Abstract

In this work, we demonstrate a two-dimensional nano-hole array that can reduce reflection losses while passively trapping and harvesting incident light. The surface structure is designed to scavenge a small portion of incident light that would typically be lost due to Fresnel reflection, while the majority of light transmits unobstructed like a regular window. The trapping mechanism is dependent on angle and wavelength, and can be designed to selectively trap narrow wavelength bands using the constructed theoretical models. We demonstrate that structures with periods of 275 nm and 325 nm can trap different wavelength range within the visible spectrum, while simultaneously suppressing reflection losses. The trapping effect can be observed visually, and can be converted to a current output using a photovoltaic (PV) cell on the glass edge. The fabrication of such materials employs a simple replication process, and can be readily scaled up for large-scale manufacturing. The demonstrated solar harvester can be potentially be widely deployed in residential and commercial buildings as multifunctional windows for solar energy harvesting, scavenging, spectra splitting, and anti-glare properties.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells

J.Y. Chen, W.-L. Chang, C.K. Huang, and K.W. Sun
Opt. Express 19(15) 14411-14419 (2011)

Diffractive nanostructures for enhanced light-harvesting in organic photovoltaic devices

Jan Mayer, Benjamin Gallinet, Ton Offermans, and Rolando Ferrini
Opt. Express 24(2) A358-A373 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Estiri, “The indirect role of households in shaping US residential energy demand patterns,” Energy Policy 86, 585–594 (2015).
    [Crossref]
  2. L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy Build. 40(3), 394–398 (2008).
    [Crossref]
  3. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
    [Crossref]
  4. R. Buck, T. Bräuning, T. Denk, M. Pfänder, P. Schwarzbözl, and F. Tellez, “Solar-hybrid gas turbine-based power tower systems (REFOS),” J. Sol. Energ-T. ASME 124(1), 2–9 (2002).
    [Crossref]
  5. W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
    [Crossref]
  6. Y. Wu, S. Vorndran, S. Pelaez, J. Russo, and R. Kostuk, “Design of a holographic micro-scale spectrum-splitting photovoltaic system,” Proc. SPIE 9175, 9559 (2015).
  7. N. Mohammad, P. Wang, D. J. Friedman, and R. Menon, “Enhancing photovoltaic output power by 3-band spectrum-splitting and concentration using a diffractive micro-optic,” Opt. Express 22(106), A1519–A1525 (2014).
    [Crossref] [PubMed]
  8. P. S. Friedman, “Luminescent solar concentrators,” Opt. Eng. 20(6), 206887 (1981).
    [Crossref]
  9. H. Li, K. Wu, J. Lim, H. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energ. 1, 16157 (2016).
    [Crossref]
  10. F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
    [Crossref]
  11. M. Debije and P. Verbunt, “Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
    [Crossref]
  12. L. Desmet, A. J. Ras, D. K. de Boer, and M. G. Debije, “Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency,” Opt. Lett. 37(15), 3087–3089 (2012).
    [Crossref] [PubMed]
  13. Y. Zhao, G. Meek, B. Levine, and R. Lunt, “Near-Infrared Harvesting Transparent Luminescent Solar Concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
    [Crossref]
  14. Y. Zhao and R. Lunt, “Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors,” Adv. Energy Mater. 3(9), 1143–1148 (2013).
    [Crossref]
  15. R. W. MacQueen, Y. Y. Cheng, R. G. Clady, and T. W. Schmidt, “Towards an aligned luminophore solar concentrator,” Opt. Express 18(S2Suppl 2), A161–A166 (2010).
    [Crossref] [PubMed]
  16. L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
    [Crossref] [PubMed]
  17. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
    [Crossref] [PubMed]
  18. B. Cocilovo, A. Hashimura, D. J. Tweet, T. Voutsas, and R. A. Norwood, “Highly transparent light-harvesting window film,” Appl. Opt. 54(30), 8990–8998 (2015).
    [Crossref] [PubMed]
  19. C. Yeh, F. Chang, H. Young, T. Hsieh, and C. Chang, “Transparent solar concentrator for flat panel display,” Jpn. J. Appl. Phys. 51(6), 06FL03 (2012).
    [Crossref]
  20. T. Maruyama and S. Osako, “Wedge-shaped light concentrator using total internal reflection,” Sol. Energy Mater. Sol. Cells 57(1), 75–83 (1999).
    [Crossref]
  21. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
    [Crossref]
  22. X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
    [Crossref] [PubMed]
  23. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
    [Crossref]
  24. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [Crossref] [PubMed]
  25. R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
    [Crossref] [PubMed]
  26. A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci. 14(5), 737–741 (1997).
    [Crossref]
  27. J. G. Kim, H. J. Choi, K. C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10(12), 2487–2494 (2014).
    [Crossref] [PubMed]
  28. S. Jeong, S. Wang, and Y. Cui, “Nanoscale photon management in silicon solar cells,” J. Vac. Sci. Technol. 30(6), 060801 (2012).
    [Crossref]
  29. K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
    [Crossref] [PubMed]
  30. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  31. W. Lee and F. L. Degertekin, “Rigorous coupled-wave analysis of multilayered grating structures,” J. Lightwave Technol. 22(10), 2359–2363 (2004).
    [Crossref]
  32. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1), 261–264 (2008).
    [Crossref]
  33. J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett. 34(12), 1783–1785 (2009).
    [Crossref] [PubMed]
  34. A. Bagal and C. H. Chang, “Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography,” Opt. Lett. 38(14), 2531–2534 (2013).
    [Crossref] [PubMed]
  35. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
    [Crossref]
  36. T. W. Lee, O. Mitrofanov, and J. Hsu, “Pattern-Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio,” Adv. Funct. Mater. 15(10), 1683–1688 (2005).
    [Crossref]

2016 (1)

H. Li, K. Wu, J. Lim, H. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energ. 1, 16157 (2016).
[Crossref]

2015 (5)

H. Estiri, “The indirect role of households in shaping US residential energy demand patterns,” Energy Policy 86, 585–594 (2015).
[Crossref]

Y. Wu, S. Vorndran, S. Pelaez, J. Russo, and R. Kostuk, “Design of a holographic micro-scale spectrum-splitting photovoltaic system,” Proc. SPIE 9175, 9559 (2015).

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
[Crossref] [PubMed]

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

B. Cocilovo, A. Hashimura, D. J. Tweet, T. Voutsas, and R. A. Norwood, “Highly transparent light-harvesting window film,” Appl. Opt. 54(30), 8990–8998 (2015).
[Crossref] [PubMed]

2014 (4)

N. Mohammad, P. Wang, D. J. Friedman, and R. Menon, “Enhancing photovoltaic output power by 3-band spectrum-splitting and concentration using a diffractive micro-optic,” Opt. Express 22(106), A1519–A1525 (2014).
[Crossref] [PubMed]

Y. Zhao, G. Meek, B. Levine, and R. Lunt, “Near-Infrared Harvesting Transparent Luminescent Solar Concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

J. G. Kim, H. J. Choi, K. C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10(12), 2487–2494 (2014).
[Crossref] [PubMed]

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

2013 (2)

Y. Zhao and R. Lunt, “Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors,” Adv. Energy Mater. 3(9), 1143–1148 (2013).
[Crossref]

A. Bagal and C. H. Chang, “Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography,” Opt. Lett. 38(14), 2531–2534 (2013).
[Crossref] [PubMed]

2012 (5)

L. Desmet, A. J. Ras, D. K. de Boer, and M. G. Debije, “Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency,” Opt. Lett. 37(15), 3087–3089 (2012).
[Crossref] [PubMed]

M. Debije and P. Verbunt, “Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

C. Yeh, F. Chang, H. Young, T. Hsieh, and C. Chang, “Transparent solar concentrator for flat panel display,” Jpn. J. Appl. Phys. 51(6), 06FL03 (2012).
[Crossref]

S. Jeong, S. Wang, and Y. Cui, “Nanoscale photon management in silicon solar cells,” J. Vac. Sci. Technol. 30(6), 060801 (2012).
[Crossref]

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

2011 (2)

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[Crossref]

2010 (1)

2009 (2)

2008 (3)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1), 261–264 (2008).
[Crossref]

L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy Build. 40(3), 394–398 (2008).
[Crossref]

2006 (1)

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

2005 (1)

T. W. Lee, O. Mitrofanov, and J. Hsu, “Pattern-Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio,” Adv. Funct. Mater. 15(10), 1683–1688 (2005).
[Crossref]

2004 (1)

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

2002 (1)

R. Buck, T. Bräuning, T. Denk, M. Pfänder, P. Schwarzbözl, and F. Tellez, “Solar-hybrid gas turbine-based power tower systems (REFOS),” J. Sol. Energ-T. ASME 124(1), 2–9 (2002).
[Crossref]

1999 (1)

T. Maruyama and S. Osako, “Wedge-shaped light concentrator using total internal reflection,” Sol. Energy Mater. Sol. Cells 57(1), 75–83 (1999).
[Crossref]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

1997 (1)

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci. 14(5), 737–741 (1997).
[Crossref]

1990 (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

1981 (2)

Agarwal, A. M.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Alamariu, B.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Bagal, A.

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Barbastathis, G.

J. G. Kim, H. J. Choi, K. C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10(12), 2487–2494 (2014).
[Crossref] [PubMed]

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Beverina, L.

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Bradshaw, L. R.

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

Bräuning, T.

R. Buck, T. Bräuning, T. Denk, M. Pfänder, P. Schwarzbözl, and F. Tellez, “Solar-hybrid gas turbine-based power tower systems (REFOS),” J. Sol. Energ-T. ASME 124(1), 2–9 (2002).
[Crossref]

Brovelli, S.

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Buck, R.

R. Buck, T. Bräuning, T. Denk, M. Pfänder, P. Schwarzbözl, and F. Tellez, “Solar-hybrid gas turbine-based power tower systems (REFOS),” J. Sol. Energ-T. ASME 124(1), 2–9 (2002).
[Crossref]

Chang, C.

C. Yeh, F. Chang, H. Young, T. Hsieh, and C. Chang, “Transparent solar concentrator for flat panel display,” Jpn. J. Appl. Phys. 51(6), 06FL03 (2012).
[Crossref]

Chang, C. H.

A. Bagal and C. H. Chang, “Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography,” Opt. Lett. 38(14), 2531–2534 (2013).
[Crossref] [PubMed]

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Chang, F.

C. Yeh, F. Chang, H. Young, T. Hsieh, and C. Chang, “Transparent solar concentrator for flat panel display,” Jpn. J. Appl. Phys. 51(6), 06FL03 (2012).
[Crossref]

Chen, G. X.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1), 261–264 (2008).
[Crossref]

Cheng, Y. Y.

Choi, H. J.

J. G. Kim, H. J. Choi, K. C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10(12), 2487–2494 (2014).
[Crossref] [PubMed]

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Chong, T. C.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1), 261–264 (2008).
[Crossref]

Clady, R. G.

Cocilovo, B.

Cohen, R. E.

J. G. Kim, H. J. Choi, K. C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10(12), 2487–2494 (2014).
[Crossref] [PubMed]

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Colombo, A.

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Cui, Y.

S. Jeong, S. Wang, and Y. Cui, “Nanoscale photon management in silicon solar cells,” J. Vac. Sci. Technol. 30(6), 060801 (2012).
[Crossref]

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Dai, Y. J.

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[Crossref]

de Boer, D. K.

de Boor, J.

Debije, M.

M. Debije and P. Verbunt, “Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

Debije, M. G.

Degertekin, F. L.

Denk, T.

R. Buck, T. Bräuning, T. Denk, M. Pfänder, P. Schwarzbözl, and F. Tellez, “Solar-hybrid gas turbine-based power tower systems (REFOS),” J. Sol. Energ-T. ASME 124(1), 2–9 (2002).
[Crossref]

Desmet, L.

Dewan, R.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Estiri, H.

H. Estiri, “The indirect role of households in shaping US residential energy demand patterns,” Energy Policy 86, 585–594 (2015).
[Crossref]

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Friedman, D. J.

Friedman, P. S.

P. S. Friedman, “Luminescent solar concentrators,” Opt. Eng. 20(6), 206887 (1981).
[Crossref]

Gamelin, D. R.

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

Gaylord, T. K.

Geyer, N.

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Gomard, G.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
[Crossref] [PubMed]

Gösele, U.

Hashimura, A.

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Hölscher, H.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
[Crossref] [PubMed]

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Hong, M. H.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1), 261–264 (2008).
[Crossref]

Hsieh, T.

C. Yeh, F. Chang, H. Young, T. Hsieh, and C. Chang, “Transparent solar concentrator for flat panel display,” Jpn. J. Appl. Phys. 51(6), 06FL03 (2012).
[Crossref]

Hsu, J.

T. W. Lee, O. Mitrofanov, and J. Hsu, “Pattern-Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio,” Adv. Funct. Mater. 15(10), 1683–1688 (2005).
[Crossref]

Jeong, S.

S. Jeong, S. Wang, and Y. Cui, “Nanoscale photon management in silicon solar cells,” J. Vac. Sci. Technol. 30(6), 060801 (2012).
[Crossref]

Kim, J. G.

J. G. Kim, H. J. Choi, K. C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10(12), 2487–2494 (2014).
[Crossref] [PubMed]

Kimerling, L.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Kimerling, L. C.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Klimov, V. I.

H. Li, K. Wu, J. Lim, H. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energ. 1, 16157 (2016).
[Crossref]

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Knipp, D.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

Knowles, K. E.

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

Kosaku, A.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci. 14(5), 737–741 (1997).
[Crossref]

Kostuk, R.

Y. Wu, S. Vorndran, S. Pelaez, J. Russo, and R. Kostuk, “Design of a holographic micro-scale spectrum-splitting photovoltaic system,” Proc. SPIE 9175, 9559 (2015).

Kozinsky, I.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Lee, T. W.

T. W. Lee, O. Mitrofanov, and J. Hsu, “Pattern-Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio,” Adv. Funct. Mater. 15(10), 1683–1688 (2005).
[Crossref]

Lee, W.

Levine, B.

Y. Zhao, G. Meek, B. Levine, and R. Lunt, “Near-Infrared Harvesting Transparent Luminescent Solar Concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

Li, H.

H. Li, K. Wu, J. Lim, H. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energ. 1, 16157 (2016).
[Crossref]

Lim, J.

H. Li, K. Wu, J. Lim, H. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energ. 1, 16157 (2016).
[Crossref]

Liu, J.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Lorenzon, M.

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Lunt, R.

Y. Zhao, G. Meek, B. Levine, and R. Lunt, “Near-Infrared Harvesting Transparent Luminescent Solar Concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

Y. Zhao and R. Lunt, “Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors,” Adv. Energy Mater. 3(9), 1143–1148 (2013).
[Crossref]

MacQueen, R. W.

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Maruyama, T.

T. Maruyama and S. Osako, “Wedge-shaped light concentrator using total internal reflection,” Sol. Energy Mater. Sol. Cells 57(1), 75–83 (1999).
[Crossref]

McDowall, S.

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

McKinley, G. H.

J. G. Kim, H. J. Choi, K. C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10(12), 2487–2494 (2014).
[Crossref] [PubMed]

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Meek, G.

Y. Zhao, G. Meek, B. Levine, and R. Lunt, “Near-Infrared Harvesting Transparent Luminescent Solar Concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

Meinardi, F.

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Menon, R.

Michel, J.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Mitrofanov, O.

T. W. Lee, O. Mitrofanov, and J. Hsu, “Pattern-Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio,” Adv. Funct. Mater. 15(10), 1683–1688 (2005).
[Crossref]

Miyamoto, K.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci. 14(5), 737–741 (1997).
[Crossref]

Mohammad, N.

Moharam, M. G.

Motoyama, M.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci. 14(5), 737–741 (1997).
[Crossref]

Norwood, R. A.

Ortiz, J.

L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy Build. 40(3), 394–398 (2008).
[Crossref]

Osako, S.

T. Maruyama and S. Osako, “Wedge-shaped light concentrator using total internal reflection,” Sol. Energy Mater. Sol. Cells 57(1), 75–83 (1999).
[Crossref]

Park, K. C.

J. G. Kim, H. J. Choi, K. C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10(12), 2487–2494 (2014).
[Crossref] [PubMed]

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Pelaez, S.

Y. Wu, S. Vorndran, S. Pelaez, J. Russo, and R. Kostuk, “Design of a holographic micro-scale spectrum-splitting photovoltaic system,” Proc. SPIE 9175, 9559 (2015).

Pérez-Lombard, L.

L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy Build. 40(3), 394–398 (2008).
[Crossref]

Pfänder, M.

R. Buck, T. Bräuning, T. Denk, M. Pfänder, P. Schwarzbözl, and F. Tellez, “Solar-hybrid gas turbine-based power tower systems (REFOS),” J. Sol. Energ-T. ASME 124(1), 2–9 (2002).
[Crossref]

Pout, C.

L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy Build. 40(3), 394–398 (2008).
[Crossref]

Ras, A. J.

Ries, H.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Russo, J.

Y. Wu, S. Vorndran, S. Pelaez, J. Russo, and R. Kostuk, “Design of a holographic micro-scale spectrum-splitting photovoltaic system,” Proc. SPIE 9175, 9559 (2015).

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Schmidt, T. W.

Schmidt, V.

Schwarzbözl, P.

R. Buck, T. Bräuning, T. Denk, M. Pfänder, P. Schwarzbözl, and F. Tellez, “Solar-hybrid gas turbine-based power tower systems (REFOS),” J. Sol. Energ-T. ASME 124(1), 2–9 (2002).
[Crossref]

Sheng, X.

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Shi, L. P.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1), 261–264 (2008).
[Crossref]

Siddique, R. H.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
[Crossref] [PubMed]

Simonutti, R.

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Smestad, G.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Song, H.

H. Li, K. Wu, J. Lim, H. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energ. 1, 16157 (2016).
[Crossref]

Sumathy, K.

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[Crossref]

Tan, H. L.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1), 261–264 (2008).
[Crossref]

Tellez, F.

R. Buck, T. Bräuning, T. Denk, M. Pfänder, P. Schwarzbözl, and F. Tellez, “Solar-hybrid gas turbine-based power tower systems (REFOS),” J. Sol. Energ-T. ASME 124(1), 2–9 (2002).
[Crossref]

Tweet, D. J.

Velizhanin, K.

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Verbunt, P.

M. Debije and P. Verbunt, “Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

Viswanatha, R.

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Vorndran, S.

Y. Wu, S. Vorndran, S. Pelaez, J. Russo, and R. Kostuk, “Design of a holographic micro-scale spectrum-splitting photovoltaic system,” Proc. SPIE 9175, 9559 (2015).

Voutsas, T.

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Wang, P.

Wang, R. Z.

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[Crossref]

Wang, S.

S. Jeong, S. Wang, and Y. Cui, “Nanoscale photon management in silicon solar cells,” J. Vac. Sci. Technol. 30(6), 060801 (2012).
[Crossref]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Winston, R.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Wu, K.

H. Li, K. Wu, J. Lim, H. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energ. 1, 16157 (2016).
[Crossref]

Wu, Y.

Y. Wu, S. Vorndran, S. Pelaez, J. Russo, and R. Kostuk, “Design of a holographic micro-scale spectrum-splitting photovoltaic system,” Proc. SPIE 9175, 9559 (2015).

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Xie, Q.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1), 261–264 (2008).
[Crossref]

Xie, W. T.

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[Crossref]

Yablonovitch, E.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Yeh, C.

C. Yeh, F. Chang, H. Young, T. Hsieh, and C. Chang, “Transparent solar concentrator for flat panel display,” Jpn. J. Appl. Phys. 51(6), 06FL03 (2012).
[Crossref]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Yoshida, A.

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci. 14(5), 737–741 (1997).
[Crossref]

Young, H.

C. Yeh, F. Chang, H. Young, T. Hsieh, and C. Chang, “Transparent solar concentrator for flat panel display,” Jpn. J. Appl. Phys. 51(6), 06FL03 (2012).
[Crossref]

Zeng, L.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Zhao, Y.

Y. Zhao, G. Meek, B. Levine, and R. Lunt, “Near-Infrared Harvesting Transparent Luminescent Solar Concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

Y. Zhao and R. Lunt, “Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors,” Adv. Energy Mater. 3(9), 1143–1148 (2013).
[Crossref]

ACS Nano (1)

K. C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012).
[Crossref] [PubMed]

Adv. Energy Mater. (2)

Y. Zhao and R. Lunt, “Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors,” Adv. Energy Mater. 3(9), 1143–1148 (2013).
[Crossref]

M. Debije and P. Verbunt, “Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

Adv. Funct. Mater. (1)

T. W. Lee, O. Mitrofanov, and J. Hsu, “Pattern-Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio,” Adv. Funct. Mater. 15(10), 1683–1688 (2005).
[Crossref]

Adv. Mater. (1)

X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, “Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,” Adv. Mater. 23(7), 843–847 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. Zhao, G. Meek, B. Levine, and R. Lunt, “Near-Infrared Harvesting Transparent Luminescent Solar Concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. Kimerling, and B. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Energy Build. (1)

L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy Build. 40(3), 394–398 (2008).
[Crossref]

Energy Policy (1)

H. Estiri, “The indirect role of households in shaping US residential energy demand patterns,” Energy Policy 86, 585–594 (2015).
[Crossref]

J. Alloys Compd. (1)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1), 261–264 (2008).
[Crossref]

J. Appl. Phys. (1)

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Sol. Energ-T. ASME (1)

R. Buck, T. Bräuning, T. Denk, M. Pfänder, P. Schwarzbözl, and F. Tellez, “Solar-hybrid gas turbine-based power tower systems (REFOS),” J. Sol. Energ-T. ASME 124(1), 2–9 (2002).
[Crossref]

J. Vac. Sci. Technol. (1)

S. Jeong, S. Wang, and Y. Cui, “Nanoscale photon management in silicon solar cells,” J. Vac. Sci. Technol. 30(6), 060801 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

C. Yeh, F. Chang, H. Young, T. Hsieh, and C. Chang, “Transparent solar concentrator for flat panel display,” Jpn. J. Appl. Phys. 51(6), 06FL03 (2012).
[Crossref]

Nano Lett. (1)

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15(2), 1315–1323 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
[Crossref] [PubMed]

Nat. Energ. (1)

H. Li, K. Wu, J. Lim, H. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energ. 1, 16157 (2016).
[Crossref]

Nat. Photonics (1)

F. Meinardi, A. Colombo, K. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref] [PubMed]

Opt. Eng. (1)

P. S. Friedman, “Luminescent solar concentrators,” Opt. Eng. 20(6), 206887 (1981).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

Y. Wu, S. Vorndran, S. Pelaez, J. Russo, and R. Kostuk, “Design of a holographic micro-scale spectrum-splitting photovoltaic system,” Proc. SPIE 9175, 9559 (2015).

Renew. Sustain. Energy Rev. (1)

W. T. Xie, Y. J. Dai, R. Z. Wang, and K. Sumathy, “Concentrated solar energy applications using Fresnel lenses: A review,” Renew. Sustain. Energy Rev. 15(6), 2588–2606 (2011).
[Crossref]

Science (1)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Small (1)

J. G. Kim, H. J. Choi, K. C. Park, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Multifunctional inverted nanocone arrays for non-wetting, self-cleaning transparent surface with high mechanical robustness,” Small 10(12), 2487–2494 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

T. Maruyama and S. Osako, “Wedge-shaped light concentrator using total internal reflection,” Sol. Energy Mater. Sol. Cells 57(1), 75–83 (1999).
[Crossref]

Zoolog. Sci. (1)

A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas,” Zoolog. Sci. 14(5), 737–741 (1997).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       Visual observation of trapped light under different incident angles.
» Visualization 2       Visual observation of the trapped light's beam shape.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of (a) the proposed antireflection in-plane solar harvester, where incident sunlight is trapped to a glass edge through TIR and received by a PV cell. (b) Photograph of fabricated solar harvester without PV cell attached. Under ambient illumination from the sun, trapping of green light can be observed on the bottom glass edge. (c) Scanning electron micrographs of the nano-hole array with 325 nm period.
Fig. 2
Fig. 2 Schematic of light path illustrating the three key interactions: (i) transmitted 1st-order diffraction from the top nanostructure surface, T, (ii) TIR from the bottom glass/air interface, and (iii) internally reflected 0th-order diffraction at the top surface.
Fig. 3
Fig. 3 Simulated efficiencies for 550 nm wavelength, TE-polarized light on 325 nm period structure. (a) Total and 1st-order diffraction efficiency at the top structure surface, (b) total and 0th-order internal reflection efficiency, and (c) overall optical efficiency vs incident angle on the structure in air.
Fig. 4
Fig. 4 Measured broadband and wide-angle transmission for 325 nm period. (a) Transmittance through the 325nm structure is compared with bare glass over a sweep of wavelengths from 200 to 800 nm using UV-vis-NIR photospectrometer. (b) Transmission efficiency as functions of incident angle at 633 nm in comparison to plain glass given by Fresnel’s equations.
Fig. 5
Fig. 5 Simulated efficiencies vs incident angles and corresponding visual observation of trapped light at the edge when white light is illuminated over the sample. The trapped blue, green, yellow, orange, and red at the edge were observed at viewing angles of 0°, 10°, 20°, 30°, and 40°, respectively (see Visualization 1). The RCWA simulation analyzed 325 nm period structure under various wavelengths ranging from 450 to 650 nm.
Fig. 6
Fig. 6 Experimental electrical measurements and qualitative comparison with simulated optical trapping efficiency for packaged samples. The experimental data is overlaid with calculated curves using RCWA simulations: (a) Trapping of 532 nm light through a 275 nm period structure. (b) Trapping of 532 nm light through a 325 nm period structure. (c) Trapping of 633 nm light through a 325 nm period structure. The beam shapes of the trapped beam can be seen in Visualization 2.
Fig. 7
Fig. 7 Visual trapping comparison of 325 and 275 nm period samples under white light at ~15° incident angle. At this particular incident angle, the 325 nm period sample most effectively traps green light, while the 275 nm period sample most effectively traps blue light.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ m = sin 1 ( mλ Λ n 2 + n 1 sin θ i n 2 )
η=T R N

Metrics