Abstract

In this work we study the impact of ion implantation on the nonlinear optical properties in MgO:LiNbO3 via confocal second-harmonic microscopy. In detail, we spatially characterize the nonlinear susceptibility in carbon-ion implanted lithium niobate planar waveguides for different implantation energies and fluences, as well as the effect of annealing. In a further step, a computational simulation is used to calculate the implantation range of carbon-ions and the corresponding defect density distribution. A comparison between the simulation and the experimental data indicates that the depth profile of the second-order effective nonlinear coefficient is directly connected to the defect density that is induced by the ion irradiation. Furthermore it can be demonstrated that the annealing treatment partially recovers the second-order optical susceptibility.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Depth profile of the nonlinear susceptibility of LiNbO3 ridge waveguides fabricated by ion implantation and dicing

Lin Ai, Lei Wang, Xintong Zhang, Chen Chen, and Feng Chen
Opt. Mater. Express 7(11) 3836-3843 (2017)

Influences on proton exchange by He ion implantation in LiNbO3

Shao-Mei Zhang, Yan-Dong Peng, Peng Wang, and Qi-Xin Liu
Opt. Mater. Express 5(7) 1526-1531 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
    [Crossref] [PubMed]
  2. M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
    [Crossref]
  3. D. Sjöberg, “Nonlinear waveguides,” Radio Sci. 38(2), 8019 (2003).
    [Crossref]
  4. G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-Resolved Analysis of Ferroelectric Domain Structures in Ti:PPLN Waveguides by Nonlinear Confocal Laser Scanning Microscopy,” Ferroelectrics 352(1), 78–85 (2007).
    [Crossref]
  5. M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc. J. Optolectron. 135(2), 85–91 (1988).
    [Crossref]
  6. L. Gui, Periodically Poled Ridge Waveguides and Photonic Wires in LiNbO3 for Efficient Nonlinear Interactions,” Dissertation, University of Paderborn (2010).
  7. O. Peña-Rodríguez, J. Olivares, M. Carrascosa, Á. García-Cabañes, A. Rivera, and F. Agulló-López, “Optical Waveguides Fabricated by Ion Implantation/Irradiation: A Review,” in Optical Waveguides Fabricated by Ion Implantation/Irradiation: A Review, Ion Implantation, Prof. Mark Goorsky, ed. (Intech, 2012).
  8. F. Lu, M. Meng, K. Wang, X. Liu, and H. Chen, “Refractive Index Profiles of Ion-Implantation Waveguides Formed on Lithium Niobate and Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4323–4325 (1997).
    [Crossref]
  9. K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
    [Crossref]
  10. H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
    [Crossref]
  11. P. Günter, ed., Nonlinear Optical Effects and Materials (Springer, 2000), pp. 498–503.
  12. J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM – The Stopping and Range of Ions in Matter, 15th edition (SRIM Co. 2015).
  13. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
    [Crossref]
  14. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
    [Crossref]
  15. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
    [Crossref] [PubMed]
  16. J. P. Perdew and W. Yue, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Phys. Rev. B Condens. Matter 33(12), 8800–8802 (1986).
    [Crossref] [PubMed]
  17. A. Riefer, S. Sanna, A. Schindlmayr, and W. G. Schmidt, “Optical response of stoichiometric and congruent lithium niobate from first-principles calculations,” Phys. Rev. B 87(19), 195208 (2013).
    [Crossref]
  18. Y. Li, W. G. Schmidt, and S. Sanna, “Defect complexes in congruent LiNbO3 and their optical signatures,” Phys. Rev. B 91(17), 174106 (2015).
    [Crossref]
  19. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
    [Crossref]
  20. Y. Li, W. G. Schmidt, and S. Sanna, “Intrinsic LiNbO3 point defects from hybrid density functional calculations,” Phys. Rev. B 89(9), 094111 (2014).
    [Crossref]
  21. Y. Li, S. Sanna, and W. G. Schmidt, “Modeling intrinsic defects in LiNbO3 within the Slater-Janak transition state model,” J. Chem. Phys. 140(23), 234113 (2014).
    [Crossref] [PubMed]
  22. H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, “Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations,” Phys. Rev. B 78(17), 174103 (2008).
    [Crossref]
  23. A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
    [Crossref]
  24. L. Ai, L. Wang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Efficient Second Harmonic Generation of Diced Ridge Waveguides Based on Carbon Ion-Irradiated Periodically Poled LiNbO3,” J. Lightwave Technol. 35(12), 2476–2480 (2017).
    [Crossref]

2017 (1)

2015 (2)

Y. Li, W. G. Schmidt, and S. Sanna, “Defect complexes in congruent LiNbO3 and their optical signatures,” Phys. Rev. B 91(17), 174106 (2015).
[Crossref]

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

2014 (3)

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Y. Li, W. G. Schmidt, and S. Sanna, “Intrinsic LiNbO3 point defects from hybrid density functional calculations,” Phys. Rev. B 89(9), 094111 (2014).
[Crossref]

Y. Li, S. Sanna, and W. G. Schmidt, “Modeling intrinsic defects in LiNbO3 within the Slater-Janak transition state model,” J. Chem. Phys. 140(23), 234113 (2014).
[Crossref] [PubMed]

2013 (1)

A. Riefer, S. Sanna, A. Schindlmayr, and W. G. Schmidt, “Optical response of stoichiometric and congruent lithium niobate from first-principles calculations,” Phys. Rev. B 87(19), 195208 (2013).
[Crossref]

2010 (1)

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

2009 (1)

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

2008 (1)

H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, “Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations,” Phys. Rev. B 78(17), 174103 (2008).
[Crossref]

2007 (1)

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-Resolved Analysis of Ferroelectric Domain Structures in Ti:PPLN Waveguides by Nonlinear Confocal Laser Scanning Microscopy,” Ferroelectrics 352(1), 78–85 (2007).
[Crossref]

2003 (1)

D. Sjöberg, “Nonlinear waveguides,” Radio Sci. 38(2), 8019 (2003).
[Crossref]

1999 (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

1997 (1)

F. Lu, M. Meng, K. Wang, X. Liu, and H. Chen, “Refractive Index Profiles of Ion-Implantation Waveguides Formed on Lithium Niobate and Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4323–4325 (1997).
[Crossref]

1996 (1)

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

1994 (1)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[Crossref] [PubMed]

1993 (1)

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

1986 (1)

J. P. Perdew and W. Yue, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Phys. Rev. B Condens. Matter 33(12), 8800–8802 (1986).
[Crossref] [PubMed]

1976 (1)

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Agulló-López, F.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

Agulló-Rueda, F.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

Ai, L.

Akhmadaliev, S.

Berth, G.

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-Resolved Analysis of Ferroelectric Domain Structures in Ti:PPLN Waveguides by Nonlinear Confocal Laser Scanning Microscopy,” Ferroelectrics 352(1), 78–85 (2007).
[Crossref]

Blöchl, P. E.

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[Crossref] [PubMed]

Brecht, B.

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Cabrera, J. M.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

Chen, F.

Chen, H.

F. Lu, M. Meng, K. Wang, X. Liu, and H. Chen, “Refractive Index Profiles of Ion-Implantation Waveguides Formed on Lithium Niobate and Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4323–4325 (1997).
[Crossref]

Dierolf, V.

H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, “Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations,” Phys. Rev. B 78(17), 174103 (2008).
[Crossref]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

García, G.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

Gong, Y. X.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Gopalan, V.

H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, “Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations,” Phys. Rev. B 78(17), 174103 (2008).
[Crossref]

He, J.

H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, “Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations,” Phys. Rev. B 78(17), 174103 (2008).
[Crossref]

Herrmann, H.

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Hu, H.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

Jin, H.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

Krapick, S.

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

Lawrence, M.

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Lee, D.

H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, “Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations,” Phys. Rev. B 78(17), 174103 (2008).
[Crossref]

Li, Y.

Y. Li, W. G. Schmidt, and S. Sanna, “Defect complexes in congruent LiNbO3 and their optical signatures,” Phys. Rev. B 91(17), 174106 (2015).
[Crossref]

Y. Li, S. Sanna, and W. G. Schmidt, “Modeling intrinsic defects in LiNbO3 within the Slater-Janak transition state model,” J. Chem. Phys. 140(23), 234113 (2014).
[Crossref] [PubMed]

Y. Li, W. G. Schmidt, and S. Sanna, “Intrinsic LiNbO3 point defects from hybrid density functional calculations,” Phys. Rev. B 89(9), 094111 (2014).
[Crossref]

Liu, F. M.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Liu, X.

F. Lu, M. Meng, K. Wang, X. Liu, and H. Chen, “Refractive Index Profiles of Ion-Implantation Waveguides Formed on Lithium Niobate and Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4323–4325 (1997).
[Crossref]

Lu, F.

F. Lu, M. Meng, K. Wang, X. Liu, and H. Chen, “Refractive Index Profiles of Ion-Implantation Waveguides Formed on Lithium Niobate and Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4323–4325 (1997).
[Crossref]

Luo, K.

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Meng, M.

F. Lu, M. Meng, K. Wang, X. Liu, and H. Chen, “Refractive Index Profiles of Ion-Implantation Waveguides Formed on Lithium Niobate and Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4323–4325 (1997).
[Crossref]

Monkhorst, H. J.

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Olivares, J.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

Pack, J. D.

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Perdew, J. P.

J. P. Perdew and W. Yue, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Phys. Rev. B Condens. Matter 33(12), 8800–8802 (1986).
[Crossref] [PubMed]

Phillpot, S. R.

H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, “Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations,” Phys. Rev. B 78(17), 174103 (2008).
[Crossref]

Quiring, V.

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-Resolved Analysis of Ferroelectric Domain Structures in Ti:PPLN Waveguides by Nonlinear Confocal Laser Scanning Microscopy,” Ferroelectrics 352(1), 78–85 (2007).
[Crossref]

Ricken, R.

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

Riefer, A.

A. Riefer, S. Sanna, A. Schindlmayr, and W. G. Schmidt, “Optical response of stoichiometric and congruent lithium niobate from first-principles calculations,” Phys. Rev. B 87(19), 195208 (2013).
[Crossref]

Rivera, A.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

Sanna, S.

Y. Li, W. G. Schmidt, and S. Sanna, “Defect complexes in congruent LiNbO3 and their optical signatures,” Phys. Rev. B 91(17), 174106 (2015).
[Crossref]

Y. Li, S. Sanna, and W. G. Schmidt, “Modeling intrinsic defects in LiNbO3 within the Slater-Janak transition state model,” J. Chem. Phys. 140(23), 234113 (2014).
[Crossref] [PubMed]

Y. Li, W. G. Schmidt, and S. Sanna, “Intrinsic LiNbO3 point defects from hybrid density functional calculations,” Phys. Rev. B 89(9), 094111 (2014).
[Crossref]

A. Riefer, S. Sanna, A. Schindlmayr, and W. G. Schmidt, “Optical response of stoichiometric and congruent lithium niobate from first-principles calculations,” Phys. Rev. B 87(19), 195208 (2013).
[Crossref]

Schindlmayr, A.

A. Riefer, S. Sanna, A. Schindlmayr, and W. G. Schmidt, “Optical response of stoichiometric and congruent lithium niobate from first-principles calculations,” Phys. Rev. B 87(19), 195208 (2013).
[Crossref]

Schmidt, W. G.

Y. Li, W. G. Schmidt, and S. Sanna, “Defect complexes in congruent LiNbO3 and their optical signatures,” Phys. Rev. B 91(17), 174106 (2015).
[Crossref]

Y. Li, S. Sanna, and W. G. Schmidt, “Modeling intrinsic defects in LiNbO3 within the Slater-Janak transition state model,” J. Chem. Phys. 140(23), 234113 (2014).
[Crossref] [PubMed]

Y. Li, W. G. Schmidt, and S. Sanna, “Intrinsic LiNbO3 point defects from hybrid density functional calculations,” Phys. Rev. B 89(9), 094111 (2014).
[Crossref]

A. Riefer, S. Sanna, A. Schindlmayr, and W. G. Schmidt, “Optical response of stoichiometric and congruent lithium niobate from first-principles calculations,” Phys. Rev. B 87(19), 195208 (2013).
[Crossref]

Silberhorn, C.

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Sinnott, S. B.

H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, “Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations,” Phys. Rev. B 78(17), 174103 (2008).
[Crossref]

Sjöberg, D.

D. Sjöberg, “Nonlinear waveguides,” Radio Sci. 38(2), 8019 (2003).
[Crossref]

Sohler, W.

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-Resolved Analysis of Ferroelectric Domain Structures in Ti:PPLN Waveguides by Nonlinear Confocal Laser Scanning Microscopy,” Ferroelectrics 352(1), 78–85 (2007).
[Crossref]

Suche, H.

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Tan, Y.

Wang, K.

F. Lu, M. Meng, K. Wang, X. Liu, and H. Chen, “Refractive Index Profiles of Ion-Implantation Waveguides Formed on Lithium Niobate and Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4323–4325 (1997).
[Crossref]

Wang, L.

Wang, W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Xia, J. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Xu, H.

H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, “Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations,” Phys. Rev. B 78(17), 174103 (2008).
[Crossref]

Xu, P.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Yuan, Y.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Yue, W.

J. P. Perdew and W. Yue, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Phys. Rev. B Condens. Matter 33(12), 8800–8802 (1986).
[Crossref] [PubMed]

Zhong, M. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhou, J. W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhou, S.

Zhu, S. N.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zrenner, A.

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-Resolved Analysis of Ferroelectric Domain Structures in Ti:PPLN Waveguides by Nonlinear Confocal Laser Scanning Microscopy,” Ferroelectrics 352(1), 78–85 (2007).
[Crossref]

Appl. Phys. B (1)

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

Comput. Mater. Sci. (1)

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

Ferroelectrics (1)

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-Resolved Analysis of Ferroelectric Domain Structures in Ti:PPLN Waveguides by Nonlinear Confocal Laser Scanning Microscopy,” Ferroelectrics 352(1), 78–85 (2007).
[Crossref]

J. Chem. Phys. (1)

Y. Li, S. Sanna, and W. G. Schmidt, “Modeling intrinsic defects in LiNbO3 within the Slater-Janak transition state model,” J. Chem. Phys. 140(23), 234113 (2014).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

F. Lu, M. Meng, K. Wang, X. Liu, and H. Chen, “Refractive Index Profiles of Ion-Implantation Waveguides Formed on Lithium Niobate and Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4323–4325 (1997).
[Crossref]

New J. Phys. (1)

K. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17(7), 073039 (2015).
[Crossref]

Phys. Rev. B (6)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

A. Riefer, S. Sanna, A. Schindlmayr, and W. G. Schmidt, “Optical response of stoichiometric and congruent lithium niobate from first-principles calculations,” Phys. Rev. B 87(19), 195208 (2013).
[Crossref]

Y. Li, W. G. Schmidt, and S. Sanna, “Defect complexes in congruent LiNbO3 and their optical signatures,” Phys. Rev. B 91(17), 174106 (2015).
[Crossref]

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Y. Li, W. G. Schmidt, and S. Sanna, “Intrinsic LiNbO3 point defects from hybrid density functional calculations,” Phys. Rev. B 89(9), 094111 (2014).
[Crossref]

H. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, “Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations,” Phys. Rev. B 78(17), 174103 (2008).
[Crossref]

Phys. Rev. B Condens. Matter (2)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[Crossref] [PubMed]

J. P. Perdew and W. Yue, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Phys. Rev. B Condens. Matter 33(12), 8800–8802 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3,” Phys. Status Solidi., A Appl. Mater. Sci. 206(6), 1109–1116 (2009).
[Crossref]

Radio Sci. (1)

D. Sjöberg, “Nonlinear waveguides,” Radio Sci. 38(2), 8019 (2003).
[Crossref]

Rep. Prog. Phys. (1)

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Other (5)

M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc. J. Optolectron. 135(2), 85–91 (1988).
[Crossref]

L. Gui, Periodically Poled Ridge Waveguides and Photonic Wires in LiNbO3 for Efficient Nonlinear Interactions,” Dissertation, University of Paderborn (2010).

O. Peña-Rodríguez, J. Olivares, M. Carrascosa, Á. García-Cabañes, A. Rivera, and F. Agulló-López, “Optical Waveguides Fabricated by Ion Implantation/Irradiation: A Review,” in Optical Waveguides Fabricated by Ion Implantation/Irradiation: A Review, Ion Implantation, Prof. Mark Goorsky, ed. (Intech, 2012).

P. Günter, ed., Nonlinear Optical Effects and Materials (Springer, 2000), pp. 498–503.

J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM – The Stopping and Range of Ions in Matter, 15th edition (SRIM Co. 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Scheme of the second-harmonic microscopy setup and the sample geometry; note that the wedge angle is exaggerated for better visibility.
Fig. 2
Fig. 2 Result of a cross-section scan orthogonal to the z-axis of the crystal. One sees the colour-coded intensity of the second-harmonic (SH) signal at the surface of the wedge. Note the different scale of the x- and y-axes.
Fig. 3
Fig. 3 Experimentally acquired nonlinear susceptibility profiles (untreated) for a series of samples with a) same fluences but different implantation energies and b) same implantation energy but different fluences.
Fig. 4
Fig. 4 Ball-and-stick illustration of atoms leaving their lattice sites and the calculated energy parameters for the SRIM simulation. Note that red balls are oxygen, light gray balls are niobium and dark gray balls are lithium ions.
Fig. 5
Fig. 5 Simulation results for 3 MeV implantation energy. The graph shows a) the density distributions of carbon and the different interstitials (note that the carbon distribution was multiplied by 100 for better visibility) and b) the normalized density distributions of carbon and the different defects.
Fig. 6
Fig. 6 Simulation results for 3 MeV implantation energy. The graph shows the stopping forces for the electronic and the nuclear interaction.
Fig. 7
Fig. 7 Comparison of the defect distribution with the second-harmonic depth-profiles (for 3 MeV (left) and 6 MeV (right)).
Fig. 8
Fig. 8 Second-harmonic depth-profiles for a) a single implanted and b) a doubly implanted sample for the annealed (red) and as implanted (black) case. For the annealing process we used a temperature of 300 °C and an exposure time of 30 min.
Fig. 9
Fig. 9 Overview of the re-enhancement of the second-harmonic power emission after annealing for different implantation fluences. Note that ΔI corresponds to the highest signal drop illustrated in Fig. 8(a).

Metrics