Abstract

In this paper, we report a 946nm double Q-switched laser side pumped by an 808-nm pulse laser diode (LD). A layered tungsten diselenide (WSe2) saturable absorber (SA) together with an MgO doped LiNbO3 electro-optic (EO) modulator is applied to double Q-switch the Nd: YAG laser, producing trains of nanosecond-duration pulses with 500 Hz repetition rate. Such WSe2 saturable absorbers are fabricated by chemical vapor deposition (CVD) in a hot wall chamber and then embedded into a resonant mirror. The achieved pulse energy of double Q-switched laser at 946 nm is approximately 2.63 mJ with 10.8 ns pulse width and the peak power is round 244 kW, corresponding to the beam quality factors of M2x = 3.846,M2y = 3.861. Monolayer WSe2 nanosheets applied in the experiment would be a promising SA for passive Q-switching operation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Semiconductor quantum-well saturable absorbers for efficient passive Q switching of a diode-pumped 946 nm Nd:YAG laser

Y. P. Huang, H. C. Liang, J. Y. Huang, K. W. Su, A. Li, Y. F. Chen, and K. F. Huang
Appl. Opt. 46(25) 6273-6276 (2007)

WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm

Xinxing Liu, Shuaiyi Zhang, Zhengyu Yan, Lei Guo, Xiaoyan Fan, Fei Lou, Maorong Wang, Peng Gao, Guanghai Guo, Tao Li, Kejian Yang, Jian Li, and Jianqiu Xu
Opt. Mater. Express 8(5) 1213-1220 (2018)

Pulse compression in an electro-optic Q-switched diode-pumped YVO4/Nd:YVO4 laser with a Cr4+:YAG saturable absorber

Tao Li, Shengzhi Zhao, Zhuang Zhuo, Kejian Yang, Guiqiu Li, and Dechun Li
Appl. Opt. 48(12) 2243-2248 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. Lin, W. Zhu, F. Xiong, and L. Cai, “MoS2-based passively Q-switched diode-pumped Nd: YAG laser at 946 nm,” Opt. Laser Technol. 91, 36–39 (2017).
    [Crossref]
  2. D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
    [Crossref]
  3. Q. Cui, J. Lan, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, “High-power and high-efficiency diode-pumped Nd:LuYAG mixed crystal lasers operating at 939 and 946 nm,” Appl. Opt. 55(26), 7438–7443 (2016).
    [Crossref] [PubMed]
  4. J.-T. Gomes, X. Delen, I. Martial, J. Didierjean, F. Balembois, and P. Georges, “Q-switched Nd: YAG laser at 946 nm based on single crystal fiber pumped at 885 nm,” in Advanced Solid State Lasers, (Optical Society of America, 2015), p. ATh2A.30.
  5. H. J. Eichler, F. Kallmeyer, H. Rhee, T. Riesbeck, and S. Strohmaier, “Efficient laser systems for 935 and 942 nm for water vapor lidar,” Proc. SPIE 6346, XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, 63460Y (2006).
    [Crossref]
  6. R. W. Farley and P. D. Dao, “Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system,” Appl. Opt. 34(21), 4269–4273 (1995).
    [Crossref] [PubMed]
  7. T. Fan and R. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
    [Crossref]
  8. W. P. Risk and W. Lenth, “Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm,” Opt. Lett. 12(12), 993–995 (1987).
    [Crossref] [PubMed]
  9. R. Yan, X. Yu, Y. Ma, X. Li, D. Chen, and J. Yu, “High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd: YAG 946nm laser,” Opt. Commun. 285(21-22), 4462–4465 (2012).
    [Crossref]
  10. L. Deyra, I. Martial, J. Didierjean, F. Balembois, and P. Georges, “3 W, 300 μJ, 25 ns pulsed 473 nm blue laser based on actively Q-switched Nd:YAG single-crystal fiber oscillator at 946 nm,” Opt. Lett. 38(16), 3013–3016 (2013).
    [Crossref] [PubMed]
  11. J. Huang and X. H. Hu, “LD-pumped electro-optically Q-switched 946 nm Nd: YAG laser with pulse repetition rates of 1 kHz,” Chin. J. Lasers 6(6), 0602008 (2015).
    [Crossref]
  12. F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd: Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
    [Crossref]
  13. R. Zhou, T. Zhang, E. Li, X. Ding, Z. Cai, B. Zhang, W. Wen, P. Wang, and J. Yao, “8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946-nm,” Opt. Express 13(25), 10115–10119 (2005).
    [Crossref] [PubMed]
  14. R. Yan, X. Yu, X. Li, Z. Dong, Y. Ma, J. Li, and Y. Pan, “High-repetition-rate, high-peak-power passively Q-switched ceramic Nd: YAG 946 nm laser,” in Advanced Solid State Lasers, (Optical Society of America, 2015), p. AM5A.31.
  15. M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
    [Crossref]
  16. D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation,” Sci. Rep. 5(1), 15899 (2015).
    [Crossref] [PubMed]
  17. H. Y. Zhu, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd: YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
    [Crossref]
  18. S. Han, X. Li, Y. Zhao, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Efficient graphene Q-switched 946 nm Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 126(21), 3110–3112 (2015).
    [Crossref]
  19. L. Guo, W. Hou, H. B. Zhang, Z. P. Sun, D. Cui, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express 13(11), 4085–4089 (2005).
    [Crossref] [PubMed]
  20. V. Nguyen, L. Yan, J. Si, and X. Hou, “Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time,” J. Appl. Phys. 117(8), 084304 (2015).
    [Crossref]
  21. L. Yan, J. Yue, J. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
    [Crossref] [PubMed]
  22. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
    [Crossref]
  23. H.-Y. Lin, X. Liu, X.-H. Huang, Y.-C. Xu, X.-G. Meng, and F.-B. Xiong, “Monolayer graphene-based passively Q-switched Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 127(1), 243–245 (2016).
    [Crossref]
  24. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
    [Crossref] [PubMed]
  25. V. Nguyen, J. Si, L. Yan, and X. Hou, “Electron hole recombination dynamics in carbon nanodots,” Carbon 95, 659–663 (2015).
    [Crossref]
  26. D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
  27. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  28. B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
    [Crossref] [PubMed]
  29. X. Wang, Y. Wang, L. Duan, L. Li, and H. Sun, “Passively Q-switched Nd: YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
    [Crossref]
  30. H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
    [Crossref]
  31. V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
    [Crossref]
  32. T.-W. Chen, K.-C. Chang, J.-C. Chen, J.-H. Lin, and M.-D. Wei, “Role of modulation frequency in a hybrid Q-switched Nd:LuVO4 laser with an acousto-optic modulator and a Cr4+:YAG saturable absorber,” Appl. Opt. 53(16), 3459–3464 (2014).
    [Crossref] [PubMed]
  33. G. Li, Z. Zhao, K. Yan, D. Li, and J. Zou, “Pulse shape symmetry and pulse width reduction in diode-pumped doubly Q-switched Nd:YVO4/KTP green laser with AO and GaAs,” Opt. Express 13(4), 1178–1187 (2005).
    [Crossref] [PubMed]
  34. N. D. Boscher, C. J. Carmalt, and I. P. Parkin, “Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces,” J. Mater. Chem. 16(1), 122–127 (2006).
    [Crossref]
  35. Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
    [Crossref] [PubMed]
  36. T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
    [Crossref] [PubMed]
  37. J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
    [Crossref] [PubMed]
  38. B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study,” ACS Nano 9(6), 6119–6127 (2015).
    [Crossref] [PubMed]
  39. H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
    [Crossref]
  40. S.-Y. Chen, C. Zheng, M. S. Fuhrer, and J. Yan, “Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers,” Nano Lett. 15(4), 2526–2532 (2015).
    [Crossref] [PubMed]
  41. W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
    [Crossref] [PubMed]
  42. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express 21(4), 4908–4916 (2013).
    [Crossref] [PubMed]
  43. S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
    [Crossref] [PubMed]
  44. A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides. ii. Group via: trigonal prismatic coordination,” J. Phys. C Solid State Phys. 5(24), 3540–3551 (1972).
    [Crossref]
  45. F. Chen, D. Li, J. Guo, and X. Yu, “Research on all-solid-state blue lasers,” Optik - International Journal for Light and Electron Optics 126(19), 1778–1781 (2015).
    [Crossref]
  46. S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
    [Crossref] [PubMed]
  47. X. Wang, X. Xu, X. Li, and Q. Lu, “Revising the formula of thermal focal length in a side-pumped laser rod by experiments,” Appl. Opt. 46(22), 5237–5240 (2007).
    [Crossref] [PubMed]
  48. R. P. Shi, Y. Bai, M. Qi, X. M. Chen, H. D. Wei, Z. Y. Ren, and J. T. Bai, “A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene,” Laser Phys. Lett. 11(2), 025001 (2014).
    [Crossref]
  49. T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison, and R. Tenne, “Synthesis and characterization of inorganic fullerene-like WSe2 material,” Fullerene Sci. Technol. 6(1), 157–165 (1998).
    [Crossref]
  50. K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
    [Crossref] [PubMed]
  51. R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
    [Crossref] [PubMed]
  52. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  53. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
    [Crossref] [PubMed]
  54. C. Roxlo, M. Daage, A. Ruppert, and R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
    [Crossref]
  55. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
    [Crossref] [PubMed]
  56. O. Svelto and D. C. Hanna, “Principles of lasers,” vol. 4 (Springer, 1998).
  57. J. Zhao, S. Zhao, K. Li, F. Kong, and T. Li, “Enhancement of stability and peak power in a diode-pumped doubly QML YVO4/Nd: YVO4 laser with EO and Cr4+: YAG saturable absorber,” Opt. Mater. 34(4), 622–626 (2012).
    [Crossref]

2017 (1)

H. Lin, W. Zhu, F. Xiong, and L. Cai, “MoS2-based passively Q-switched diode-pumped Nd: YAG laser at 946 nm,” Opt. Laser Technol. 91, 36–39 (2017).
[Crossref]

2016 (5)

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

Q. Cui, J. Lan, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, “High-power and high-efficiency diode-pumped Nd:LuYAG mixed crystal lasers operating at 939 and 946 nm,” Appl. Opt. 55(26), 7438–7443 (2016).
[Crossref] [PubMed]

H.-Y. Lin, X. Liu, X.-H. Huang, Y.-C. Xu, X.-G. Meng, and F.-B. Xiong, “Monolayer graphene-based passively Q-switched Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 127(1), 243–245 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

X. Wang, Y. Wang, L. Duan, L. Li, and H. Sun, “Passively Q-switched Nd: YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

2015 (14)

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

V. Nguyen, J. Si, L. Yan, and X. Hou, “Electron hole recombination dynamics in carbon nanodots,” Carbon 95, 659–663 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref] [PubMed]

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study,” ACS Nano 9(6), 6119–6127 (2015).
[Crossref] [PubMed]

J. Huang and X. H. Hu, “LD-pumped electro-optically Q-switched 946 nm Nd: YAG laser with pulse repetition rates of 1 kHz,” Chin. J. Lasers 6(6), 0602008 (2015).
[Crossref]

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

S. Han, X. Li, Y. Zhao, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Efficient graphene Q-switched 946 nm Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 126(21), 3110–3112 (2015).
[Crossref]

V. Nguyen, L. Yan, J. Si, and X. Hou, “Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time,” J. Appl. Phys. 117(8), 084304 (2015).
[Crossref]

S.-Y. Chen, C. Zheng, M. S. Fuhrer, and J. Yan, “Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers,” Nano Lett. 15(4), 2526–2532 (2015).
[Crossref] [PubMed]

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

F. Chen, D. Li, J. Guo, and X. Yu, “Research on all-solid-state blue lasers,” Optik - International Journal for Light and Electron Optics 126(19), 1778–1781 (2015).
[Crossref]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

2014 (8)

R. P. Shi, Y. Bai, M. Qi, X. M. Chen, H. D. Wei, Z. Y. Ren, and J. T. Bai, “A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene,” Laser Phys. Lett. 11(2), 025001 (2014).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

T.-W. Chen, K.-C. Chang, J.-C. Chen, J.-H. Lin, and M.-D. Wei, “Role of modulation frequency in a hybrid Q-switched Nd:LuVO4 laser with an acousto-optic modulator and a Cr4+:YAG saturable absorber,” Appl. Opt. 53(16), 3459–3464 (2014).
[Crossref] [PubMed]

2013 (6)

H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
[Crossref]

H. Y. Zhu, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd: YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

L. Deyra, I. Martial, J. Didierjean, F. Balembois, and P. Georges, “3 W, 300 μJ, 25 ns pulsed 473 nm blue laser based on actively Q-switched Nd:YAG single-crystal fiber oscillator at 946 nm,” Opt. Lett. 38(16), 3013–3016 (2013).
[Crossref] [PubMed]

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express 21(4), 4908–4916 (2013).
[Crossref] [PubMed]

2012 (4)

J. Zhao, S. Zhao, K. Li, F. Kong, and T. Li, “Enhancement of stability and peak power in a diode-pumped doubly QML YVO4/Nd: YVO4 laser with EO and Cr4+: YAG saturable absorber,” Opt. Mater. 34(4), 622–626 (2012).
[Crossref]

R. Yan, X. Yu, Y. Ma, X. Li, D. Chen, and J. Yu, “High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd: YAG 946nm laser,” Opt. Commun. 285(21-22), 4462–4465 (2012).
[Crossref]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

2010 (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (1)

2006 (1)

N. D. Boscher, C. J. Carmalt, and I. P. Parkin, “Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces,” J. Mater. Chem. 16(1), 122–127 (2006).
[Crossref]

2005 (3)

2003 (1)

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
[Crossref]

1998 (1)

T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison, and R. Tenne, “Synthesis and characterization of inorganic fullerene-like WSe2 material,” Fullerene Sci. Technol. 6(1), 157–165 (1998).
[Crossref]

1995 (2)

1987 (2)

1986 (1)

C. Roxlo, M. Daage, A. Ruppert, and R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

1972 (1)

A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides. ii. Group via: trigonal prismatic coordination,” J. Phys. C Solid State Phys. 5(24), 3540–3551 (1972).
[Crossref]

Abbas, A.

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study,” ACS Nano 9(6), 6119–6127 (2015).
[Crossref] [PubMed]

Ahn, Y. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Ajayan, P. M.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

Albrecht, M.

Amara, K. K.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Azcatl, A.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Bae, S.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Baek, I. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Bai, J. T.

R. P. Shi, Y. Bai, M. Qi, X. M. Chen, H. D. Wei, Z. Y. Ren, and J. T. Bai, “A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene,” Laser Phys. Lett. 11(2), 025001 (2014).
[Crossref]

Bai, Y.

R. P. Shi, Y. Bai, M. Qi, X. M. Chen, H. D. Wei, Z. Y. Ren, and J. T. Bai, “A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene,” Laser Phys. Lett. 11(2), 025001 (2014).
[Crossref]

Balembois, F.

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Beal, A. R.

A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides. ii. Group via: trigonal prismatic coordination,” J. Phys. C Solid State Phys. 5(24), 3540–3551 (1972).
[Crossref]

Berner, N. C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Birdwell, A. G.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Blau, W. J.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Börner, J.

Boscher, N. D.

N. D. Boscher, C. J. Carmalt, and I. P. Parkin, “Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces,” J. Mater. Chem. 16(1), 122–127 (2006).
[Crossref]

Böttger, P.

Bratschitsch, R.

Burke, R. A.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Byer, R.

T. Fan and R. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Cai, L.

H. Lin, W. Zhu, F. Xiong, and L. Cai, “MoS2-based passively Q-switched diode-pumped Nd: YAG laser at 946 nm,” Opt. Laser Technol. 91, 36–39 (2017).
[Crossref]

Cai, Z.

Carmalt, C. J.

N. D. Boscher, C. J. Carmalt, and I. P. Parkin, “Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces,” J. Mater. Chem. 16(1), 122–127 (2006).
[Crossref]

Chae, S. H.

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

Chang, C.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Chang, C.-S.

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Chang, K.-C.

Chang, K.-D.

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Chang, M.-T.

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Chang, W.-H.

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

Chang, Y.-H.

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

Chen, B.

Chen, D.

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

R. Yan, X. Yu, Y. Ma, X. Li, D. Chen, and J. Yu, “High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd: YAG 946nm laser,” Opt. Commun. 285(21-22), 4462–4465 (2012).
[Crossref]

Chen, F.

F. Chen, D. Li, J. Guo, and X. Yu, “Research on all-solid-state blue lasers,” Optik - International Journal for Light and Electron Optics 126(19), 1778–1781 (2015).
[Crossref]

Chen, J.

Chen, J.-C.

Chen, L.

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study,” ACS Nano 9(6), 6119–6127 (2015).
[Crossref] [PubMed]

Chen, S.-Y.

S.-Y. Chen, C. Zheng, M. S. Fuhrer, and J. Yan, “Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers,” Nano Lett. 15(4), 2526–2532 (2015).
[Crossref] [PubMed]

Chen, T.-W.

Chen, X.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Chen, X. M.

R. P. Shi, Y. Bai, M. Qi, X. M. Chen, H. D. Wei, Z. Y. Ren, and J. T. Bai, “A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene,” Laser Phys. Lett. 11(2), 025001 (2014).
[Crossref]

Chen, Y.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Chen, Z.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Cheshev, E.

V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
[Crossref]

Chianelli, R.

C. Roxlo, M. Daage, A. Ruppert, and R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

Chiu, M.-H.

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

Chu, H.

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

Chulkov, R.

V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
[Crossref]

Cichocka, M. O.

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

Coleman, J. N.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Cui, D.

Cui, Q.

Cui, X.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

Daage, M.

C. Roxlo, M. Daage, A. Ruppert, and R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

Dao, P. D.

Dashkevich, V.

V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
[Crossref]

Deyra, L.

Didierjean, J.

Ding, X.

Dong, N.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Du, B.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

Du, J.

Duan, L.

X. Wang, Y. Wang, L. Duan, L. Li, and H. Sun, “Passively Q-switched Nd: YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

Duan, Y. M.

H. Y. Zhu, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd: YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Duesberg, G. S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Eda, G.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Eichfeld, S. M.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

El-Desouki, M.

V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
[Crossref]

Fan, T.

T. Fan and R. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Fan, W.

H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
[Crossref]

Farley, R. W.

Fathi, M.

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study,” ACS Nano 9(6), 6119–6127 (2015).
[Crossref] [PubMed]

Feldman, Y.

T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison, and R. Tenne, “Synthesis and characterization of inorganic fullerene-like WSe2 material,” Fullerene Sci. Technol. 6(1), 157–165 (1998).
[Crossref]

Feng, Y.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Fuhrer, M. S.

S.-Y. Chen, C. Zheng, M. S. Fuhrer, and J. Yan, “Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers,” Nano Lett. 15(4), 2526–2532 (2015).
[Crossref] [PubMed]

Gan, X.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Gao, J.

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

Georges, P.

Ghorannevis, Z.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Gordan, O.

Grabtchikov, A.

V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
[Crossref]

Guo, J.

F. Chen, D. Li, J. Guo, and X. Yu, “Research on all-solid-state blue lasers,” Optik - International Journal for Light and Electron Optics 126(19), 1778–1781 (2015).
[Crossref]

Guo, L.

Han, L.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Han, S.

S. Han, X. Li, Y. Zhao, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Efficient graphene Q-switched 946 nm Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 126(21), 3110–3112 (2015).
[Crossref]

Hang, Y.

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

Hanson, F.

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd: Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

Hao, X.

S. Han, X. Li, Y. Zhao, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Efficient graphene Q-switched 946 nm Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 126(21), 3110–3112 (2015).
[Crossref]

Hasan, T.

Homyonfer, M.

T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison, and R. Tenne, “Synthesis and characterization of inorganic fullerene-like WSe2 material,” Fullerene Sci. Technol. 6(1), 157–165 (1998).
[Crossref]

Hong, B. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Horzum, S.

H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
[Crossref]

Hossain, L.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Hou, W.

Hou, X.

V. Nguyen, J. Si, L. Yan, and X. Hou, “Electron hole recombination dynamics in carbon nanodots,” Carbon 95, 659–663 (2015).
[Crossref]

V. Nguyen, L. Yan, J. Si, and X. Hou, “Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time,” J. Appl. Phys. 117(8), 084304 (2015).
[Crossref]

L. Yan, J. Yue, J. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
[Crossref] [PubMed]

Howe, R. C. T.

Hsu, C.-L.

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

Hu, G.

Hu, X. H.

J. Huang and X. H. Hu, “LD-pumped electro-optically Q-switched 946 nm Nd: YAG laser with pulse repetition rates of 1 kHz,” Chin. J. Lasers 6(6), 0602008 (2015).
[Crossref]

Hua, S.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Huang, J.

J. Huang and X. H. Hu, “LD-pumped electro-optically Q-switched 946 nm Nd: YAG laser with pulse repetition rates of 1 kHz,” Chin. J. Lasers 6(6), 0602008 (2015).
[Crossref]

Huang, J.-K.

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

Huang, X.-H.

H.-Y. Lin, X. Liu, X.-H. Huang, Y.-C. Xu, X.-G. Meng, and F.-B. Xiong, “Monolayer graphene-based passively Q-switched Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 127(1), 243–245 (2016).
[Crossref]

Hutchison, J. L.

T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison, and R. Tenne, “Synthesis and characterization of inorganic fullerene-like WSe2 material,” Fullerene Sci. Technol. 6(1), 157–165 (1998).
[Crossref]

Idrobo, J.-C.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

Imaeda, M.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
[Crossref]

Iwai, M.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
[Crossref]

Iwasa, Y.

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

Jeong, H. Y.

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

Jiang, B.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Juang, Z.-Y.

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

Jussila, H.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Karvonen, L.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Kelleher, E. J. R.

Kim, M. J.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Kloc, C.

Knights, J. C.

A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides. ii. Group via: trigonal prismatic coordination,” J. Phys. C Solid State Phys. 5(24), 3540–3551 (1972).
[Crossref]

Kong, F.

J. Zhao, S. Zhao, K. Li, F. Kong, and T. Li, “Enhancement of stability and peak power in a diode-pumped doubly QML YVO4/Nd: YVO4 laser with EO and Cr4+: YAG saturable absorber,” Opt. Mater. 34(4), 622–626 (2012).
[Crossref]

Kong, J.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

Kupp, B.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Lan, J.

Lee, H. W.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Lee, Y. H.

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

Lee, Y.-H.

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Lenth, W.

Li, D.

F. Chen, D. Li, J. Guo, and X. Yu, “Research on all-solid-state blue lasers,” Optik - International Journal for Light and Electron Optics 126(19), 1778–1781 (2015).
[Crossref]

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

G. Li, Z. Zhao, K. Yan, D. Li, and J. Zou, “Pulse shape symmetry and pulse width reduction in diode-pumped doubly Q-switched Nd:YVO4/KTP green laser with AO and GaAs,” Opt. Express 13(4), 1178–1187 (2005).
[Crossref] [PubMed]

Li, E.

Li, G.

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

G. Li, Z. Zhao, K. Yan, D. Li, and J. Zou, “Pulse shape symmetry and pulse width reduction in diode-pumped doubly Q-switched Nd:YVO4/KTP green laser with AO and GaAs,” Opt. Express 13(4), 1178–1187 (2005).
[Crossref] [PubMed]

Li, J.

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
[Crossref]

Li, K.

J. Zhao, S. Zhao, K. Li, F. Kong, and T. Li, “Enhancement of stability and peak power in a diode-pumped doubly QML YVO4/Nd: YVO4 laser with EO and Cr4+: YAG saturable absorber,” Opt. Mater. 34(4), 622–626 (2012).
[Crossref]

Li, L.

X. Wang, Y. Wang, L. Duan, L. Li, and H. Sun, “Passively Q-switched Nd: YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

Li, L.-J.

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Li, M.-Y.

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

Li, T.

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

J. Zhao, S. Zhao, K. Li, F. Kong, and T. Li, “Enhancement of stability and peak power in a diode-pumped doubly QML YVO4/Nd: YVO4 laser with EO and Cr4+: YAG saturable absorber,” Opt. Mater. 34(4), 622–626 (2012).
[Crossref]

Li, X.

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

S. Han, X. Li, Y. Zhao, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Efficient graphene Q-switched 946 nm Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 126(21), 3110–3112 (2015).
[Crossref]

R. Yan, X. Yu, Y. Ma, X. Li, D. Chen, and J. Yu, “High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd: YAG 946nm laser,” Opt. Commun. 285(21-22), 4462–4465 (2012).
[Crossref]

X. Wang, X. Xu, X. Li, and Q. Lu, “Revising the formula of thermal focal length in a side-pumped laser rod by experiments,” Appl. Opt. 46(22), 5237–5240 (2007).
[Crossref] [PubMed]

Li, Y.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Liang, W. Y.

A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides. ii. Group via: trigonal prismatic coordination,” J. Phys. C Solid State Phys. 5(24), 3540–3551 (1972).
[Crossref]

Liebig, A.

Lin, C.-T.

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Lin, H.

H. Lin, W. Zhu, F. Xiong, and L. Cai, “MoS2-based passively Q-switched diode-pumped Nd: YAG laser at 946 nm,” Opt. Laser Technol. 91, 36–39 (2017).
[Crossref]

Lin, H.-Y.

H.-Y. Lin, X. Liu, X.-H. Huang, Y.-C. Xu, X.-G. Meng, and F.-B. Xiong, “Monolayer graphene-based passively Q-switched Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 127(1), 243–245 (2016).
[Crossref]

Lin, J.-H.

Lin, T.-W.

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Lin, Y.-C.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Lin, Z.

Lipsanen, H.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Liu, B.

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study,” ACS Nano 9(6), 6119–6127 (2015).
[Crossref] [PubMed]

Liu, X.

H.-Y. Lin, X. Liu, X.-H. Huang, Y.-C. Xu, X.-G. Meng, and F.-B. Xiong, “Monolayer graphene-based passively Q-switched Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 127(1), 243–245 (2016).
[Crossref]

Liu, Z.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

Loh, K. P.

Lou, J.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

Lu, N.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Lu, Q.

Lu, S. B.

Luo, D. W.

H. Y. Zhu, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd: YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Ly, T. H.

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

Ma, C.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Ma, X. Y.

Ma, Y.

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study,” ACS Nano 9(6), 6119–6127 (2015).
[Crossref] [PubMed]

R. Yan, X. Yu, Y. Ma, X. Li, D. Chen, and J. Yu, “High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd: YAG 946nm laser,” Opt. Commun. 285(21-22), 4462–4465 (2012).
[Crossref]

Mao, D.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Martial, I.

Mayer, T. S.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

McDonnell, S.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

McEvoy, N.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Mei, L.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Mei, T.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Meng, X.-G.

H.-Y. Lin, X. Liu, X.-H. Huang, Y.-C. Xu, X.-G. Meng, and F.-B. Xiong, “Monolayer graphene-based passively Q-switched Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 127(1), 243–245 (2016).
[Crossref]

Michaelis de Vasconcellos, S.

Najmaei, S.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

Nguyen, V.

V. Nguyen, J. Si, L. Yan, and X. Hou, “Electron hole recombination dynamics in carbon nanodots,” Carbon 95, 659–663 (2015).
[Crossref]

V. Nguyen, L. Yan, J. Si, and X. Hou, “Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time,” J. Appl. Phys. 117(8), 084304 (2015).
[Crossref]

O’Brien, M.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Oh, H. M.

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

Orlovich, V.

V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
[Crossref]

Pan, H.

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

Pan, Y.

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

Pang, J. R.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Parkin, I. P.

N. D. Boscher, C. J. Carmalt, and I. P. Parkin, “Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces,” J. Mater. Chem. 16(1), 122–127 (2006).
[Crossref]

Pavel, N.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
[Crossref]

Peeters, F. M.

H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
[Crossref]

Peng, T.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

Peng, X.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Perello, D. J.

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

Piasecki, A. F.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Popov, S. V.

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Pu, J.

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

Qi, M.

R. P. Shi, Y. Bai, M. Qi, X. M. Chen, H. D. Wei, Z. Y. Ren, and J. T. Bai, “A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene,” Laser Phys. Lett. 11(2), 025001 (2014).
[Crossref]

Qiao, W.

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

Redwing, J. M.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Ren, Z. Y.

R. P. Shi, Y. Bai, M. Qi, X. M. Chen, H. D. Wei, Z. Y. Ren, and J. T. Bai, “A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene,” Laser Phys. Lett. 11(2), 025001 (2014).
[Crossref]

Risk, W. P.

Robinson, J. A.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Rotermund, F.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Roxlo, C.

C. Roxlo, M. Daage, A. Ruppert, and R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

Ruppert, A.

C. Roxlo, M. Daage, A. Ruppert, and R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

Sahin, H.

H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
[Crossref]

Schmidt, R.

She, X.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

Shi, R. P.

R. P. Shi, Y. Bai, M. Qi, X. M. Chen, H. D. Wei, Z. Y. Ren, and J. T. Bai, “A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene,” Laser Phys. Lett. 11(2), 025001 (2014).
[Crossref]

Shi, Y.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

Shoji, I.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
[Crossref]

Shpak, P.

V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
[Crossref]

Si, J.

V. Nguyen, L. Yan, J. Si, and X. Hou, “Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time,” J. Appl. Phys. 117(8), 084304 (2015).
[Crossref]

V. Nguyen, J. Si, L. Yan, and X. Hou, “Electron hole recombination dynamics in carbon nanodots,” Carbon 95, 659–663 (2015).
[Crossref]

L. Yan, J. Yue, J. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
[Crossref] [PubMed]

Sloan, J.

T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison, and R. Tenne, “Synthesis and characterization of inorganic fullerene-like WSe2 material,” Fullerene Sci. Technol. 6(1), 157–165 (1998).
[Crossref]

Song, K.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

Sun, H.

X. Wang, Y. Wang, L. Duan, L. Li, and H. Sun, “Passively Q-switched Nd: YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

Sun, Z.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Sun, Z. P.

Taira, T.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
[Crossref]

Takenobu, T.

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

Tan, P. H.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Tang, D. Y.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

H. Y. Zhu, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd: YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Taylor, J. R.

Tenne, R.

T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison, and R. Tenne, “Synthesis and characterization of inorganic fullerene-like WSe2 material,” Fullerene Sci. Technol. 6(1), 157–165 (1998).
[Crossref]

Toh, M.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Tongay, S.

H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
[Crossref]

Tonndorf, P.

Torrisi, F.

Tsirlina, T.

T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison, and R. Tenne, “Synthesis and characterization of inorganic fullerene-like WSe2 material,” Fullerene Sci. Technol. 6(1), 157–165 (1998).
[Crossref]

Voitikov, S.

V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
[Crossref]

Wallace, R. M.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Wang, C.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, H.

Wang, J.

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref] [PubMed]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Wang, J. T.-W.

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Wang, K.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Wang, P.

Wang, S.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Wang, X.

X. Wang, Y. Wang, L. Duan, L. Li, and H. Sun, “Passively Q-switched Nd: YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

X. Wang, X. Xu, X. Li, and Q. Lu, “Revising the formula of thermal focal length in a side-pumped laser rod by experiments,” Appl. Opt. 46(22), 5237–5240 (2007).
[Crossref] [PubMed]

Wang, Y.

X. Wang, Y. Wang, L. Duan, L. Li, and H. Sun, “Passively Q-switched Nd: YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Wang, Y. G.

Wang, Z.

S. Han, X. Li, Y. Zhao, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Efficient graphene Q-switched 946 nm Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 126(21), 3110–3112 (2015).
[Crossref]

Wei, H. D.

R. P. Shi, Y. Bai, M. Qi, X. M. Chen, H. D. Wei, Z. Y. Ren, and J. T. Bai, “A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene,” Laser Phys. Lett. 11(2), 025001 (2014).
[Crossref]

Wei, M.-D.

Wen, S. C.

Wen, W.

Winters, S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Woodward, R. I.

Wu, J.

H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
[Crossref]

Wu, K.

Wu, Y.

S. Han, X. Li, Y. Zhao, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Efficient graphene Q-switched 946 nm Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 126(21), 3110–3112 (2015).
[Crossref]

Xiong, F.

H. Lin, W. Zhu, F. Xiong, and L. Cai, “MoS2-based passively Q-switched diode-pumped Nd: YAG laser at 946 nm,” Opt. Laser Technol. 91, 36–39 (2017).
[Crossref]

Xiong, F.-B.

H.-Y. Lin, X. Liu, X.-H. Huang, Y.-C. Xu, X.-G. Meng, and F.-B. Xiong, “Monolayer graphene-based passively Q-switched Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 127(1), 243–245 (2016).
[Crossref]

Xu, B.

Xu, C. W.

H. Y. Zhu, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd: YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Xu, H.

Xu, J.

Q. Cui, J. Lan, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, “High-power and high-efficiency diode-pumped Nd:LuYAG mixed crystal lasers operating at 939 and 946 nm,” Appl. Opt. 55(26), 7438–7443 (2016).
[Crossref] [PubMed]

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

Xu, X.

Xu, Y.-C.

H.-Y. Lin, X. Liu, X.-H. Huang, Y.-C. Xu, X.-G. Meng, and F.-B. Xiong, “Monolayer graphene-based passively Q-switched Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 127(1), 243–245 (2016).
[Crossref]

Xu, Z. Y.

Yakobson, B. I.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

Yamaguchi, S.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
[Crossref]

Yan, J.

S.-Y. Chen, C. Zheng, M. S. Fuhrer, and J. Yan, “Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers,” Nano Lett. 15(4), 2526–2532 (2015).
[Crossref] [PubMed]

Yan, K.

Yan, L.

V. Nguyen, L. Yan, J. Si, and X. Hou, “Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time,” J. Appl. Phys. 117(8), 084304 (2015).
[Crossref]

V. Nguyen, J. Si, L. Yan, and X. Hou, “Electron hole recombination dynamics in carbon nanodots,” Carbon 95, 659–663 (2015).
[Crossref]

L. Yan, J. Yue, J. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
[Crossref] [PubMed]

Yan, R.

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

R. Yan, X. Yu, Y. Ma, X. Li, D. Chen, and J. Yu, “High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd: YAG 946nm laser,” Opt. Commun. 285(21-22), 4462–4465 (2012).
[Crossref]

Yang, D.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

Yang, K.

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

Yao, F.

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

Yao, J.

Ye, G.

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Yeom, D.-I.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Yim, C.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Yoshino, T.

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
[Crossref]

Yu, H.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Yu, J.

R. Yan, X. Yu, Y. Ma, X. Li, D. Chen, and J. Yu, “High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd: YAG 946nm laser,” Opt. Commun. 285(21-22), 4462–4465 (2012).
[Crossref]

Yu, X.

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

F. Chen, D. Li, J. Guo, and X. Yu, “Research on all-solid-state blue lasers,” Optik - International Journal for Light and Electron Optics 126(19), 1778–1781 (2015).
[Crossref]

R. Yan, X. Yu, Y. Ma, X. Li, D. Chen, and J. Yu, “High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd: YAG 946nm laser,” Opt. Commun. 285(21-22), 4462–4465 (2012).
[Crossref]

Yu, Y.-C.

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Yue, J.

Zahn, D. R. T.

Zhan, J.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Zhang, B.

Zhang, H.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Zhang, H. B.

Zhang, J.

Q. Cui, J. Lan, Z. Lin, B. Xu, H. Xu, Z. Cai, X. Xu, J. Zhang, and J. Xu, “High-power and high-efficiency diode-pumped Nd:LuYAG mixed crystal lasers operating at 939 and 946 nm,” Appl. Opt. 55(26), 7438–7443 (2016).
[Crossref] [PubMed]

H. Y. Zhu, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd: YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Zhang, L.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Zhang, T.

Zhang, W.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express 21(4), 4908–4916 (2013).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Zhang, X.-Q.

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Zhao, J.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

J. Zhao, S. Zhao, K. Li, F. Kong, and T. Li, “Enhancement of stability and peak power in a diode-pumped doubly QML YVO4/Nd: YVO4 laser with EO and Cr4+: YAG saturable absorber,” Opt. Mater. 34(4), 622–626 (2012).
[Crossref]

Zhao, M.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Zhao, Q.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

Zhao, S.

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

J. Zhao, S. Zhao, K. Li, F. Kong, and T. Li, “Enhancement of stability and peak power in a diode-pumped doubly QML YVO4/Nd: YVO4 laser with EO and Cr4+: YAG saturable absorber,” Opt. Mater. 34(4), 622–626 (2012).
[Crossref]

Zhao, W.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Zhao, Y.

S. Han, X. Li, Y. Zhao, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Efficient graphene Q-switched 946 nm Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 126(21), 3110–3112 (2015).
[Crossref]

Zhao, Z.

Zheng, C.

S.-Y. Chen, C. Zheng, M. S. Fuhrer, and J. Yan, “Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers,” Nano Lett. 15(4), 2526–2532 (2015).
[Crossref] [PubMed]

Zheng, J.

Zhou, C.

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study,” ACS Nano 9(6), 6119–6127 (2015).
[Crossref] [PubMed]

Zhou, J.

H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
[Crossref]

Zhou, R.

Zhou, W.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

Zhu, H. Y.

H. Y. Zhu, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd: YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Zhu, W.

H. Lin, W. Zhu, F. Xiong, and L. Cai, “MoS2-based passively Q-switched diode-pumped Nd: YAG laser at 946 nm,” Opt. Laser Technol. 91, 36–39 (2017).
[Crossref]

Zou, J.

Zou, X.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

ACS Nano (6)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh, S. H. Chae, H. Y. Jeong, F. Yao, L.-J. Li, and Y. H. Lee, “Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides,” ACS Nano 8(11), 11401–11408 (2014).
[Crossref] [PubMed]

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano 8(1), 923–930 (2014).
[Crossref] [PubMed]

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study,” ACS Nano 9(6), 6119–6127 (2015).
[Crossref] [PubMed]

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki, B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim, T. S. Mayer, J. M. Redwing, and J. A. Robinson, “Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition,” ACS Nano 9(2), 2080–2087 (2015).
[Crossref] [PubMed]

S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9(7), 7142–7150 (2015).
[Crossref] [PubMed]

Adv. Mater. (2)

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater. 24(17), 2320–2325 (2012).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. Express (1)

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Appl. Phys. Lett. (2)

F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd: Y3Al5O12 rod,” Appl. Phys. Lett. 66(26), 3549–3551 (1995).
[Crossref]

M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser,” Appl. Phys. Lett. 83(18), 3659–3661 (2003).
[Crossref]

Carbon (1)

V. Nguyen, J. Si, L. Yan, and X. Hou, “Electron hole recombination dynamics in carbon nanodots,” Carbon 95, 659–663 (2015).
[Crossref]

Chin. J. Lasers (1)

J. Huang and X. H. Hu, “LD-pumped electro-optically Q-switched 946 nm Nd: YAG laser with pulse repetition rates of 1 kHz,” Chin. J. Lasers 6(6), 0602008 (2015).
[Crossref]

Fullerene Sci. Technol. (1)

T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. L. Hutchison, and R. Tenne, “Synthesis and characterization of inorganic fullerene-like WSe2 material,” Fullerene Sci. Technol. 6(1), 157–165 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Fan and R. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Chu, S. Zhao, T. Li, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Xu, and Y. Hang, “Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 21(1), 343–347 (2015).
[Crossref]

J. Appl. Phys. (1)

V. Nguyen, L. Yan, J. Si, and X. Hou, “Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time,” J. Appl. Phys. 117(8), 084304 (2015).
[Crossref]

J. Catal. (1)

C. Roxlo, M. Daage, A. Ruppert, and R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

J. Mater. Chem. (1)

N. D. Boscher, C. J. Carmalt, and I. P. Parkin, “Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces,” J. Mater. Chem. 16(1), 122–127 (2006).
[Crossref]

J. Phys. C Solid State Phys. (1)

A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides. ii. Group via: trigonal prismatic coordination,” J. Phys. C Solid State Phys. 5(24), 3540–3551 (1972).
[Crossref]

Laser Phys. Lett. (2)

R. P. Shi, Y. Bai, M. Qi, X. M. Chen, H. D. Wei, Z. Y. Ren, and J. T. Bai, “A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene,” Laser Phys. Lett. 11(2), 025001 (2014).
[Crossref]

H. Y. Zhu, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd: YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Nano Lett. (2)

S.-Y. Chen, C. Zheng, M. S. Fuhrer, and J. Yan, “Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers,” Nano Lett. 15(4), 2526–2532 (2015).
[Crossref] [PubMed]

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13(6), 2615–2622 (2013).
[Crossref] [PubMed]

Nanoscale (2)

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6(18), 10530–10535 (2014).
[Crossref] [PubMed]

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Opt. Commun. (3)

X. Wang, Y. Wang, L. Duan, L. Li, and H. Sun, “Passively Q-switched Nd: YAG laser via a WS2 saturable absorber,” Opt. Commun. 367, 234–238 (2016).
[Crossref]

R. Yan, X. Yu, Y. Ma, X. Li, D. Chen, and J. Yu, “High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd: YAG 946nm laser,” Opt. Commun. 285(21-22), 4462–4465 (2012).
[Crossref]

V. Dashkevich, P. Shpak, S. Voitikov, R. Chulkov, A. Grabtchikov, E. Cheshev, M. El-Desouki, and V. Orlovich, “Eye-safe actively Q-switched diode-pumped lasers with intracavity Raman conversion in YVO4, KGd(WO4)2, PbWO4, and Ba(NO3)2 crystals,” Opt. Commun. 351, 1–8 (2015).
[Crossref]

Opt. Express (8)

G. Li, Z. Zhao, K. Yan, D. Li, and J. Zou, “Pulse shape symmetry and pulse width reduction in diode-pumped doubly Q-switched Nd:YVO4/KTP green laser with AO and GaAs,” Opt. Express 13(4), 1178–1187 (2005).
[Crossref] [PubMed]

L. Yan, J. Yue, J. Si, and X. Hou, “Influence of self-diffraction effect on femtosecond pump-probe optical Kerr measurements,” Opt. Express 16(16), 12069–12074 (2008).
[Crossref] [PubMed]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2.,” Opt. Express 23(20), 26723–26737 (2015).
[Crossref] [PubMed]

L. Guo, W. Hou, H. B. Zhang, Z. P. Sun, D. Cui, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express 13(11), 4085–4089 (2005).
[Crossref] [PubMed]

R. Zhou, T. Zhang, E. Li, X. Ding, Z. Cai, B. Zhang, W. Wen, P. Wang, and J. Yao, “8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946-nm,” Opt. Express 13(25), 10115–10119 (2005).
[Crossref] [PubMed]

P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express 21(4), 4908–4916 (2013).
[Crossref] [PubMed]

R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

H. Lin, W. Zhu, F. Xiong, and L. Cai, “MoS2-based passively Q-switched diode-pumped Nd: YAG laser at 946 nm,” Opt. Laser Technol. 91, 36–39 (2017).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

J. Zhao, S. Zhao, K. Li, F. Kong, and T. Li, “Enhancement of stability and peak power in a diode-pumped doubly QML YVO4/Nd: YVO4 laser with EO and Cr4+: YAG saturable absorber,” Opt. Mater. 34(4), 622–626 (2012).
[Crossref]

Opt. Quantum Electron. (1)

D. Chen, H. Pan, R. Yan, X. Yu, J. Li, Y. Ma, X. Li, Y. Pan, and J. Gao, “LD pumped passively Q-switched ceramic Nd: YAG 946 nm laser with a high peak power output,” Opt. Quantum Electron. 48(2), 81 (2016).
[Crossref]

Optik - International Journal for Light and Electron Optics (3)

S. Han, X. Li, Y. Zhao, Y. Wu, Z. Wang, X. Hao, and X. Xu, “Efficient graphene Q-switched 946 nm Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 126(21), 3110–3112 (2015).
[Crossref]

H.-Y. Lin, X. Liu, X.-H. Huang, Y.-C. Xu, X.-G. Meng, and F.-B. Xiong, “Monolayer graphene-based passively Q-switched Nd: YAG laser,” Optik - International Journal for Light and Electron Optics 127(1), 243–245 (2016).
[Crossref]

F. Chen, D. Li, J. Guo, and X. Yu, “Research on all-solid-state blue lasers,” Optik - International Journal for Light and Electron Optics 126(19), 1778–1781 (2015).
[Crossref]

Phys. Rev. B (1)

H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B 87(16), 165409 (2013).
[Crossref]

Sci. Rep. (3)

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).

D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, and Z. Sun, “Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation,” Sci. Rep. 5(1), 15899 (2015).
[Crossref] [PubMed]

Other (4)

R. Yan, X. Yu, X. Li, Z. Dong, Y. Ma, J. Li, and Y. Pan, “High-repetition-rate, high-peak-power passively Q-switched ceramic Nd: YAG 946 nm laser,” in Advanced Solid State Lasers, (Optical Society of America, 2015), p. AM5A.31.

J.-T. Gomes, X. Delen, I. Martial, J. Didierjean, F. Balembois, and P. Georges, “Q-switched Nd: YAG laser at 946 nm based on single crystal fiber pumped at 885 nm,” in Advanced Solid State Lasers, (Optical Society of America, 2015), p. ATh2A.30.

H. J. Eichler, F. Kallmeyer, H. Rhee, T. Riesbeck, and S. Strohmaier, “Efficient laser systems for 935 and 942 nm for water vapor lidar,” Proc. SPIE 6346, XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, 63460Y (2006).
[Crossref]

O. Svelto and D. C. Hanna, “Principles of lasers,” vol. 4 (Springer, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Raman spectrum for WSe2 nanosheets. Insets: saturable absorber mirror coated with WSe2 film (upper), and optical microscopic morphology of WSe2 sheet on sapphire substrate (lower). (b) Atomic force microscopy (AFM) measured thickness profile of the WSe2 film along the green line in the inset. (c) Linear absorption spectrum of the monolayer WSe2. (d) Normalized nonlinear optical transmittance measured based on Z-scan measurement by using a 1030 nm laser with 340 fs (red dots) and theoretical fitting (green solid line) of the monolayer WSe2.
Fig. 2
Fig. 2 Experimental setup for double Q-switched operation.
Fig. 3
Fig. 3 Simulation results for laser-spot diameter variation with resonant cavity at (a) 150 mm and (b) 80 mm focal length of thermal lens.
Fig. 4
Fig. 4 (a) The output energy, pulse width and (b) linewidth of 946 nm pulse laser with EO, passive and double Q-switching operation
Fig. 5
Fig. 5 2D and 3D near field beam profiles of (a) EO Q-switching, (b) passive Q-switching and (c) double Q-switching operation.
Fig. 6
Fig. 6 Output pulse train at 500Hz repetition rate of (a) EO, (b) passive and (c) double Q-switching operation and corresponding pulse profiles of (d) EO, (e) passive and (f) double Q-switching operation.
Fig. 7
Fig. 7 Theoretical pulse profiles of (a) EO, (b) passive and (c) double Q-switching operation.

Tables (2)

Tables Icon

Table 1 parameters for Q-switching operations

Tables Icon

Table 2 Comparison of different Q-switching operations at the repetition rate of 500 Hz

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T= ( 1 α 0 L 1+I/ I s βIL α ns )/ ( 1 α 0 L )
| A s + D s 2 |0.37540.5687/ 500 Hz.
| A t + D t 2 |0.31190.5075/ 500 Hz.
W O 3 +3Se+ H 2 WS e 2 + H 2 O+Se O 2 .
dϕ dt = ϕ t r { 2σnl2 σ gs n gs l s 2 σ es ( n 0s n gs ) l s B l s ϕ δ e [ ln( 1 R )+L ] }
dn dt = R in (t)γσϕcn n τ a
d n gs dt =cϕ{ σ es [ n 0s n gs ] σ gs n gs }.

Metrics