Abstract

How to guarantee the practical security of continuous-variable quantum key distribution (CVQKD) system has been an important issue in the quantum cryptography applications. In contrast to the previous practical security strategies, which focus on the intercept-resend attack or the Gaussian attack, we investigate the practical security strategy based on a general attack, i.e., an arbitrated individual attack or collective attack on the system by Eve in this paper. The low bound of intensity disturbance of the local oscillator signal for eavesdropper successfully concealing herself is obtained, considering all noises can be used by Eve in the practical environment. Furthermore, we obtain an optimal monitoring condition for the practical CVQKD system so that legitimate communicators can monitor the general attack in real-time. As examples, practical security of two special systems, i.e., the Gaussian modulated coherent state CVQKD system and the middle-based CVQKD system, are investigated under the intercept-resend attacks.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Security analysis of practical continuous-variable quantum key distribution systems under laser seeding attack

Yi Zheng, Peng Huang, Anqi Huang, Jinye Peng, and Guihua Zeng
Opt. Express 27(19) 27369-27384 (2019)

Practical security of the continuous-variable quantum key distribution with real local oscillators under phase attack

Biao Huang, Yongmei Huang, and Zhenming Peng
Opt. Express 27(15) 20621-20631 (2019)

Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution

Qin Liao, Yijun Wang, Duan Huang, and Ying Guo
Opt. Express 26(16) 19907-19920 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proc. International Conference on Computers Systems and Signal Processing, 175–179 (1984).
  2. G.H. Zeng, Quantum Private Communication (SpringerBerlin-Heidelberg, 2010).
    [Crossref]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  4. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
    [Crossref]
  5. Q. Xu and B. Marcia, “Towards quantum key distribution system using Homodyne detection with differential time-multiplexed reference,” Research, IEEE International Conference, 158–165 (2007).
  6. H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
    [Crossref] [PubMed]
  7. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
    [Crossref] [PubMed]
  8. C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. Koy Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
    [Crossref] [PubMed]
  9. D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, “Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol,” Phys. Rev. A 94, 032305 (2016).
    [Crossref]
  10. C. Weedbrook, “Continuous-variable quantum key distribution with entanglement in the middle,” Phys. Rev. A 87, 022308 (2013).
    [Crossref]
  11. Z. Li, Y. Zhang, F. Xu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052301 (2014).
    [Crossref]
  12. F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).
  13. R. García-Patrón and N.J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
    [Crossref] [PubMed]
  14. M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
    [Crossref] [PubMed]
  15. R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
    [Crossref] [PubMed]
  16. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
    [Crossref] [PubMed]
  17. S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B 11, 114014 (2009).
    [Crossref]
  18. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
    [Crossref]
  19. N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-Horse attacks on practical quantum key distribution systems,” IEEE J. Sel. Topics in Quantum Electron. 21, 168–177 (2014).
    [Crossref]
  20. N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Trojan-horse attacks threaten the security of practical quantum cryptography,” New J. Phys. 16, 123030 (2014).
    [Crossref]
  21. J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
    [Crossref]
  22. X. Ma, S. Sun, M. Jiang, and L. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
    [Crossref]
  23. J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
    [Crossref]
  24. S. Kunz-Jacque and P. Jouguet, “Robust shot-noise measurement for continuous-variable quantum key distribution,” Phys. Rev. A 91, 022307 (2015).
    [Crossref]
  25. H. Qin, R. Kumar, and R. Alléaume, “Saturation attack on continuous-variable quantum key distribution system,” Proc. SPIE 8899, 88990N (2013).
    [Crossref]
  26. P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
    [Crossref]
  27. X. Ma, S. Sun, M. Jiang, and L. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
    [Crossref]
  28. J. Lodewyck, T. Debuisschert, R. García-Patrón, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
    [Crossref] [PubMed]
  29. F. Grosshans, “Collective attacks and unconditional security in continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020504 (2005).
    [Crossref] [PubMed]
  30. D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
    [Crossref] [PubMed]
  31. C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50km fiber channel,” Sci. Rep. 5, 14607 (2015).
    [Crossref]
  32. S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
    [Crossref]
  33. M. Navascués and A. Acín, “Security Bounds for Continuous Variables Quantum Key Distribution,” Phys. Rev. Lett. 94, 020505 (2005).
    [Crossref] [PubMed]
  34. B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
    [Crossref]
  35. D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
    [Crossref] [PubMed]
  36. D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695–3698 (2015).
    [Crossref] [PubMed]
  37. R. Kumar, H. Qin, and R. Alleaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
    [Crossref]
  38. P. Eraerds, N. Walenta, and M. Legre, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
    [Crossref]
  39. C. Wang, P. Huang, D. Huang, D. Lin, and G. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
    [Crossref]
  40. Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
    [Crossref]
  41. A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
    [Crossref]
  42. THORLABS Inc., “PDB450C Balance Amplified Photodetector,” http://www.thorlabs.hk/thorcat/21600/PDB450CManual.pdf/ .

2016 (3)

D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, “Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol,” Phys. Rev. A 94, 032305 (2016).
[Crossref]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, P. Huang, D. Huang, D. Lin, and G. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

2015 (5)

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695–3698 (2015).
[Crossref] [PubMed]

R. Kumar, H. Qin, and R. Alleaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
[Crossref]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

S. Kunz-Jacque and P. Jouguet, “Robust shot-noise measurement for continuous-variable quantum key distribution,” Phys. Rev. A 91, 022307 (2015).
[Crossref]

2014 (4)

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

Z. Li, Y. Zhang, F. Xu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052301 (2014).
[Crossref]

N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-Horse attacks on practical quantum key distribution systems,” IEEE J. Sel. Topics in Quantum Electron. 21, 168–177 (2014).
[Crossref]

N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Trojan-horse attacks threaten the security of practical quantum cryptography,” New J. Phys. 16, 123030 (2014).
[Crossref]

2013 (6)

J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

X. Ma, S. Sun, M. Jiang, and L. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

C. Weedbrook, “Continuous-variable quantum key distribution with entanglement in the middle,” Phys. Rev. A 87, 022308 (2013).
[Crossref]

H. Qin, R. Kumar, and R. Alléaume, “Saturation attack on continuous-variable quantum key distribution system,” Proc. SPIE 8899, 88990N (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

X. Ma, S. Sun, M. Jiang, and L. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

2012 (2)

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

2010 (2)

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

P. Eraerds, N. Walenta, and M. Legre, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

2009 (3)

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B 11, 114014 (2009).
[Crossref]

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

2007 (2)

J. Lodewyck, T. Debuisschert, R. García-Patrón, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[Crossref] [PubMed]

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

2006 (3)

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

R. García-Patrón and N.J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

2005 (2)

F. Grosshans, “Collective attacks and unconditional security in continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020504 (2005).
[Crossref] [PubMed]

M. Navascués and A. Acín, “Security Bounds for Continuous Variables Quantum Key Distribution,” Phys. Rev. Lett. 94, 020505 (2005).
[Crossref] [PubMed]

2004 (1)

C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. Koy Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
[Crossref] [PubMed]

2002 (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

1999 (1)

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

Acín, A.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

M. Navascués and A. Acín, “Security Bounds for Continuous Variables Quantum Key Distribution,” Phys. Rev. Lett. 94, 020505 (2005).
[Crossref] [PubMed]

Alleaume, R.

R. Kumar, H. Qin, and R. Alleaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
[Crossref]

Alléaume, R.

H. Qin, R. Kumar, and R. Alléaume, “Saturation attack on continuous-variable quantum key distribution system,” Proc. SPIE 8899, 88990N (2013).
[Crossref]

Anisimova, E.

N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Trojan-horse attacks threaten the security of practical quantum cryptography,” New J. Phys. 16, 123030 (2014).
[Crossref]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proc. International Conference on Computers Systems and Signal Processing, 175–179 (1984).

Berta, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Bowen, W. P.

C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. Koy Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
[Crossref] [PubMed]

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proc. International Conference on Computers Systems and Signal Processing, 175–179 (1984).

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

J. Lodewyck, T. Debuisschert, R. García-Patrón, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[Crossref] [PubMed]

Cerf, N.J.

R. García-Patrón and N.J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

Chau, H. F.

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

Chen, W.

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Chi, Y.

Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Cirac, J. I.

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

Debuisschert, T.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B 11, 114014 (2009).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

J. Lodewyck, T. Debuisschert, R. García-Patrón, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[Crossref] [PubMed]

Diamanti, E.

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B 11, 114014 (2009).
[Crossref]

Eraerds, P.

P. Eraerds, N. Walenta, and M. Legre, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Fang, S.

Fasel, S.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Fossier, S.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B 11, 114014 (2009).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

Franz, T.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Fung, C. H. F.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).

Furrer, F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

García-Patrón, R.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

J. Lodewyck, T. Debuisschert, R. García-Patrón, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[Crossref] [PubMed]

R. García-Patrón and N.J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

Gisin, N.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Grangier, P.

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B 11, 114014 (2009).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

J. Lodewyck, T. Debuisschert, R. García-Patrón, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Grosshans, F.

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

F. Grosshans, “Collective attacks and unconditional security in continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020504 (2005).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Guo, G.

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Guo, H.

Z. Li, Y. Zhang, F. Xu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052301 (2014).
[Crossref]

Han, Z.

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Hentschel, M.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).

Huang, D.

D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, “Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol,” Phys. Rev. A 94, 032305 (2016).
[Crossref]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, P. Huang, D. Huang, D. Lin, and G. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695–3698 (2015).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Huang, J.

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Huang, L. L.

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Huang, P.

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, “Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol,” Phys. Rev. A 94, 032305 (2016).
[Crossref]

C. Wang, P. Huang, D. Huang, D. Lin, and G. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695–3698 (2015).
[Crossref] [PubMed]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Hübel, H.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).

Jain, N.

N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Trojan-horse attacks threaten the security of practical quantum cryptography,” New J. Phys. 16, 123030 (2014).
[Crossref]

N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-Horse attacks on practical quantum key distribution systems,” IEEE J. Sel. Topics in Quantum Electron. 21, 168–177 (2014).
[Crossref]

Jiang, M.

X. Ma, S. Sun, M. Jiang, and L. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

X. Ma, S. Sun, M. Jiang, and L. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Jouguet, P.

S. Kunz-Jacque and P. Jouguet, “Robust shot-noise measurement for continuous-variable quantum key distribution,” Phys. Rev. A 91, 022307 (2015).
[Crossref]

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

Khan, I.

N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-Horse attacks on practical quantum key distribution systems,” IEEE J. Sel. Topics in Quantum Electron. 21, 168–177 (2014).
[Crossref]

N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Trojan-horse attacks threaten the security of practical quantum cryptography,” New J. Phys. 16, 123030 (2014).
[Crossref]

Koy Lam, P.

C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. Koy Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
[Crossref] [PubMed]

Kraus, B.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

Kumar, R.

R. Kumar, H. Qin, and R. Alleaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
[Crossref]

H. Qin, R. Kumar, and R. Alléaume, “Saturation attack on continuous-variable quantum key distribution system,” Proc. SPIE 8899, 88990N (2013).
[Crossref]

Kunz-Jacque, S.

S. Kunz-Jacque and P. Jouguet, “Robust shot-noise measurement for continuous-variable quantum key distribution,” Phys. Rev. A 91, 022307 (2015).
[Crossref]

Kunz-Jacques, S.

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

Lance, A. M.

C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. Koy Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
[Crossref] [PubMed]

Laudenbach, F.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).

Legre, M.

P. Eraerds, N. Walenta, and M. Legre, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Leuchs, G.

N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Trojan-horse attacks threaten the security of practical quantum cryptography,” New J. Phys. 16, 123030 (2014).
[Crossref]

N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-Horse attacks on practical quantum key distribution systems,” IEEE J. Sel. Topics in Quantum Electron. 21, 168–177 (2014).
[Crossref]

Leverrier, A.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

Li, H.

D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, “Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol,” Phys. Rev. A 94, 032305 (2016).
[Crossref]

J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Li, Z.

Z. Li, Y. Zhang, F. Xu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052301 (2014).
[Crossref]

Liang, L.

X. Ma, S. Sun, M. Jiang, and L. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

X. Ma, S. Sun, M. Jiang, and L. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Lin, D.

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, P. Huang, D. Huang, D. Lin, and G. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695–3698 (2015).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Liu, W.

Lloyd, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Lo, H.

Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Lo, H. K.

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

Lodewyck, J.

J. Lodewyck, T. Debuisschert, R. García-Patrón, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[Crossref] [PubMed]

Lvovsky, A.

Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Ma, X.

X. Ma, S. Sun, M. Jiang, and L. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

X. Ma, S. Sun, M. Jiang, and L. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

Makarov, V.

N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Trojan-horse attacks threaten the security of practical quantum cryptography,” New J. Phys. 16, 123030 (2014).
[Crossref]

N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-Horse attacks on practical quantum key distribution systems,” IEEE J. Sel. Topics in Quantum Electron. 21, 168–177 (2014).
[Crossref]

Marcia, B.

Q. Xu and B. Marcia, “Towards quantum key distribution system using Homodyne detection with differential time-multiplexed reference,” Research, IEEE International Conference, 158–165 (2007).

Marquardt, C.

N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-Horse attacks on practical quantum key distribution systems,” IEEE J. Sel. Topics in Quantum Electron. 21, 168–177 (2014).
[Crossref]

N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Trojan-horse attacks threaten the security of practical quantum cryptography,” New J. Phys. 16, 123030 (2014).
[Crossref]

Navascués, M.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

M. Navascués and A. Acín, “Security Bounds for Continuous Variables Quantum Key Distribution,” Phys. Rev. Lett. 94, 020505 (2005).
[Crossref] [PubMed]

Pacher, C.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).

Peev, M.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).

Peng, J.

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

Peng, X.

Z. Li, Y. Zhang, F. Xu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052301 (2014).
[Crossref]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Poppe, A.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).

Qi, B.

Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Qian, L.

Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Qin, H.

R. Kumar, H. Qin, and R. Alleaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
[Crossref]

H. Qin, R. Kumar, and R. Alléaume, “Saturation attack on continuous-variable quantum key distribution system,” Proc. SPIE 8899, 88990N (2013).
[Crossref]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. Koy Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
[Crossref] [PubMed]

Renner, R.

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

Ribordy, G.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Scholz, V. B.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Schrenk, B.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Stiller, B.

N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-Horse attacks on practical quantum key distribution systems,” IEEE J. Sel. Topics in Quantum Electron. 21, 168–177 (2014).
[Crossref]

Sun, S.

X. Ma, S. Sun, M. Jiang, and L. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

X. Ma, S. Sun, M. Jiang, and L. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Symul, T.

C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. Koy Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
[Crossref] [PubMed]

Tian, L.

Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Tomamichel, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Tualle-Brouri, R.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B 11, 114014 (2009).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

J. Lodewyck, T. Debuisschert, R. García-Patrón, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[Crossref] [PubMed]

Walenta, N.

P. Eraerds, N. Walenta, and M. Legre, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Walther, P.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).

Wang, C.

C. Wang, P. Huang, D. Huang, D. Lin, and G. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695–3698 (2015).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Wang, S.

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Wang, T.

D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, “Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol,” Phys. Rev. A 94, 032305 (2016).
[Crossref]

Weedbrook, C.

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

C. Weedbrook, “Continuous-variable quantum key distribution with entanglement in the middle,” Phys. Rev. A 87, 022308 (2013).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. Koy Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
[Crossref] [PubMed]

Werner, R. F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

Xu, F.

Z. Li, Y. Zhang, F. Xu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052301 (2014).
[Crossref]

Xu, Q.

Q. Xu and B. Marcia, “Towards quantum key distribution system using Homodyne detection with differential time-multiplexed reference,” Research, IEEE International Conference, 158–165 (2007).

Yin, Z.

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

Youn, S.

Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Zbinden, H.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zeng, G.

D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, “Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol,” Phys. Rev. A 94, 032305 (2016).
[Crossref]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, P. Huang, D. Huang, D. Lin, and G. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695–3698 (2015).
[Crossref] [PubMed]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Zeng, G.H.

G.H. Zeng, Quantum Private Communication (SpringerBerlin-Heidelberg, 2010).
[Crossref]

Zhang, Y.

Z. Li, Y. Zhang, F. Xu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052301 (2014).
[Crossref]

Zhou, Y.

D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, “Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol,” Phys. Rev. A 94, 032305 (2016).
[Crossref]

Zhu, W.

Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

IEEE J. Sel. Topics in Quantum Electron. (1)

N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-Horse attacks on practical quantum key distribution systems,” IEEE J. Sel. Topics in Quantum Electron. 21, 168–177 (2014).
[Crossref]

J. Phys. B (1)

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B 11, 114014 (2009).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

New J. Phys. (4)

R. Kumar, H. Qin, and R. Alleaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
[Crossref]

P. Eraerds, N. Walenta, and M. Legre, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Trojan-horse attacks threaten the security of practical quantum cryptography,” New J. Phys. 16, 123030 (2014).
[Crossref]

Y. Chi, B. Qi, W. Zhu, L. Qian, H. Lo, S. Youn, A. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13, 013003 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (13)

C. Wang, P. Huang, D. Huang, D. Lin, and G. Zeng, “Practical security of continuous-variable quantum key distribution with finite sampling bandwidth effects,” Phys. Rev. A 93, 022315 (2016).
[Crossref]

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

J. Huang, C. Weedbrook, Z. Yin, S. Wang, H. Li, W. Chen, G. Guo, and Z. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

X. Ma, S. Sun, M. Jiang, and L. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

J. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z. Yin, S. Wang, W. Chen, G. Guo, and Z. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

S. Kunz-Jacque and P. Jouguet, “Robust shot-noise measurement for continuous-variable quantum key distribution,” Phys. Rev. A 91, 022307 (2015).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

X. Ma, S. Sun, M. Jiang, and L. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, “Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol,” Phys. Rev. A 94, 032305 (2016).
[Crossref]

C. Weedbrook, “Continuous-variable quantum key distribution with entanglement in the middle,” Phys. Rev. A 87, 022308 (2013).
[Crossref]

Z. Li, Y. Zhang, F. Xu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052301 (2014).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

Phys. Rev. Lett. (9)

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. Koy Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
[Crossref] [PubMed]

R. García-Patrón and N.J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref] [PubMed]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref] [PubMed]

J. Lodewyck, T. Debuisschert, R. García-Patrón, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[Crossref] [PubMed]

F. Grosshans, “Collective attacks and unconditional security in continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020504 (2005).
[Crossref] [PubMed]

M. Navascués and A. Acín, “Security Bounds for Continuous Variables Quantum Key Distribution,” Phys. Rev. Lett. 94, 020505 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

H. Qin, R. Kumar, and R. Alléaume, “Saturation attack on continuous-variable quantum key distribution system,” Proc. SPIE 8899, 88990N (2013).
[Crossref]

Rev. Mod. Phys. (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Sci. Rep. (2)

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref] [PubMed]

C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, and G. Zeng, “25 MHz clock continuous-variable quantum key distribution system over 50km fiber channel,” Sci. Rep. 5, 14607 (2015).
[Crossref]

Science (1)

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

Other (5)

Q. Xu and B. Marcia, “Towards quantum key distribution system using Homodyne detection with differential time-multiplexed reference,” Research, IEEE International Conference, 158–165 (2007).

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proc. International Conference on Computers Systems and Signal Processing, 175–179 (1984).

G.H. Zeng, Quantum Private Communication (SpringerBerlin-Heidelberg, 2010).
[Crossref]

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” arXiv preprint arXiv: 1703.09278 (2017).

THORLABS Inc., “PDB450C Balance Amplified Photodetector,” http://www.thorlabs.hk/thorcat/21600/PDB450CManual.pdf/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the proposed model for the practical CVQKD system in real environment. ATT: attenuator.
Fig. 2
Fig. 2 The relationship between the S BE PE and the excess noise induced by Eve’s collective attack. The variance is 20, Vel is 0.01, T is 0.5, η is 0.5, m is 109, PE is 10−10, and zPE/2 is 6.5.
Fig. 3
Fig. 3 The excess noise as a function of the intensity disturbance of LO signal. Here, we assume that the LO photons per pulse is 108 and the LO fluctuation is 1%. The simulation parameters are from [35, 42]; T = 0.5, ηD = 0.5, ηB = 0.5, and RCMRR = 50. Thus, the initial noise εLO is 0.03, the initial noise εin is 0.09.
Fig. 4
Fig. 4 Real-time shot noise measurement procedures protecting a CVQKD system against a local oscillator attack using a second homodyne detector and a BS at Bob’s side. PBS stands for the polarization beam splitter, BS stands for beam splitter, and PM stands for the phase modulator.
Fig. 5
Fig. 5 The relationship between the secret key rate and the intensity disturbance of the LO signal with monitoring. The variance is 20, the electronic noise of the homodyne detector Vel is 0.01, and the efficiency of the reverse reconciliation β is 93.9%.
Fig. 6
Fig. 6 The excess noise with the intensity disturbance, which is estimated by the legitimate communicators without monitoring.
Fig. 7
Fig. 7 Schematic of the middle-based CVQKD Scheme

Equations (46)

Equations on this page are rendered with MathJax. Learn more.

ε in = 2 N noise η D η B T ,
ε LO = 1 4 N LO f 2 10 R CMRR 10 ,
ε overlap = 2 ( V A + 1 ) e W 2 f rep 2 ,
I BE = 1 2 log 2 V B V B | E = 1 2 log 2 T 2 ( V + χ tot ) ( 1 V + χ line ) 1 + T χ hom ( 1 V + χ line ) ,
{ χ hom = 1 + V el η 1 , χ line = 1 T 1 + ε E , χ tot = χ line + χ hom T ,
I BE = 1 2 log 2 A ε E 2 + B ε E + C D ε E + E .
{ A = T 2 V η , B = T 2 V 2 η 2 T 2 V η + T 2 η + T V η + T V + T V V e l , C = 2 T 2 V η T 2 V 2 η T 2 η + T V 2 η T V η + T V e l + T T V T V V e l + V + V V e l , D = T V + T V V e l T V η , E = t + T V e l = T V T V V e l + T V η T η + V + V V e l .
I BE ε E = 1 2 ln 2 A D ε E 2 + 2 A E ε E + B E C D ( A ε E 2 + B ε E + C ) ( D ε E + E ) .
ε ext = A E + A 2 E 2 A D ( B E C D ) A D .
2 I BE ε E 2 = 1 2 ln 2 G H F 2 ,
{ F = A D ε E 3 + A E ε E 2 + B D ε E 2 + B E ε E + C D ε E + C E , G = ( 2 A D ε E + 2 A E ) ( A D ε E 3 + A E ε E 2 + B D ε E 2 + B E ε E + C D ε E + C E ) , H = ( A D ε E 2 + 2 A E ε E + B E C D ) ( 3 A D ε E 2 + 2 A E ε E + 2 B D ε E + B E + C D ) .
{ F 2 > 0 , G H > 0 ,
2 I BE ε E 2 > 0 .
Γ A B = [ ( V A + 1 ) 𝟙 2 T min ( V A 2 + 2 V A ) σ z T min ( V A 2 + 2 V A ) σ z [ T min ( V A + ε max ) + 1 ] 𝟙 2 ] ,
T min = ( t min ) 2 , ε max = σ max 2 1 T ,
t min T z PE / 2 1 + T ε m V A , σ max 1 + T ε + z PE / 2 ( 1 + T ε ) 2 m ,
1 1 2 erf ( z PE / 2 2 ) = 1 2 PE ,
erf ( x ) = 2 π 1 / 2 0 x e t 2 d t .
S BE PE = i = 1 2 G ( λ i 1 2 ) i = 3 5 G ( λ i 1 2 ) ,
λ 1 , 2 2 = 1 2 ( A ± A 2 4 B ) , λ 3 , 4 2 = 1 2 ( C ± C 2 4 D ) , λ 5 = 1 ,
A = ( V A + 1 ) 2 2 T min ( V A 2 + 2 V A ) + [ T min ( V A + ε max ) + 1 ] 2 B = [ ( T min ε max + 1 ) ( V A + 1 ) T min V A ] 2 , C = A ( 1 η + V e l ) / η + ( V A + 1 ) B + T min ( V A + ε max ) + 1 η T min ( V A + ε max ) + 1 + v e l , D = B ( V A + 1 + B ( 1 η + V e l ) / η ) η T min ( V A + ε max ) + 1 + v e l .
y = tx + z ,
σ 2 = N 0 + η T ε + V el ,
P LO = χ P LO ,
{ N 0 χ N 0 , T N 0 χ T N 0 .
ε 1 = ε overlap + ε in + ε LO .
ε 2 = ε + N 0 N 0 N 0 t ^ 2 = N 0 N 0 [ ε N 0 + 1 η T χ ( 1 N 0 N 0 ) ] ,
ε = [ ε E + ε overlap + χ ε LO + χ ε in 1 T ( 1 χ 1 ) ] N 0 .
ε 2 = ε E + ε overlap + χ ε LO + χ ε in + 1 T + 1 η T 1 T χ 1 η T χ .
ε LO + ε in = ε E + χ ε LO + χ ε in + 1 T 1 η T 1 T χ 1 η T χ .
( η T ε LO + η T ε in ) χ 2 K χ ( η 1 ) = 0 ,
K = η T ε LO + η T ε in η T ε E η 1 .
χ = 1 2 K + K 2 + ( 4 η 2 T + 4 η T ) ( ε LO + ε in ) η T ε LO + η T ε in .
R = β I A B I BE = 1 2 log 2 ( ε m η T η T + V η T + V e l + 1 ε m η T + V e l + 1 ) β ( D ε m + E A ε m 2 + B ε m + C ) ,
ε m = ( 1 χ ) ( ε LO + ε in ) 1 T 1 η T + 1 T χ + 1 η T χ .
ε PIR = μ ε IR + ( 1 μ ) ε BS = 2 μ N 0 .
ε PIR = 2 μ N 0 + ε overlap .
ε 2 PIR = 2 μ + 2 ε overlap + 1 T + 1 η T + ( ε LO + ε in ) χ 1 T χ 1 η T χ .
ε 2 FIR = 2 + 2 ε overlap + 1 T + 1 η T + ( ε LO + ε in ) χ 1 T χ 1 η T χ .
ε 2 FIR ε 1 = 7.94 + 0.12 χ 6 χ = 0 .
K g = η T ε LO + η T ε in η T ε FIR η 1 = 1.985 ,
χ g = 1 2 K + K 2 + ( 4 η 2 T + 4 η T ) ( ε LO + ε in ) η T ε LO + η T ε in = 0.747 .
γ A B = ( a I c Z c Z b I ) ,
{ a = T 1 V + ( 1 T 1 ) N 1 , b = T 2 V + ( 1 T 2 ) N 2 , c = T 1 T 2 V 2 1 .
K m = η T 1 T 2 ε LO + η T 1 T 2 ε in η T 1 T 2 ε FIR η 1 = 1.743 ,
χ m = 1 2 K + K 2 + ( 4 η T 1 T 2 ) ( 1 + η ) ( ε LO + ε in ) η T 1 T 2 ε LO + η T 1 T 2 ε in = 0.854 ,

Metrics