Abstract

We propose and demonstrate a broadly wavelength-tunable mode-locked Ho3+/Pr3+-codoped ZBLAN fiber laser operating in the 3 μm mid-infrared spectral region based on a semiconductor saturable absorber mirror. Wavelength selection is realized by rotating a plane ruled grating. The fiber laser exhibits stable continuous-wave mode-locking operation over a wide wavelength tuning range of 34 nm (2842.2 nm~2876.2 nm), with a 10.17 MHz repetition rate and 22 ps pulse duration. Stable mode-locked pulses can be maintained until the launched pump power of 1.25 W. Maximum average output power of 127.7 mW and the corresponding pulse energy of 12.56 nJ are achieved. To the best of our knowledge, this is the first demonstration of a wavelength-tunable mode-locked fiber laser operating in the 3 μm spectral region. Such simple, robust, and versatile mid-infrared picosecond laser source can find various applications in laser surgery, spectroscopy, and nonlinear frequency conversion.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm

Chen Wei, Hongyu Luo, Hongxia Shi, YanJia Lyu, Han Zhang, and Yong Liu
Opt. Express 25(8) 8816-8827 (2017)

Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm

Jianfeng Li, Hongyu Luo, Lele Wang, Bo Zhai, Heping Li, and Yong Liu
Opt. Express 23(17) 22362-22370 (2015)

Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm

Hongyu Luo, Zhe Kang, Ying Gao, Hanlin Peng, Jianfeng Li, Guanshi Qin, and Yong Liu
Opt. Express 27(4) 4886-4896 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. K. Tittel, D. Richter, and A. Fried, Solid-State Mid-Infrared Laser Sources, (Springer, 2003), Chap. 11.
  2. K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
    [Crossref] [PubMed]
  3. M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36(21), 4122–4124 (2011).
    [Crossref] [PubMed]
  4. A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  5. M. Pollaun and S. D. Jackson, Mid-Infrared Coherent Sources and Applications, (Springer, 2008).
  6. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
    [Crossref]
  7. X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett. 32(16), 2381–2383 (2007).
    [Crossref] [PubMed]
  8. X. Zhu and R. Jain, “Watt-level 100-nm tunable 3 μm fiber laser,” IEEE Photonics Technol. Lett. 20(2), 156–158 (2008).
    [Crossref]
  9. S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett. 35(23), 3943–3945 (2010).
    [Crossref] [PubMed]
  10. L. Wetenkamp, Ch. Frerichs, G. F. West, and H. Tobben, “Efficient CW operation of tunable fluorozirconate fibre lasers at wavelengths pumpable with semiconductor laser diodes,” J. Non-Cryst. Solids 140, 19–24 (1992).
    [Crossref]
  11. L. Wetenkamp, “Efficient CW operation of a 2.9 μm Ho3+-doped fluorozirconate fiber laser pumped at 640 nm,” Electron. Lett. 26(13), 883–884 (1990).
    [Crossref]
  12. D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1 W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fiber laser,” Electron. Lett. 47(17), 985–986 (2011).
    [Crossref]
  13. J. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photonics Technol. Lett. 24(14), 1215–1217 (2012).
    [Crossref]
  14. S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
    [Crossref]
  15. M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
    [Crossref] [PubMed]
  16. O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
    [Crossref] [PubMed]
  17. G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber,” Opt. Express 23(6), 7559–7573 (2015).
    [Crossref] [PubMed]
  18. C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm,” Opt. Express 21(24), 29488–29504 (2013).
    [Crossref] [PubMed]
  19. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
    [Crossref]
  20. Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12(3), 274–281 (1992).
    [Crossref] [PubMed]
  21. H. A. Wigdor, J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16(2), 103–133 (1995).
    [Crossref] [PubMed]
  22. L. I. Deckelbaum, “Cardiovascular applications of laser technology,” Lasers Surg. Med. 15(4), 315–341 (1994).
    [Crossref] [PubMed]
  23. M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
    [Crossref] [PubMed]
  24. Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).
  25. C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
    [Crossref] [PubMed]
  26. J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
    [Crossref]
  27. J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
    [Crossref] [PubMed]
  28. G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe 2+: ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
    [Crossref]
  29. C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
    [Crossref]
  30. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref] [PubMed]
  31. C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
    [Crossref]
  32. S. Duval, M. Bernie, V. Forti, J. Genest, M. PicheI, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–626 (2015).
    [Crossref]
  33. T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
    [Crossref] [PubMed]
  34. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
    [Crossref] [PubMed]
  35. T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
    [Crossref] [PubMed]
  36. A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallée, “Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser,” Opt. Lett. 39(11), 3294–3297 (2014).
    [Crossref] [PubMed]
  37. P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, and L. Qian, “Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 40(21), 4855–4858 (2015).
    [Crossref] [PubMed]
  38. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 37(18), 3849–3851 (2012).
    [Crossref] [PubMed]
  39. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
    [Crossref] [PubMed]
  40. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
    [Crossref]
  41. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
    [Crossref] [PubMed]
  42. X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
    [Crossref]
  43. V. A. Serebryakov, É. V. Boĭko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers. Problems and prospects,” J. Opt. Technol. 77(1), 6–17 (2010).
    [Crossref]
  44. X. Zhu and R. Jain, “Watt-level 100-nm tunable 3 μm fiber laser,” IEEE Photonics Technol. Lett. 20(2), 156–158 (2008).
    [Crossref]

2017 (3)

2016 (6)

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
[Crossref] [PubMed]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
[Crossref] [PubMed]

2015 (8)

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber,” Opt. Express 23(6), 7559–7573 (2015).
[Crossref] [PubMed]

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

S. Duval, M. Bernie, V. Forti, J. Genest, M. PicheI, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–626 (2015).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref] [PubMed]

P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, and L. Qian, “Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 40(21), 4855–4858 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (3)

2012 (3)

2011 (3)

2010 (3)

2009 (1)

2008 (2)

X. Zhu and R. Jain, “Watt-level 100-nm tunable 3 μm fiber laser,” IEEE Photonics Technol. Lett. 20(2), 156–158 (2008).
[Crossref]

X. Zhu and R. Jain, “Watt-level 100-nm tunable 3 μm fiber laser,” IEEE Photonics Technol. Lett. 20(2), 156–158 (2008).
[Crossref]

2007 (2)

X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett. 32(16), 2381–2383 (2007).
[Crossref] [PubMed]

A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

1995 (1)

H. A. Wigdor, J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16(2), 103–133 (1995).
[Crossref] [PubMed]

1994 (1)

L. I. Deckelbaum, “Cardiovascular applications of laser technology,” Lasers Surg. Med. 15(4), 315–341 (1994).
[Crossref] [PubMed]

1992 (2)

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12(3), 274–281 (1992).
[Crossref] [PubMed]

L. Wetenkamp, Ch. Frerichs, G. F. West, and H. Tobben, “Efficient CW operation of tunable fluorozirconate fibre lasers at wavelengths pumpable with semiconductor laser diodes,” J. Non-Cryst. Solids 140, 19–24 (1992).
[Crossref]

1990 (1)

L. Wetenkamp, “Efficient CW operation of a 2.9 μm Ho3+-doped fluorozirconate fiber laser pumped at 640 nm,” Electron. Lett. 26(13), 883–884 (1990).
[Crossref]

Balakrishnan, K.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe 2+: ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

Bernie, M.

Bernier, M.

Birngruber, R.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12(3), 274–281 (1992).
[Crossref] [PubMed]

Boiko, É. V.

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Chen, Q.

Copic, M.

Crawford, S.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

Deckelbaum, L. I.

L. I. Deckelbaum, “Cardiovascular applications of laser technology,” Lasers Surg. Med. 15(4), 315–341 (1994).
[Crossref] [PubMed]

Deutsch, T. F.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12(3), 274–281 (1992).
[Crossref] [PubMed]

Duval, S.

Featherstone, J. D.

H. A. Wigdor, J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16(2), 103–133 (1995).
[Crossref] [PubMed]

Feng, G. B.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Flotte, T. J.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12(3), 274–281 (1992).
[Crossref] [PubMed]

Forti, V.

Fortin, V.

Freeman, M. J.

Frerichs, Ch.

L. Wetenkamp, Ch. Frerichs, G. F. West, and H. Tobben, “Efficient CW operation of tunable fluorozirconate fibre lasers at wavelengths pumpable with semiconductor laser diodes,” J. Non-Cryst. Solids 140, 19–24 (1992).
[Crossref]

Fried, D.

H. A. Wigdor, J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16(2), 103–133 (1995).
[Crossref] [PubMed]

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Genest, J.

Geng, L.

Godard, A.

A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Gomes, L.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1 W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fiber laser,” Electron. Lett. 47(17), 985–986 (2011).
[Crossref]

Gorjan, M.

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Guo, Z.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Haboucha, A.

Halonen, L.

Hashida, M.

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Henderson-Sapir, O.

Hirokane, M.

Hu, T.

Huang, K.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Hudson, D.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1 W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fiber laser,” Electron. Lett. 47(17), 985–986 (2011).
[Crossref]

Hudson, D. D.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
[Crossref] [PubMed]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photonics Technol. Lett. 24(14), 1215–1217 (2012).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

Islam, M. N.

Jackson, S. D.

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
[Crossref] [PubMed]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref] [PubMed]

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
[Crossref] [PubMed]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photonics Technol. Lett. 24(14), 1215–1217 (2012).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1 W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fiber laser,” Electron. Lett. 47(17), 985–986 (2011).
[Crossref]

Jain, R.

X. Zhu and R. Jain, “Watt-level 100-nm tunable 3 μm fiber laser,” IEEE Photonics Technol. Lett. 20(2), 156–158 (2008).
[Crossref]

X. Zhu and R. Jain, “Watt-level 100-nm tunable 3 μm fiber laser,” IEEE Photonics Technol. Lett. 20(2), 156–158 (2008).
[Crossref]

X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett. 32(16), 2381–2383 (2007).
[Crossref] [PubMed]

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Ke, K.

Konynenbelt, K.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Kotov, L. V.

Li, C.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Li, H.

Li, J.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photonics Technol. Lett. 24(14), 1215–1217 (2012).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

Li, L.

Li, Y.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Liu, J.

Liu, Y.

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

Lu, R.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Luan, K. P.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Luo, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

Lyu, Y.

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Magi, E.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1 W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fiber laser,” Electron. Lett. 47(17), 985–986 (2011).
[Crossref]

Majewski, M. R.

Manzur, T.

Marincek, M.

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Merimaa, M.

Messaddeq, Y.

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Murakami, M.

Norwood, R. A.

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Ottaway, D. J.

Petkovšek, R.

Petrishchev, N. N.

Peyghambarian, N.

PicheI, M.

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Puliafito, C. A.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12(3), 274–281 (1992).
[Crossref] [PubMed]

Qian, L.

Qin, Z.

Ren, Q.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12(3), 274–281 (1992).
[Crossref] [PubMed]

Sakabe, S.

Schomacker, K.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12(3), 274–281 (1992).
[Crossref] [PubMed]

Serebryakov, V. A.

Shen, Y. L.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Shi, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

Shimizu, S.

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Song, F.

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Tang, P.

Tobben, H.

L. Wetenkamp, Ch. Frerichs, G. F. West, and H. Tobben, “Efficient CW operation of tunable fluorozirconate fibre lasers at wavelengths pumpable with semiconductor laser diodes,” J. Non-Cryst. Solids 140, 19–24 (1992).
[Crossref]

Tokita, S.

Tong, M.

Vainio, M.

Vallée, R.

Venugopalan, V.

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12(3), 274–281 (1992).
[Crossref] [PubMed]

Visuri, S. R.

H. A. Wigdor, J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16(2), 103–133 (1995).
[Crossref] [PubMed]

Waldvogel, J. L.

H. A. Wigdor, J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16(2), 103–133 (1995).
[Crossref] [PubMed]

Walsh, J. T.

H. A. Wigdor, J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16(2), 103–133 (1995).
[Crossref] [PubMed]

Wang, F.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Wang, J.

Wang, L.

Wei, C.

Welsh, M. J.

Wen, S.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

West, G. F.

L. Wetenkamp, Ch. Frerichs, G. F. West, and H. Tobben, “Efficient CW operation of tunable fluorozirconate fibre lasers at wavelengths pumpable with semiconductor laser diodes,” J. Non-Cryst. Solids 140, 19–24 (1992).
[Crossref]

Wetenkamp, L.

L. Wetenkamp, Ch. Frerichs, G. F. West, and H. Tobben, “Efficient CW operation of tunable fluorozirconate fibre lasers at wavelengths pumpable with semiconductor laser diodes,” J. Non-Cryst. Solids 140, 19–24 (1992).
[Crossref]

L. Wetenkamp, “Efficient CW operation of a 2.9 μm Ho3+-doped fluorozirconate fiber laser pumped at 640 nm,” Electron. Lett. 26(13), 883–884 (1990).
[Crossref]

Wigdor, H. A.

H. A. Wigdor, J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16(2), 103–133 (1995).
[Crossref] [PubMed]

Xia, C.

Xie, G.

Xie, J.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Xu, S.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Yan, A. V.

Yang, Y.

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

Ye, X. S.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Yi, A. Q.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Yu, L.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Yuan, P.

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Zhai, B.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

Zhang, H.

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

Zhao, C.

Zhou, S. Q.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Zhu, G.

Zhu, X.

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

G. Zhu, L. Geng, X. Zhu, L. Li, Q. Chen, R. A. Norwood, T. Manzur, and N. Peyghambarian, “Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber,” Opt. Express 23(6), 7559–7573 (2015).
[Crossref] [PubMed]

G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe 2+: ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm,” Opt. Express 21(24), 29488–29504 (2013).
[Crossref] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 37(18), 3849–3851 (2012).
[Crossref] [PubMed]

X. Zhu and R. Jain, “Watt-level 100-nm tunable 3 μm fiber laser,” IEEE Photonics Technol. Lett. 20(2), 156–158 (2008).
[Crossref]

X. Zhu and R. Jain, “Watt-level 100-nm tunable 3 μm fiber laser,” IEEE Photonics Technol. Lett. 20(2), 156–158 (2008).
[Crossref]

X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett. 32(16), 2381–2383 (2007).
[Crossref] [PubMed]

C. R. Phys. (1)

A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Electron. Lett. (2)

L. Wetenkamp, “Efficient CW operation of a 2.9 μm Ho3+-doped fluorozirconate fiber laser pumped at 640 nm,” Electron. Lett. 26(13), 883–884 (1990).
[Crossref]

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1 W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fiber laser,” Electron. Lett. 47(17), 985–986 (2011).
[Crossref]

IEEE Photonics J. (1)

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (5)

J. Li, D. D. Hudson, and S. D. Jackson, “Tuned cascade laser,” IEEE Photonics Technol. Lett. 24(14), 1215–1217 (2012).
[Crossref]

X. Zhu and R. Jain, “Watt-level 100-nm tunable 3 μm fiber laser,” IEEE Photonics Technol. Lett. 20(2), 156–158 (2008).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photonics Technol. Lett. 29(11), 881–884 (2017).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

X. Zhu and R. Jain, “Watt-level 100-nm tunable 3 μm fiber laser,” IEEE Photonics Technol. Lett. 20(2), 156–158 (2008).
[Crossref]

J. Non-Cryst. Solids (1)

L. Wetenkamp, Ch. Frerichs, G. F. West, and H. Tobben, “Efficient CW operation of tunable fluorozirconate fibre lasers at wavelengths pumpable with semiconductor laser diodes,” J. Non-Cryst. Solids 140, 19–24 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

Laser Phys. Lett. (3)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er: YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Lasers Surg. Med. (3)

Q. Ren, V. Venugopalan, K. Schomacker, T. F. Deutsch, T. J. Flotte, C. A. Puliafito, and R. Birngruber, “Mid-infrared laser ablation of the cornea: a comparative study,” Lasers Surg. Med. 12(3), 274–281 (1992).
[Crossref] [PubMed]

H. A. Wigdor, J. T. Walsh, J. D. Featherstone, S. R. Visuri, D. Fried, and J. L. Waldvogel, “Lasers in dentistry,” Lasers Surg. Med. 16(2), 103–133 (1995).
[Crossref] [PubMed]

L. I. Deckelbaum, “Cardiovascular applications of laser technology,” Lasers Surg. Med. 15(4), 315–341 (1994).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Opt. Lett. (13)

X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett. 32(16), 2381–2383 (2007).
[Crossref] [PubMed]

S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett. 35(23), 3943–3945 (2010).
[Crossref] [PubMed]

M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36(21), 4122–4124 (2011).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
[Crossref] [PubMed]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
[Crossref] [PubMed]

M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
[Crossref] [PubMed]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref] [PubMed]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class,” Opt. Lett. 39(7), 2133–2136 (2014).
[Crossref] [PubMed]

A. Haboucha, V. Fortin, M. Bernier, J. Genest, Y. Messaddeq, and R. Vallée, “Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser,” Opt. Lett. 39(11), 3294–3297 (2014).
[Crossref] [PubMed]

P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, and L. Qian, “Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 40(21), 4855–4858 (2015).
[Crossref] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 37(18), 3849–3851 (2012).
[Crossref] [PubMed]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Optica (1)

Proc. SPIE (1)

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Sci. Rep. (1)

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref] [PubMed]

Other (2)

F. K. Tittel, D. Richter, and A. Fried, Solid-State Mid-Infrared Laser Sources, (Springer, 2003), Chap. 11.

M. Pollaun and S. D. Jackson, Mid-Infrared Coherent Sources and Applications, (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the tunable passively mode-locked Ho3+/Pr3+ codoped fluoride fiber laser based on SESAM.
Fig. 2
Fig. 2 Average output power and Q-switched repetition rate with respect to the launched pump power. The three operation regimes are also shown. CW: continuous-wave operation; QSML: Q-switched mode-locking operation; CWML: continuous-wave mode-locking operation.
Fig. 3
Fig. 3 Pulse trains at various launched pump powers. (a) & (b) Q-switched mode-locked pulse trains at launched pump power of (a) 106.2 mW and (b) 504.3 mW. Insets: single pulse profiles; (c) CW mode-locked pulse trains at launched pump power of 856.8 mW. Inset: CW pulse train over a long time scale (70 ms).
Fig. 4
Fig. 4 RF spectrum of mode-locked pulses centered at 10.17 MHz with a SNR of 60 dB. Inset: RF spectrum over a 100 MHz range. (Launched pump power: 856.8 mW).
Fig. 5
Fig. 5 Measured optical spectrum at the launched pump power of 856.8 mW.
Fig. 6
Fig. 6 (a) Schematic of the in-house autocorrelator based on two-photon absorption in an InGaAs detector; (b) the autocorrelation trace at the launched pump power of 856.8 mW. The blue circles are the measured data and the red curve represents the fitting result.
Fig. 7
Fig. 7 Normalized spectra (left scale) together with the corresponding average output power (right scale) from the SESAM mode-locked ZBLAN fiber laser. (Launched pump power: 856.8 mW).

Metrics