Abstract

The physical phenomenon, surface-enhanced Raman scattering (SERS), is mainly based on the local electromagnetic fields enhancement located at the nano-gaps between metal nanostructures attributed to localized surface plasmon resonance. Therefore, nano-gaps are very important for obtaining high-density hot spots and optimal and uniform SERS signals. However, it remains a challenge to form the three-dimensional ultra-narrow nano-gaps. Here, a gyrus-inspired Gyrus-SERS substrate was fabricated with the nanostructure of Ag gyrus/graphene/Au film using an extremely simple method. The lateral and vertical hot spots respectively were obtained from the dense nano-gaps (~3 nm) between gyrus and the coupling of Ag gyrus and Au film in bilayer graphene nano-gaps (0.68 nm), which were demonstrated in experiment and theory. The proposed Gyrus-SERS platform performs an excellent SERS activity (EF~5 × 109), high sensitivity (the minimum detected concentration of R6G and CV respectively is 10−13 and 10−12 M), and outstanding reproducibility (RSD~7.11%). For practical application, the in situ detection of Malachite green (MG) residue on prawn skin was executed using the prepared flexible Gyrus-SERS substrate, which shows the wide potential in food safety field.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure

Jihua Xu, Chonghui Li, Haipeng Si, Xiaofei Zhao, Lin Wang, Shouzhen Jiang, Dongmei Wei, Jing Yu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21546-21557 (2018)

High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA

Xianwu Xiu, Yu Guo, Chonghui Li, Zhen Li, Dazhen Li, Chuanwei Zang, Shouzhen Jiang, Aihua Liu, Baoyuan Man, and Chao Zhang
Opt. Mater. Express 8(4) 844-857 (2018)

Surface enhanced resonant Raman scattering in hybrid MoSe2@Au nanostructures

Inès Abid, Weibing Chen, Jiangtan Yuan, Sina Najmaei, Emil C. Peñafiel, Renaud Péchou, Nicolas Large, Jun Lou, and Adnen Mlayah
Opt. Express 26(22) 29411-29423 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  2. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref] [PubMed]
  3. S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
    [Crossref] [PubMed]
  4. S. M. Morton and L. Jensen, “Understanding the molecule-surface chemical coupling in SERS,” J. Am. Chem. Soc. 131(11), 4090–4098 (2009).
    [Crossref] [PubMed]
  5. R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6(5), 604–610 (2010).
    [Crossref] [PubMed]
  6. M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43(4), 1230–1247 (2014).
    [Crossref] [PubMed]
  7. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [Crossref] [PubMed]
  8. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  9. S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
    [Crossref]
  10. X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. F. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
    [Crossref]
  11. X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
    [Crossref] [PubMed]
  12. Q. Xiang, X. Zhu, Y. Chen, and H. Duan, “Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap,” Nanotechnology 27(7), 075201 (2016).
    [Crossref] [PubMed]
  13. H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
    [Crossref] [PubMed]
  14. Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
    [Crossref]
  15. S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
    [Crossref]
  16. C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
    [Crossref]
  17. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
    [Crossref] [PubMed]
  18. S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
    [Crossref] [PubMed]
  19. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
    [Crossref] [PubMed]
  20. Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions,” Adv Sci (Weinh) 3(1), 1500215 (2015).
    [Crossref] [PubMed]
  21. S. C. Xu, S. Z. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat, Biol. Chem. 222, 1175–1183 (2016).
  22. K. Y. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
    [Crossref]
  23. A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
    [Crossref] [PubMed]
  24. M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
    [Crossref] [PubMed]
  25. A. R. Shalaby, W. H. Emam, and M. M. Anwar, “Mini-column Assay for Rapid Detection of Malachite Green in Fish,” Food Chem. 226(1), 8–13 (2017).
    [Crossref] [PubMed]
  26. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
    [Crossref] [PubMed]
  27. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
    [Crossref]

2017 (2)

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

A. R. Shalaby, W. H. Emam, and M. M. Anwar, “Mini-column Assay for Rapid Detection of Malachite Green in Fish,” Food Chem. 226(1), 8–13 (2017).
[Crossref] [PubMed]

2016 (5)

S. C. Xu, S. Z. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat, Biol. Chem. 222, 1175–1183 (2016).

Q. Xiang, X. Zhu, Y. Chen, and H. Duan, “Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap,” Nanotechnology 27(7), 075201 (2016).
[Crossref] [PubMed]

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

2015 (7)

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref] [PubMed]

K. Y. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions,” Adv Sci (Weinh) 3(1), 1500215 (2015).
[Crossref] [PubMed]

2014 (3)

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. F. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43(4), 1230–1247 (2014).
[Crossref] [PubMed]

2012 (1)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

2010 (2)

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6(5), 604–610 (2010).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

2009 (1)

S. M. Morton and L. Jensen, “Understanding the molecule-surface chemical coupling in SERS,” J. Am. Chem. Soc. 131(11), 4090–4098 (2009).
[Crossref] [PubMed]

2008 (1)

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

2007 (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

2006 (1)

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

2004 (2)

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Aizpurua, J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Alvarez-Puebla, R. A.

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6(5), 604–610 (2010).
[Crossref] [PubMed]

Andersson, P. O.

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

Anwar, M. M.

A. R. Shalaby, W. H. Emam, and M. M. Anwar, “Mini-column Assay for Rapid Detection of Malachite Green in Fish,” Food Chem. 226(1), 8–13 (2017).
[Crossref] [PubMed]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Boisen, A.

K. Y. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

Borisov, A. G.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Cao, D. Y.

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

Cao, Y.

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Cao, Z. J.

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Chen, C.

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Chen, J. N.

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Chen, L.

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions,” Adv Sci (Weinh) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Chen, Y.

Q. Xiang, X. Zhu, Y. Chen, and H. Duan, “Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap,” Nanotechnology 27(7), 075201 (2016).
[Crossref] [PubMed]

Choi, Y. K.

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

Choy, W. C. H.

X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref] [PubMed]

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. F. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Ding, S. Y.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Duan, H.

Q. Xiang, X. Zhu, Y. Chen, and H. Duan, “Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap,” Nanotechnology 27(7), 075201 (2016).
[Crossref] [PubMed]

Elias, D. C.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Emam, W. H.

A. R. Shalaby, W. H. Emam, and M. M. Anwar, “Mini-column Assay for Rapid Detection of Malachite Green in Fish,” Food Chem. 226(1), 8–13 (2017).
[Crossref] [PubMed]

Ertl, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Fang, Y.

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions,” Adv Sci (Weinh) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Gao, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Geim, A. K.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Hakonen, A.

K. Y. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Huo, Y. Y.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jaszczak, J. A.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Jensen, L.

S. M. Morton and L. Jensen, “Understanding the molecule-surface chemical coupling in SERS,” J. Am. Chem. Soc. 131(11), 4090–4098 (2009).
[Crossref] [PubMed]

Jiang, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Jiang, S. Z.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

S. C. Xu, S. Z. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat, Biol. Chem. 222, 1175–1183 (2016).

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Käll, M.

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

Kang, I. S.

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

Kang, T.

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

Katsnelson, M. I.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Kim, B.

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

Kim, H.

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

Klingsporn, J. M.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43(4), 1230–1247 (2014).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Lee, D. I.

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

Lee, H.

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

Lee, J.

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

Li, C. H.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

Li, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Li, J. F.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, X.

X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref] [PubMed]

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. F. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Li, Z.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Liu, A. H.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liu, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Liu, H. P.

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

Liu, L.

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Liu, M.

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Liu, X. Y.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Liz-Marzán, L. M.

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6(5), 604–610 (2010).
[Crossref] [PubMed]

Lodewijks, K.

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

Lu, H. F.

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. F. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Ma, Y.

S. C. Xu, S. Z. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat, Biol. Chem. 222, 1175–1183 (2016).

Man, B.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Man, B. Y.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Martinelli, A.

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Mogensen, K. B.

K. Y. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

Morozov, S. V.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Morton, S. M.

S. M. Morton and L. Jensen, “Understanding the molecule-surface chemical coupling in SERS,” J. Am. Chem. Soc. 131(11), 4090–4098 (2009).
[Crossref] [PubMed]

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Natan, M. J.

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

Novoselov, K. S.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Ogier, R.

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

Panneerselvam, R.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Pettinger, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Picardi, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Qiu, H.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Rehman, I. U.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Rehman, S.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Ren, B.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Ren, X.

X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref] [PubMed]

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. F. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Rindzevicius, T.

K. Y. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

Ruvuna, L. K.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43(4), 1230–1247 (2014).
[Crossref] [PubMed]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Schedin, F.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Schmidt, M. S.

K. Y. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

Schuster, R.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Seol, M. L.

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

Shalaby, A. R.

A. R. Shalaby, W. H. Emam, and M. M. Anwar, “Mini-column Assay for Rapid Detection of Malachite Green in Fish,” Food Chem. 226(1), 8–13 (2017).
[Crossref] [PubMed]

Sharma, B.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43(4), 1230–1247 (2014).
[Crossref] [PubMed]

Shegai, T.

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

Sonntag, M. D.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43(4), 1230–1247 (2014).
[Crossref] [PubMed]

Sun, J.

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Sun, M.

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions,” Adv Sci (Weinh) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Sun, Z. C.

Svedendahl, M.

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

Tang, R. X.

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

Tian, Z. Q.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Van Duyne, R. P.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43(4), 1230–1247 (2014).
[Crossref] [PubMed]

Verre, R.

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

Wang, E.

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Wang, G. Y.

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

Wang, J.

S. C. Xu, S. Z. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat, Biol. Chem. 222, 1175–1183 (2016).

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Wang, J. H.

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

Wang, W.

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions,” Adv Sci (Weinh) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wei, B.

X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref] [PubMed]

Wei, J.

S. C. Xu, S. Z. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat, Biol. Chem. 222, 1175–1183 (2016).

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Wu, D. Y.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wu, K. Y.

K. Y. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

Xiang, Q.

Q. Xiang, X. Zhu, Y. Chen, and H. Duan, “Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap,” Nanotechnology 27(7), 075201 (2016).
[Crossref] [PubMed]

Xu, S.

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Xu, S. C.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

S. C. Xu, S. Z. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat, Biol. Chem. 222, 1175–1183 (2016).

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Xu, Y. Y.

Yang, C.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Yang, Z. J.

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yi, J.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Yue, W.

S. C. Xu, S. Z. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat, Biol. Chem. 222, 1175–1183 (2016).

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Yurgens, A.

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Zhan, Z.

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Zhang, C.

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Zhang, D.

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. F. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhang, X. M.

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

Zhang, Y.

X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions,” Adv Sci (Weinh) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhu, X.

Q. Xiang, X. Zhu, Y. Chen, and H. Duan, “Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap,” Nanotechnology 27(7), 075201 (2016).
[Crossref] [PubMed]

Zou, Y.

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

Zrimsek, A. B.

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43(4), 1230–1247 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, and H. Qiu, “Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine,” ACS Appl. Mater. Interfaces 7(20), 10977–10987 (2015).
[Crossref] [PubMed]

Adv Sci (Weinh) (1)

Z. Zhang, Y. Fang, W. Wang, L. Chen, and M. Sun, “Propagating surface plasmon polaritons: towards applications for remote-excitation surface catalytic reactions,” Adv Sci (Weinh) 3(1), 1500215 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. F. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Adv. Opt. Mater. (1)

Z. Zhan, L. Liu, W. Wang, Z. J. Cao, A. Martinelli, E. Wang, Y. Cao, J. N. Chen, A. Yurgens, and J. Sun, “Ultrahigh Surface-Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched Structures with Subnanometer Gap,” Adv. Opt. Mater. 4(12), 2021–2027 (2016).
[Crossref]

Appl. Spectrosc. Rev. (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Chem. Soc. Rev. (1)

M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, “Molecular plasmonics for nanoscale spectroscopy,” Chem. Soc. Rev. 43(4), 1230–1247 (2014).
[Crossref] [PubMed]

Faraday Discuss. (1)

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

Food Chem. (1)

A. R. Shalaby, W. H. Emam, and M. M. Anwar, “Mini-column Assay for Rapid Detection of Malachite Green in Fish,” Food Chem. 226(1), 8–13 (2017).
[Crossref] [PubMed]

J. Alloys Compd. (1)

C. H. Li, C. Yang, S. C. Xu, C. Zhang, Z. Li, X. Y. Liu, S. Z. Jiang, Y. Y. Huo, A. H. Liu, and B. Y. Man, “Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate,” J. Alloys Compd. 695, 1677–1684 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

S. M. Morton and L. Jensen, “Understanding the molecule-surface chemical coupling in SERS,” J. Am. Chem. Soc. 131(11), 4090–4098 (2009).
[Crossref] [PubMed]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

K. Y. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-scale leaning silver nanopillars for molecular detection at ultra-low concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

Nanoscale (3)

A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson, and M. Käll, “Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography,” Nanoscale 7(21), 9405–9410 (2015).
[Crossref] [PubMed]

H. Kim, M. L. Seol, D. I. Lee, J. Lee, I. S. Kang, H. Lee, T. Kang, Y. K. Choi, and B. Kim, “Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform,” Nanoscale 8(16), 8878–8886 (2016).
[Crossref] [PubMed]

X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref] [PubMed]

Nanotechnology (2)

Q. Xiang, X. Zhu, Y. Chen, and H. Duan, “Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap,” Nanotechnology 27(7), 075201 (2016).
[Crossref] [PubMed]

S. Xu, B. Man, S. Jiang, W. Yue, C. Yang, M. Liu, C. Chen, and C. Zhang, “Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate,” Nanotechnology 25(16), 165702 (2014).
[Crossref] [PubMed]

Nature (2)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Nature Rev. Mater. (1)

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nature Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (3)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

RSC Advances (1)

S. C. Xu, J. H. Wang, Y. Zou, H. P. Liu, G. Y. Wang, X. M. Zhang, S. Z. Jiang, Z. Li, D. Y. Cao, and R. X. Tang, “High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles,” RSC Advances 5(110), 90457–90465 (2015).
[Crossref]

Sens. Actuat, Biol. Chem. (1)

S. C. Xu, S. Z. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat, Biol. Chem. 222, 1175–1183 (2016).

Small (1)

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6(5), 604–610 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic and (b) SEM image of the Ag-gyrus/graphene/Au film Gyrus-SERS substrate, which is labeled as 3# substrate. SEM images of 1#, 2#, 4# and 5# substrates as control experiments were shown in Fig. 6.
Fig. 2
Fig. 2 (a) The Raman spectra from R6G molecules (10−5 M) on different substrates (1#, 2#, 3#, 4# and 5#). (b) The relative SERS intensities of the peaks at 613 and 774 cm−1 as a function of the above mentioned substrates. COMSOL simulations of local electric field distributions on Gyrus-SERS platform from the (c) y z cross-section at 532 nm incident light polarized along the x direction and x y cross-section polarized along (d) the x direction and (e) the y direction. Inset: the theoretical model was structured based on schematic of the nanostructure of Ag gyrus/graphene/Au film in (d) and local SEM image of the Gyrus-SERS substrate in (e).
Fig. 3
Fig. 3 (a) The Raman spectra of R6G with the concentration respectively from 10−5 to 10−13 M. (b) Intensity of peaks at 613 cm−1 for R6G as a function of the molecular concentration. (c) The Raman spectra of R6G (10−8 M) detected from 50 random positions on Gyrus-SERS substrate, and (d) the peak (613 cm−1) relative intensities collected from these Raman spectra.
Fig. 4
Fig. 4 (a) The picture of the in situ detection of MG (10−11 M) on prawn skin carried out by the prepared flexible Gyrus-SERS sensor, and (b) corresponding SERS spectra (black curve) with of the flexible Gyrus-SERS substrate and the Raman spectra (red curve) without of the flexible substrate.
Fig. 5
Fig. 5 (a) The AFM height image of the Au film. (b) The Raman spectrum of graphene. (c) and (d) are respectively the scanning Raman G and 2D band mappings of uniform continuous graphene film (e) The AFM image of Gyrus-SERS substrate.
Fig. 6
Fig. 6 SEM images of (a) 1#, (b) 2#, (c) 3#, (d)4# and (e) 5# with various Ag size and shape. Measured conditions: the HV is 15.00 kV, and the magnification time is 80000 × .
Fig. 7
Fig. 7 COMSOL simulation of local electric field distributions on the spherical Ag nanoparticles supported by graphene/Au film.
Fig. 8
Fig. 8 (a) The Raman spectra of CV with the concentration respectively from 10−5 to 10−12 M. (b) Intensity of peaks at 1614 cm−1 for CV as a function of the molecular concentration.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E F = I S E R S / N S E R S I R S / N R S

Metrics