martínez, M. M. Sánchez-López, J. A. Davis, D. M. Cottrell, D. Sand, and I. Moreno, “Generation of Bessel beam arrays through Dammann gratings,” Appl. Opt. 51(9), 1375–1381 (2012).
[Crossref] [PubMed]

Munro, P.

Neshev, D.

Niu, H.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Otsuka, K.

Ouyang, J.

Paakkonen, P.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48(10), 1543–1557 (2001).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Padgett, M. J.

Paganin, D. M.

G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(6), 066613 (2007).
[Crossref] [PubMed]

Paivanranta, B.

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A, Pure Appl. Opt. 11(6), 065702 (2009).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Patlan, V. V.

S. P. Kotova, V. V. Patlan, and S. A. Samagin, “Focusing light into a line segment of arbitrary orientation using a four-channel liquid crystal light modulator,” J. Opt. 15(3), 035706 (2013).
[Crossref]

Paul, S.

Paulus, G. G.

Perrie, W.

Phillips, D. B.

Popiolek-Masajada, A.

Porfirev, A.

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

Porfirev, A. P.

A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
[Crossref] [PubMed]

V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “Vortex Hermite-Gaussian laser beams,” Opt. Lett. 40(5), 701–704 (2015).
[Crossref] [PubMed]

Pu, M.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Pustovalov, E.

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

Qi, X.

Y. Lu, B. Jiang, S. Lu, Y. Liu, S. Li, Z. Cao, and X. Qi, “Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram,” Opt. Commun. 363, 85–90 (2016).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Recolons, J.

Rehácek, J.

G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Residori, S.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, “Harnessing optical vortex lattices in nematic liquid crystals,” Phys. Rev. Lett. 111(9), 093902 (2013).
[Crossref] [PubMed]

Roberts, A.

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80(3), 211–215 (2012).
[Crossref]

Romanato, F.

G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
[Crossref] [PubMed]

Ruben, G.

G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(6), 066613 (2007).
[Crossref] [PubMed]

Ruffato, G.

G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
[Crossref] [PubMed]

Sabatyan, A.

Samagin, S. A.

S. P. Kotova, V. V. Patlan, and S. A. Samagin, “Focusing light into a line segment of arbitrary orientation using a four-channel liquid crystal light modulator,” J. Opt. 15(3), 035706 (2013).
[Crossref]

Sánchez-López, M. M.

Sand, D.

Sandhu, A. S.

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80(3), 211–215 (2012).
[Crossref]

Schumann, M. F.

Senthilkumaran, P.

Shinkarev, M. V.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The rotor phase filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

Shivaram, N.

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80(3), 211–215 (2012).
[Crossref]

Simonen, J.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48(10), 1543–1557 (2001).
[Crossref]

Simpson, N. B.

Skidanov, R. V.

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A, Pure Appl. Opt. 11(6), 065702 (2009).
[Crossref]

Smithwick, Q.

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

Soifer, V. A.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48(10), 1543–1557 (2001).
[Crossref]

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, J. Lautanen, M. Honkanen, and J. P. Turunen, “Generation of Gauss-Hermite modes using binary DOEs,” Proc. SPIE 4016, 234–239 (1999).
[Crossref]

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The rotor phase filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Soskin, M. S.

V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52(8), 429–431 (1990).

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Su, K. W.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A 83(5), 053813 (2011).
[Crossref]

Syubaev, S.

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

Taheri Balanoji, S. M.

Tantussi, F.

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Optical vortex beam generator at nanoscale level,” Sci. Rep. 6(1), 29547 (2016).
[Crossref] [PubMed]

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip,” Nano Lett. 16(10), 6636–6643 (2016).
[Crossref] [PubMed]

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Timmers, H.

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80(3), 211–215 (2012).
[Crossref]

Torner, L.

Török, P.

Tsai, K.-F.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Turunen, J.

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A, Pure Appl. Opt. 11(6), 065702 (2009).
[Crossref]

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48(10), 1543–1557 (2001).
[Crossref]

Turunen, J. P.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, J. Lautanen, M. Honkanen, and J. P. Turunen, “Generation of Gauss-Hermite modes using binary DOEs,” Proc. SPIE 4016, 234–239 (1999).
[Crossref]

Tzeng, Y. S.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A 83(5), 053813 (2011).
[Crossref]

Uspleniev, G. V.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The rotor phase filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

Ustinov, A. V.

A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
[Crossref] [PubMed]

Van der Veen, H. E.

M. W. Beijersbergen, L. Allen, H. E. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

Vargas, A.

A. Cofré, P. Garcia-Martinez, A. Vargas, and I. Moreno, “Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-crystal display with limited phase modulation,” Eur. J. Phys. 38(1), 014005 (2017).
[Crossref]

Vasnetsov, M. V.

V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52(8), 429–431 (1990).

Vaziri, A.

G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004).
[Crossref] [PubMed]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

Vidal-Henriquez, E.

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, “Harnessing optical vortex lattices in nematic liquid crystals,” Phys. Rev. Lett. 111(9), 093902 (2013).
[Crossref] [PubMed]

Vitrik, O.

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

Volostnikov, V. G.

E. G. Abramochkin and V. G. Volostnikov, “Beam transformation and nontransformed beams,” Opt. Commun. 83(1–2), 123–125 (1991).
[Crossref]

Vyas, S.

Vysloukh, V. A.

Walther, H.

Wang, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, L.-G.

L.-G. Wang, L.-Q. Wang, and S.-Y. Zhu, “Formation of optical vortices using coherent laser beam arrays,” Opt. Commun. 282(6), 1088–1094 (2009).
[Crossref]

Wang, L.-Q.

L.-G. Wang, L.-Q. Wang, and S.-Y. Zhu, “Formation of optical vortices using coherent laser beam arrays,” Opt. Commun. 282(6), 1088–1094 (2009).
[Crossref]

Wang, T.

Wang, X.

Wang, Y.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Wegener, M.

Wei, G.-X.

G.-X. Wei, L.-L. Lu, and C.-S. Guo, “Generation of optical vortex array based on the fractional Talbot effect,” Opt. Commun. 282(14), 2665–2669 (2009).
[Crossref]

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

M. W. Beijersbergen, L. Allen, H. E. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Xu, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, B.

B. Yang and E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15(4), 044021 (2013).
[Crossref]

Yang, C.-S.

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yu, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yu, S.

H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2(6), 547–552 (2015).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Yu, Y.-N.

C.-S. Guo, Y.-N. Yu, and Z. Hong, “Optical sorting using an array of optical vortices with fractional topological charge,” Opt. Commun. 283(9), 1889–1893 (2010).
[Crossref]

Yuan, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004).
[Crossref] [PubMed]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

Zhang, M.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Zhao, Z.

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Zhizhchenko, A.

Zhou, X.

Zhu, J.

H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2(6), 547–552 (2015).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Zhu, S.-Y.

L.-G. Wang, L.-Q. Wang, and S.-Y. Zhu, “Formation of optical vortices using coherent laser beam arrays,” Opt. Commun. 282(6), 1088–1094 (2009).
[Crossref]

Zilio, P.

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Optical vortex beam generator at nanoscale level,” Sci. Rep. 6(1), 29547 (2016).
[Crossref] [PubMed]

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip,” Nano Lett. 16(10), 6636–6643 (2016).
[Crossref] [PubMed]

Zukauskas, A.

E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

ACS Appl. Mater. Interfaces (1)

A. Kuchmizhak, E. Pustovalov, S. Syubaev, O. Vitrik, Y. Kulchin, A. Porfirev, S. Khonina, S. Kudryashov, P. Danilov, and A. Ionin, “On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications,” ACS Appl. Mater. Interfaces 8(37), 24946–24955 (2016).
[Crossref] [PubMed]

Adv. Mater. Technol. (1)

J. Jin, M. Pu, Y. Wang, X. Li, X. Ma, J. Luo, Z. Zhao, P. Gao, and X. Luo, “Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial,” Adv. Mater. Technol. 2(2), 1600201 (2017).
[Crossref]

Adv. Opt. Technol. (1)

S. Hasegawa and Y. Hayasaki, “Holographic femtosecond laser manipulation for advanced material processing,” Adv. Opt. Technol. 5(1), 39–54 (2016).

Am. J. Phys. (1)

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80(3), 211–215 (2012).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

Eur. J. Phys. (1)

A. Cofré, P. Garcia-Martinez, A. Vargas, and I. Moreno, “Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-crystal display with limited phase modulation,” Eur. J. Phys. 38(1), 014005 (2017).
[Crossref]

EURASIP J. Adv. Signal Process. (1)

T. Alieva, M. J. Bastiaans, and M. L. Calvo, “Fractional transforms in optical information processing,” EURASIP J. Adv. Signal Process. 10, 1–22 (2005).

J. Mod. Opt. (2)

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, P. Paakkonen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48(10), 1543–1557 (2001).
[Crossref]

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The rotor phase filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

J. Opt. (3)

B. Yang and E. Brasselet, “Arbitrary vortex arrays realized from optical winding of frustrated chiral liquid crystals,” J. Opt. 15(4), 044021 (2013).
[Crossref]

S. P. Kotova, V. V. Patlan, and S. A. Samagin, “Focusing light into a line segment of arbitrary orientation using a four-channel liquid crystal light modulator,” J. Opt. 15(3), 035706 (2013).
[Crossref]

X. Li, J. Chu, Q. Smithwick, and D. Chu, “Automultiscopic displays based on orbital angular momentum of light,” J. Opt. 18(8), 085608 (2016).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A, Pure Appl. Opt. 11(6), 065702 (2009).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52(8), 429–431 (1990).

Light Sci. Appl. (1)

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Nano Lett. (1)

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip,” Nano Lett. 16(10), 6636–6643 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Commun. (9)

G.-X. Wei, L.-L. Lu, and C.-S. Guo, “Generation of optical vortex array based on the fractional Talbot effect,” Opt. Commun. 282(14), 2665–2669 (2009).
[Crossref]

Y. Lu, B. Jiang, S. Lu, Y. Liu, S. Li, Z. Cao, and X. Qi, “Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram,” Opt. Commun. 363, 85–90 (2016).
[Crossref]

A. Kapoor, M. Kumar, P. Senthilkumaran, and J. Joseph, “Optical vortex array in spatially varying lattice,” Opt. Commun. 365, 99–102 (2016).
[Crossref]

C.-S. Guo, Y.-N. Yu, and Z. Hong, “Optical sorting using an array of optical vortices with fractional topological charge,” Opt. Commun. 283(9), 1889–1893 (2010).
[Crossref]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

L.-G. Wang, L.-Q. Wang, and S.-Y. Zhu, “Formation of optical vortices using coherent laser beam arrays,” Opt. Commun. 282(6), 1088–1094 (2009).
[Crossref]

J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1–3), 21–27 (2001).
[Crossref]

E. G. Abramochkin and V. G. Volostnikov, “Beam transformation and nontransformed beams,” Opt. Commun. 83(1–2), 123–125 (1991).
[Crossref]

M. W. Beijersbergen, L. Allen, H. E. Van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1–3), 123–132 (1993).
[Crossref]

Opt. Express (9)

K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
[Crossref] [PubMed]

P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004).
[Crossref] [PubMed]

J. Masajada, A. Popiolek-Masajada, and M. Leniec, “Creation of vortex lattices by a wavefront division,” Opt. Express 15(8), 5196–5207 (2007).
[Crossref] [PubMed]

S.-C. Chu, C.-S. Yang, and K. Otsuka, “Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer,” Opt. Express 16(24), 19934–19949 (2008).
[Crossref] [PubMed]

S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S. Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017).
[Crossref] [PubMed]

S.-C. Chu, Y.-T. Chen, K.-F. Tsai, and K. Otsuka, “Generation of high-order Hermite-Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation,” Opt. Express 20(7), 7128–7141 (2012).
[Crossref] [PubMed]

O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Complete wavefront and polarization control for ultrashort-pulse laser microprocessing,” Opt. Express 21(18), 21198–21207 (2013).
[Crossref] [PubMed]

Y. Jin, O. J. Allegre, W. Perrie, K. Abrams, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions,” Opt. Express 21(21), 25333–25343 (2013).
[Crossref] [PubMed]

C.-F. Kuo and S.-C. Chu, “Numerical study of the properties of optical vortex array laser tweezers,” Opt. Express 21(22), 26418–26431 (2013).
[Crossref] [PubMed]

Opt. Lett. (6)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. A (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A 83(5), 053813 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

G. Ruben and D. M. Paganin, “Phase vortices from a Young’s three-pinhole interferometer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(6), 066613 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[Crossref] [PubMed]

G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004).
[Crossref] [PubMed]

R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, “Harnessing optical vortex lattices in nematic liquid crystals,” Phys. Rev. Lett. 111(9), 093902 (2013).
[Crossref] [PubMed]

E. Brasselet, “Tunable optical vortex arrays from a single nematic topological defect,” Phys. Rev. Lett. 108(8), 087801 (2012).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, J. Lautanen, M. Honkanen, and J. P. Turunen, “Generation of Gauss-Hermite modes using binary DOEs,” Proc. SPIE 4016, 234–239 (1999).
[Crossref]

Sci. Rep. (4)

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De Angelis, “Optical vortex beam generator at nanoscale level,” Sci. Rep. 6(1), 29547 (2016).
[Crossref] [PubMed]

A. P. Porfirev, A. V. Ustinov, and S. N. Khonina, “Polarization conversion when focusing cylindrically polarized vortex beams,” Sci. Rep. 6(1), 6 (2016).
[Crossref] [PubMed]

G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

Science (2)

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Combination of a SPP and the HG-mode generator to generate EVHG beams. Left column represents the light field distributions in the initial plane (z = 0). Right column represents the generated light field distributions in the back focal plane of a converging lens.
Fig. 2
Fig. 2 Transformations of various EVHG beams as they pass through the lens system. A converging lens with a focal length of f = 300 mm is located in the initial plane (z = 0). The laser beam propagates from left to right.
Fig. 3
Fig. 3 (A) Schematic of the experimental setup for investigation of two-level pure-phase optical vortex beam splitter. (B) Beam intensity distributions and interferograms measured in different planes of the experimental setup. In the transition from the plane 1 to the plane 2, a phase singularity is embedded into the laser beam and it acquires a donut-shape corresponding to a first-order vortex beam. The HG33 mode generator (the phase pattern is shown in the inset) splits the first-order optical vortex beam in the focal plane of the fourth lens (plane 3).
Fig. 4
Fig. 4 Phase pattern of the two-level splitters utilized to generate multiple optical vortex beams (black, 0; white, π).
Fig. 5
Fig. 5 Experimentally obtained intensity distributions and interferograms of multiple optical vortex beams generated using a combination of a first-order optical vortex generator and an HGnm mode former. The arrows indicate the positions of the phase singularities in the images of the interferograms. The scale bar is 1 mm.
Fig. 6
Fig. 6 (A) Schematic representation of the controlled change in the ratio of the radius of the incident first-order vortex beam Rbeam and the radius of the utilized splitter R0. (B)-(С) Simulated and experimentally obtained intensity distributions and interferograms of multiple optical vortex beams generated at different values Rbeam/R0 for splitters with parameters n = 2, m = 2 and n = 3, m = 3. The arrows indicate the positions of the phase singularities in the images of the interferograms. The change in the number of phase singularities with decrease of Rbeam/R0 can be clearly seen. The scale bar is 1 mm.
Fig. 7
Fig. 7 The simulation results for an effect of the wavelength of the initial single first-order vortex beam on the distortion of the multiple optical vortex beams generated by a two-level pure-phase splitter designed for operation with laser radiation at a wavelength of 532 nm. The inset shows a way to measure Iout and I0 used for evaluation.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Ψ nms (x,y)=exp( x 2 +y 2 2σ 2 ) H n ( x σ ) H m ( y σ ) ( x+iy ) s ,
E( ρ,θ,z )= ik 2πfsin( αz ) exp( ikz )exp( ik ρ 2 2ftan( αz ) )× × 0 2π 0 R E 0 ( r,φ )exp( ik r 2 2ftan( αz ) ) exp[ ikρr fsin( αz ) cos( θφ ) ]rdrdφ,
P nms (x,y)=A(r) C nms x n y m ( x+iy ) s ,
P nms (r,φ)=A(r) C nms ( rcosφ ) n ( rsinφ ) m r s exp( isφ ).
F nms (ρ,θ)= 2π λf 0 0 2π P nms (r,φ)exp [ i2π λf ρrcos(φθ) ]rdrdφ.
F nms (ρ,θ)= 2π λf C nms × × 0 A(r) r n+m+s+1 0 2π ( cosφ ) n ( sinφ ) m exp( isφ )exp [ i2π λf ρrcos(φθ) ]dφdr.
G ns (ρ,θ)= 0 2π ( cosφ ) n exp( isφ )exp[ ik f ρrcos(φθ) ] dφ= =exp(isθ) 0 2π ( cos(t+θ) ) n exp( ist )exp[ ik f ρrcos( t ) ] dt.
0 2π exp[ ik f ρrcosx ] cos(nx)dx=2π e inπ/2 J n ( k f ρr ).
F n,0,s (ρ,0)= 2π λf C n,0,s 0 e r 2 2 σ 2 r n+s+1 ( l=0 n a l J sn+2l ( kρr/f ) )dr .
0 x (ν+2+2t)1 e n x 2 J ν (cx)dx = t! c ν 2 ν+1 n t+ν+1 exp( c 2 4n ) L t ν ( c 2 4n ),
F n,0,s (ρ,0)= 2π λf C n,0,s exp( 1 2 ( kρσ f ) 2 ) σ 2s+2 × × l=0 n a l 2 nl (nl)! σ 2l ( kρ f ) sn+2l L nl sn+2l ( 1 2 ( kρσ f ) 2 ).
F 1,0,s (ρ,θ)= C 1,0,s i4 π 2 λf (kρ) s1 σ 2s+2 f s1 exp( 1 2 ( kρσ f ) 2 )× ×exp[ is( θ π 2 ) ]( sexp( iθ ) ( kρσ f ) 2 cosθ ).
F 1,0,1 (ρ,θ)= C 1,0,1 4 π 2 σ 4 λf exp( 1 2 ( kρσ f ) 2 )exp( iθ )( exp( iθ ) ( kρσ f ) 2 cosθ ).
F 2,0,s (ρ,θ)= C 2,0,s 4 π 2 λf (kρ) s2 σ 2s+2 f s2 exp( 1 2 ( kρσ f ) 2 )exp[ is( θ π 2 ) ]× ×[ s(s1)exp( i2θ )( s[ 1+exp( i2θ ) ]+1 ) ( kρσ f ) 2 + 1+cos2θ 2 ( kρσ f ) 4 ].
F 2,0,1 (ρ,θ)= C 2,0,1 i2 π 2 λf kρ σ 6 f exp( 1 2 ( kρσ f ) 2 )× ×exp( iθ )[ 4+2exp( i2θ ) ( kρσ f ) 2 (1+cos2θ) ].
F 1,1,s (ρ,θ)= C 1,1,s i2 π 2 λf (kρ) s2 σ 2s+2 f s2 exp( 1 2 ( kρσ f ) 2 )exp[ is( θ π 2 ) ]× ×[ 2s(s1)exp( i2θ )2sexp( i2θ ) ( kρσ f ) 2 isin2θ ( kρσ f ) 4 ].
F 1,1,1 (ρ,θ)= C 1,1,1 2 π 2 λf kρ σ 6 f exp( 1 2 ( kρσ f ) 2 )× ×exp( iθ )[ 2exp( i2θ )+i ( kρσ f ) 2 sin2θ ].
T nm (x,y)=exp( x 2 +y 2 σ 2 ) H n ( 2 x σ ) H m ( 2 y σ ).
N=(n+1)(m+1)+nm.
μ= l= l I l l= I l ,
μ= t 1 =1 ( n+1 )( m+1 ) I t 1 t 2 =1 nm I t 2 t 1 =1 ( n+1 )( m+1 ) I t 1 + t 2 =1 nm I t 2 ,

Metrics