Abstract

A self-injection locked continuous-wave (CW) single-frequency tunable Ti:sapphire laser is demonstrated in this paper. Unidirectional operation of the presented Ti:sapphire laser is achieved by using a retro-reflecting device which can retro-reflect a seed laser beam from one direction back into the counter-propagating field. On the basis, the influence of the transmission of output coupler on the unidirectional operation is investigated and it is found that stable unidirectional and single-frequency operation of the Ti:sapphire laser is achieved when the loss difference between both output directions is larger than a certain value, which is easy to be realized by choosing the transmission of output coupler. When the output coupler with transmission of 6.5% is utilized, the maximal 5 W CW single-frequency Ti:sapphire laser with stable unidirectional operation is obtained with the pump power of 18 W. The measured power stability and M2 are better than ±0.9% and 1.1, respectively. The maximal tuning range and continuous frequency-tuning ability are 120 nm and 40.75 GHz, respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of a 756 nm, 3 W injection-locked cw Ti:sapphire laser

Yong Ho Cha, Yong Woo Lee, Kwang-Hoon Ko, Euo Chang Jung, Gwon Lim, Jaewoo Kim, Taek-Soo Kim, and Do-Young Jeong
Appl. Opt. 44(36) 7810-7813 (2005)

External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser

Yong-Ho Cha, Kwang-Hoon Ko, Gwon Lim, Jae-Min Han, Hyun-Min Park, Taek-Soo Kim, and Do-Young Jeong
Opt. Express 16(7) 4866-4871 (2008)

A widely tunable dual-wavelength CW Ti:sapphire laser with collinear output

C. W. Luo, Y. Q. Yang, I. T. Mak, Y. H. Chang, K. H. Wu, and T. Kobayashi
Opt. Express 16(5) 3305-3309 (2008)

References

  • View by:
  • |
  • |
  • |

  1. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  2. P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24(6), 1039–1044 (1988).
    [Crossref]
  3. W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hansch, “A frequency-stabilized Titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75(5–6), 435–440 (1990).
    [Crossref]
  4. T. L. Boyd and H. J. Kimble, “Frequency stabilization of a continuous-wave Ti:sapphire laser,” Opt. Lett. 16(11), 808–810 (1991).
    [Crossref] [PubMed]
  5. M. Tsunekane and N. Taguchi, “High-power, efficient, low-noise, continuous-wave all-solid-state Ti:sapphire laser,” Opt. Lett. 21(23), 1912–1914 (1996).
    [Crossref] [PubMed]
  6. H. D. Lu, J. Su, C. D. Xie, and K. C. Peng, “Experimental investigation about influences of longitudinal-mode structure of pumping source on a Ti:sapphire laser,” Opt. Express 19(2), 1344–1353 (2011).
    [Crossref] [PubMed]
  7. J. Belfi, I. Galli, G. Giusfredi, and F. Marin, “Intensity noise of an injection-locked Ti:sapphire laser: analysis of the phase-noise-to-amplitude-conversion,” J. Opt. Soc. Am. B 23(7), 1276–1286 (2006).
    [Crossref]
  8. H. D. Lu, J. Su, and K. C. Peng, “Suppression of intensity noise at low frequencies of Ti:sapphire laser by optoelectronic control,” Chin. Lasers 38(4), 0402014 (2011).
    [Crossref]
  9. H. D. Lu, X. J. Sun, M. H. Wang, J. Su, and K. C. Peng, “Single frequency Ti:sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss,” Opt. Express 22(20), 24551–24558 (2014).
    [Crossref] [PubMed]
  10. P. X. Jin, H. D. Lu, Y. X. Wei, J. Su, and K. C. Peng, “Single-frequency CW Ti:sapphire laser with intensity noise manipulation and continuous frequency-tuning,” Opt. Lett. 42(1), 143–146 (2017).
    [Crossref] [PubMed]
  11. http://www.coherent.com/lasers/laser/mbr-ring-series .
  12. http://www.spectra-physics.com/products/tunable-lasers/matisse .
  13. S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
    [Crossref]
  14. http://www.m2lasers.com/lasers/all-lasers/solstis-ti-sapphire-laser.aspx .
  15. T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. QE-16(4), 483–488 (1980).
    [Crossref]
  16. E. A. Cummings, M. S. Hicken, and S. D. Bergeson, “Demonstration of a 1-W injection-locked continuous-wave titanium:sapphire laser,” Appl. Opt. 41(36), 7583–7587 (2002).
    [Crossref]
  17. Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, “External-cavity frequency doubling of a 5-W 756- nm injection-locked Ti:sapphire laser,” Opt. Express 16(7), 4866–4871 (2008).
    [Crossref] [PubMed]
  18. M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31(8), 1253–1260 (1995).
    [Crossref]
  19. H. W. Schroder, L. Stein, D. Frolich, B. Fugger, and H. Welling, “A high-power single-mode cw dye ring laser,” Appl. Phys. 14, 377–380 (1977).
    [Crossref]
  20. P. C. Shardlow and M. J. Damzen, “20 W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B-Lasers Opt. 97, 257–262 (2009).
    [Crossref]
  21. T. Meier, B. Willke, M. Dehne, and K. Danzmann, “Investigation of the self-injection locked behaviour of a continuous wave Nd:YAG ring laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CTuP2.
  22. Y. Miake, T. Mukaiyama, K. M. O’Hara, and S. Gensemern, “A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms,” Rev. Sci. Instrum. 86, 043113 (2015).
    [Crossref] [PubMed]
  23. Q. W. Yin, H. D. Lu, and K. C. Peng, “Investigation of the thermal lens effect of the TGG crystal in high-power frequency-doubled laser with single frequency operation,” Opt. Express 23(4), 4981–4990 (2015).
    [Crossref] [PubMed]
  24. Y. Sun, H. D. Lu, and J. Su, “Continuous-wave, single-frequency, all-solid-state Ti:Al2O3 laser,” Acta Sinica Quantum Optica 14(3), 344–347 (2008).

2017 (1)

2015 (2)

Y. Miake, T. Mukaiyama, K. M. O’Hara, and S. Gensemern, “A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms,” Rev. Sci. Instrum. 86, 043113 (2015).
[Crossref] [PubMed]

Q. W. Yin, H. D. Lu, and K. C. Peng, “Investigation of the thermal lens effect of the TGG crystal in high-power frequency-doubled laser with single frequency operation,” Opt. Express 23(4), 4981–4990 (2015).
[Crossref] [PubMed]

2014 (1)

2011 (2)

H. D. Lu, J. Su, C. D. Xie, and K. C. Peng, “Experimental investigation about influences of longitudinal-mode structure of pumping source on a Ti:sapphire laser,” Opt. Express 19(2), 1344–1353 (2011).
[Crossref] [PubMed]

H. D. Lu, J. Su, and K. C. Peng, “Suppression of intensity noise at low frequencies of Ti:sapphire laser by optoelectronic control,” Chin. Lasers 38(4), 0402014 (2011).
[Crossref]

2009 (1)

P. C. Shardlow and M. J. Damzen, “20 W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B-Lasers Opt. 97, 257–262 (2009).
[Crossref]

2008 (2)

Y. Sun, H. D. Lu, and J. Su, “Continuous-wave, single-frequency, all-solid-state Ti:Al2O3 laser,” Acta Sinica Quantum Optica 14(3), 344–347 (2008).

Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, “External-cavity frequency doubling of a 5-W 756- nm injection-locked Ti:sapphire laser,” Opt. Express 16(7), 4866–4871 (2008).
[Crossref] [PubMed]

2007 (1)

S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
[Crossref]

2006 (1)

2002 (1)

1996 (1)

1995 (1)

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31(8), 1253–1260 (1995).
[Crossref]

1991 (1)

1990 (1)

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hansch, “A frequency-stabilized Titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75(5–6), 435–440 (1990).
[Crossref]

1988 (1)

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24(6), 1039–1044 (1988).
[Crossref]

1986 (1)

1980 (1)

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. QE-16(4), 483–488 (1980).
[Crossref]

1977 (1)

H. W. Schroder, L. Stein, D. Frolich, B. Fugger, and H. Welling, “A high-power single-mode cw dye ring laser,” Appl. Phys. 14, 377–380 (1977).
[Crossref]

Baraoulya, V.

S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
[Crossref]

Barbe, R.

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31(8), 1253–1260 (1995).
[Crossref]

Belfi, J.

Bergeson, S. D.

Boyd, T. L.

Cha, Y. H.

Cummings, E. A.

Damzen, M. J.

P. C. Shardlow and M. J. Damzen, “20 W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B-Lasers Opt. 97, 257–262 (2009).
[Crossref]

Danzmann, K.

T. Meier, B. Willke, M. Dehne, and K. Danzmann, “Investigation of the self-injection locked behaviour of a continuous wave Nd:YAG ring laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CTuP2.

Dehne, M.

T. Meier, B. Willke, M. Dehne, and K. Danzmann, “Investigation of the self-injection locked behaviour of a continuous wave Nd:YAG ring laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CTuP2.

Frolich, D.

H. W. Schroder, L. Stein, D. Frolich, B. Fugger, and H. Welling, “A high-power single-mode cw dye ring laser,” Appl. Phys. 14, 377–380 (1977).
[Crossref]

Fugger, B.

H. W. Schroder, L. Stein, D. Frolich, B. Fugger, and H. Welling, “A high-power single-mode cw dye ring laser,” Appl. Phys. 14, 377–380 (1977).
[Crossref]

Galli, I.

Gensemern, S.

Y. Miake, T. Mukaiyama, K. M. O’Hara, and S. Gensemern, “A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms,” Rev. Sci. Instrum. 86, 043113 (2015).
[Crossref] [PubMed]

Giusfredi, G.

Gorris-Neveux, M.

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31(8), 1253–1260 (1995).
[Crossref]

Han, J. M.

Hansch, T. W.

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hansch, “A frequency-stabilized Titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75(5–6), 435–440 (1990).
[Crossref]

Hicken, M. S.

Jeong, D. Y.

Jin, P. X.

Johnston, T. F.

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. QE-16(4), 483–488 (1980).
[Crossref]

Kallenbach, R.

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hansch, “A frequency-stabilized Titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75(5–6), 435–440 (1990).
[Crossref]

Keller, J.-C.

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31(8), 1253–1260 (1995).
[Crossref]

Kim, T. S.

Kimble, H. J.

Ko, K. H.

Kobtsev, S.

S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
[Crossref]

Lim, G.

Lu, H. D.

Lunin, V.

S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
[Crossref]

Marin, F.

Meier, T.

T. Meier, B. Willke, M. Dehne, and K. Danzmann, “Investigation of the self-injection locked behaviour of a continuous wave Nd:YAG ring laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CTuP2.

Miake, Y.

Y. Miake, T. Mukaiyama, K. M. O’Hara, and S. Gensemern, “A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms,” Rev. Sci. Instrum. 86, 043113 (2015).
[Crossref] [PubMed]

Moulton, P. F.

Mukaiyama, T.

Y. Miake, T. Mukaiyama, K. M. O’Hara, and S. Gensemern, “A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms,” Rev. Sci. Instrum. 86, 043113 (2015).
[Crossref] [PubMed]

Nenchev, M.

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31(8), 1253–1260 (1995).
[Crossref]

O’Hara, K. M.

Y. Miake, T. Mukaiyama, K. M. O’Hara, and S. Gensemern, “A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms,” Rev. Sci. Instrum. 86, 043113 (2015).
[Crossref] [PubMed]

Park, H. M.

Peng, K. C.

Proffitt, W.

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. QE-16(4), 483–488 (1980).
[Crossref]

Schroder, H. W.

H. W. Schroder, L. Stein, D. Frolich, B. Fugger, and H. Welling, “A high-power single-mode cw dye ring laser,” Appl. Phys. 14, 377–380 (1977).
[Crossref]

Schulz, P. A.

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24(6), 1039–1044 (1988).
[Crossref]

Shardlow, P. C.

P. C. Shardlow and M. J. Damzen, “20 W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B-Lasers Opt. 97, 257–262 (2009).
[Crossref]

Stein, L.

H. W. Schroder, L. Stein, D. Frolich, B. Fugger, and H. Welling, “A high-power single-mode cw dye ring laser,” Appl. Phys. 14, 377–380 (1977).
[Crossref]

Su, J.

Sun, X. J.

Sun, Y.

Y. Sun, H. D. Lu, and J. Su, “Continuous-wave, single-frequency, all-solid-state Ti:Al2O3 laser,” Acta Sinica Quantum Optica 14(3), 344–347 (2008).

Taguchi, N.

Tsunekane, M.

Vassen, W.

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hansch, “A frequency-stabilized Titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75(5–6), 435–440 (1990).
[Crossref]

Wang, M. H.

Wei, Y. X.

Welling, H.

H. W. Schroder, L. Stein, D. Frolich, B. Fugger, and H. Welling, “A high-power single-mode cw dye ring laser,” Appl. Phys. 14, 377–380 (1977).
[Crossref]

Willke, B.

T. Meier, B. Willke, M. Dehne, and K. Danzmann, “Investigation of the self-injection locked behaviour of a continuous wave Nd:YAG ring laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CTuP2.

Xie, C. D.

Yin, Q. W.

Zimmermann, C.

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hansch, “A frequency-stabilized Titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75(5–6), 435–440 (1990).
[Crossref]

Acta Sinica Quantum Optica (1)

Y. Sun, H. D. Lu, and J. Su, “Continuous-wave, single-frequency, all-solid-state Ti:Al2O3 laser,” Acta Sinica Quantum Optica 14(3), 344–347 (2008).

Appl. Opt. (1)

Appl. Phys. (1)

H. W. Schroder, L. Stein, D. Frolich, B. Fugger, and H. Welling, “A high-power single-mode cw dye ring laser,” Appl. Phys. 14, 377–380 (1977).
[Crossref]

Appl. Phys. B-Lasers Opt. (1)

P. C. Shardlow and M. J. Damzen, “20 W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B-Lasers Opt. 97, 257–262 (2009).
[Crossref]

Chin. Lasers (1)

H. D. Lu, J. Su, and K. C. Peng, “Suppression of intensity noise at low frequencies of Ti:sapphire laser by optoelectronic control,” Chin. Lasers 38(4), 0402014 (2011).
[Crossref]

IEEE J. Quantum Electron. (3)

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24(6), 1039–1044 (1988).
[Crossref]

T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. QE-16(4), 483–488 (1980).
[Crossref]

M. Gorris-Neveux, M. Nenchev, R. Barbe, and J.-C. Keller, “A two-wavelength, passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31(8), 1253–1260 (1995).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hansch, “A frequency-stabilized Titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75(5–6), 435–440 (1990).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (1)

S. Kobtsev, V. Baraoulya, and V. Lunin, “Ultra-narrow-linewidth combined CW Ti:sapphire/Dye laser for atom cooling and high-precision spectroscopy,” Proc. SPIE 6451, 64511U (2007).
[Crossref]

Rev. Sci. Instrum. (1)

Y. Miake, T. Mukaiyama, K. M. O’Hara, and S. Gensemern, “A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms,” Rev. Sci. Instrum. 86, 043113 (2015).
[Crossref] [PubMed]

Other (4)

T. Meier, B. Willke, M. Dehne, and K. Danzmann, “Investigation of the self-injection locked behaviour of a continuous wave Nd:YAG ring laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CTuP2.

http://www.m2lasers.com/lasers/all-lasers/solstis-ti-sapphire-laser.aspx .

http://www.coherent.com/lasers/laser/mbr-ring-series .

http://www.spectra-physics.com/products/tunable-lasers/matisse .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the designed self-injection locked CW single-frequency tunable Ti:sapphire laser. HWP, half wave-plate; Ti:S, Ti:sapphire; BRF, birefringent filters; PZT, piezoelectric transducer; E, etalon; GC, galvanometer scanner; PBS, polarization beam splitter; QWP, quarter wave-plate.
Fig. 2
Fig. 2 Power fluctuation of two output directions without retro-reflecting device. (a) Forward wave. (b) Backward wave.
Fig. 3
Fig. 3 Normalized loss of retro-reflecting device. (The inset is the experimental setup utilized to measure the introduced loss of retro-reflecting device.)
Fig. 4
Fig. 4 Output power of the Ti:sapphire laser at 795 nm versus the pump power with different tramission T1. (a) T1=5.5%. (b) T1=6.5%. (c) T1=11%.
Fig. 5
Fig. 5 Long term power stability. (The inset is the measured longitudinal-mode structure of the Ti:sapphire laser.)
Fig. 6
Fig. 6 Measured beam quality of the output laser.
Fig. 7
Fig. 7 Tuning characteristics of the Ti:sapphire laser. (a) Maximal tuning range. (b) Continuous frequency-tuning ability.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I 1 = I + T 1 T 2 , I 2 = I T 1
L 1 = I 1 / I + = T 1 T 2 , L 2 = I 2 / I = T 1
Δ L = L 2 L 1 = T 1 ( 1 T 2 )

Metrics