Abstract

We present a theoretical and experimental study of electromagnetically induced transparency (EIT) in V-type systems of 87Rb atoms. We calculate accurate lineshapes of V-type EIT spectra by solving density matrix equations considering all the magnetic sublevels involved. The calculated spectra demonstrate consistency with the experimental results. We identify the coherence effect in the calculated EIT spectra, and determine that the coherence effect exists only in the cycling transition. We explain the reason for the suppression of the coherence effect in open transitions using an analytical calculation of the spectra for a simple V-type three-level atomic system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced transparency in a V-type multilevel system of Na vapor

Yoshitaka Hoshina, Nobuhito Hayashi, Kosuke Tsubota, Ichiro Yoshida, Kotaro Shijo, Ryuta Sugizono, and Masaharu Mitsunaga
J. Opt. Soc. Am. B 31(8) 1808-1813 (2014)

Coupling-intensity effects in ladder-type electromagnetically induced transparency of rubidium atoms

Han Seb Moon, Lim Lee, and Jung Bog Kim
J. Opt. Soc. Am. B 22(12) 2529-2533 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  3. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
    [Crossref]
  4. A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
    [Crossref]
  5. E. Arimondo, “V coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
    [Crossref]
  6. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  7. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
    [Crossref]
  8. M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
    [Crossref]
  9. D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3(4), 227–234 (2007).
    [Crossref]
  10. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref] [PubMed]
  11. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
    [Crossref]
  12. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
    [Crossref] [PubMed]
  13. M. Saffman, T.G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
    [Crossref]
  14. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81(4), 421–442 (2005).
    [Crossref]
  15. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
    [Crossref] [PubMed]
  16. Y. Hoshina, N. Hayashi, K. Tsubota, I. Yoshida, K. Shijo, R. Sugizono, and M. Mitsunaga, “Electromagnetically induced transparency in a V-type multilevel system of Na vapor,” J. Opt. Soc. Am. B 31(8), 1808–1813 (2014).
    [Crossref]
  17. J. R. Boon, E. Zekou, D. J. Fulton, and M. H. Duun, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A 57(2), 1323–1328 (1998).
    [Crossref]
  18. S. Vdović, T. Ban, D. Aumiler, and G. Pichler, “EIT at 52S1/2 → 62P3/2 transition in a mismatched V-type rubidium system,” Opt. Commun. 272(2), 407–413 (2007).
    [Crossref]
  19. G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
    [Crossref]
  20. S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64(1), 013812 (2001).
    [Crossref]
  21. J. Zhao, L. Wang, L. Xiao, Y. Zhao, W. Yin, and S. Jia, “Experimental measurement of absorption and dispersion in V-type cesium atom,” Opt. Commun. 206(4–6), 341–345 (2002).
    [Crossref]
  22. M. A. Kumar and S. Singh, “Additional one-photon coherence-induced transparency in a Doppler-broadened V-type system,” Phys. Rev. A 87(6), 065801 (2013).
    [Crossref]
  23. K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt. 61(8), 631–635(2014).
    [Crossref]
  24. S. Dey, S. Mitra, P. N. Ghosh, and B. Ray, “EIT line shape in an open and partially closed multilevel V-type system,” Optik 126(20), 2711–2717 (2015).
    [Crossref]
  25. P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94(14), 141103 (2009).
    [Crossref]
  26. A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83(6), 063419 (2011).
    [Crossref]
  27. H. R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85(3), 033817 (2012).
    [Crossref]
  28. H. S. Moon and H. R. Noh, “Comparison between transparencies of 5S1/2-5P3/2-4D5/2 and 5S1/2-5P3/2-5D5/2 transitions of 87Rb atoms,” J. Opt. Soc. Am. B 29(7), 1557–1562 (2012).
    [Crossref]
  29. D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289 (2015).
    [Crossref] [PubMed]
  30. D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
    [Crossref]
  31. D. J. Whiting, N. Šibalić, J. Keaveney, C. S. Adams, and I. G. Hughes, “Single-photon interference due to motion in an atomic collective excitation,” Phys. Rev. Lett. 118(25), 253601 (2017).
    [Crossref] [PubMed]
  32. J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium line,” J. Phys. B 29(12), 2629–2643 (1996).
    [Crossref]
  33. P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21(6), 1955–1968 (1980).
    [Crossref]
  34. P. Meystre and M. Sargent, Elements of Quantum Optics (Springer, 2007).
  35. G. W. Choi and H. R. Noh, “On the Doppler Averaging of Susceptibility in Pump-probe Laser Spectroscopy,” Opt. Rev. 22(4), 521–525 (2015).
    [Crossref]
  36. L. Z. Li, S. E. Park, H. R. Noh, J. D. Park, and C. H. Cho, “Modulation Transfer Spectroscopy for a Two-Level Atomic System with a Non-Cycling Transition,” J. Phys. Soc. Jpn. 80(7), 074301 (2011).
    [Crossref]
  37. H. R. Noh, S. E. Park, L. Z. Li, J. D. Park, and C. H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express 19(23), 23444–23452 (2011).
    [Crossref] [PubMed]
  38. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1960).

2017 (1)

D. J. Whiting, N. Šibalić, J. Keaveney, C. S. Adams, and I. G. Hughes, “Single-photon interference due to motion in an atomic collective excitation,” Phys. Rev. Lett. 118(25), 253601 (2017).
[Crossref] [PubMed]

2016 (1)

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

2015 (3)

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289 (2015).
[Crossref] [PubMed]

G. W. Choi and H. R. Noh, “On the Doppler Averaging of Susceptibility in Pump-probe Laser Spectroscopy,” Opt. Rev. 22(4), 521–525 (2015).
[Crossref]

S. Dey, S. Mitra, P. N. Ghosh, and B. Ray, “EIT line shape in an open and partially closed multilevel V-type system,” Optik 126(20), 2711–2717 (2015).
[Crossref]

2014 (2)

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt. 61(8), 631–635(2014).
[Crossref]

Y. Hoshina, N. Hayashi, K. Tsubota, I. Yoshida, K. Shijo, R. Sugizono, and M. Mitsunaga, “Electromagnetically induced transparency in a V-type multilevel system of Na vapor,” J. Opt. Soc. Am. B 31(8), 1808–1813 (2014).
[Crossref]

2013 (1)

M. A. Kumar and S. Singh, “Additional one-photon coherence-induced transparency in a Doppler-broadened V-type system,” Phys. Rev. A 87(6), 065801 (2013).
[Crossref]

2012 (2)

2011 (3)

L. Z. Li, S. E. Park, H. R. Noh, J. D. Park, and C. H. Cho, “Modulation Transfer Spectroscopy for a Two-Level Atomic System with a Non-Cycling Transition,” J. Phys. Soc. Jpn. 80(7), 074301 (2011).
[Crossref]

H. R. Noh, S. E. Park, L. Z. Li, J. D. Park, and C. H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express 19(23), 23444–23452 (2011).
[Crossref] [PubMed]

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83(6), 063419 (2011).
[Crossref]

2010 (2)

M. Saffman, T.G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

2009 (2)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94(14), 141103 (2009).
[Crossref]

2007 (3)

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

S. Vdović, T. Ban, D. Aumiler, and G. Pichler, “EIT at 52S1/2 → 62P3/2 transition in a mismatched V-type rubidium system,” Opt. Commun. 272(2), 407–413 (2007).
[Crossref]

D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3(4), 227–234 (2007).
[Crossref]

2005 (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81(4), 421–442 (2005).
[Crossref]

2003 (1)

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
[Crossref]

2002 (1)

J. Zhao, L. Wang, L. Xiao, Y. Zhao, W. Yin, and S. Jia, “Experimental measurement of absorption and dispersion in V-type cesium atom,” Opt. Commun. 206(4–6), 341–345 (2002).
[Crossref]

2001 (1)

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64(1), 013812 (2001).
[Crossref]

1999 (1)

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

1998 (3)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

J. R. Boon, E. Zekou, D. J. Fulton, and M. H. Duun, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A 57(2), 1323–1328 (1998).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1996 (2)

J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium line,” J. Phys. B 29(12), 2629–2643 (1996).
[Crossref]

E. Arimondo, “V coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[Crossref]

1995 (1)

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

1980 (1)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21(6), 1955–1968 (1980).
[Crossref]

Adams, C. S.

D. J. Whiting, N. Šibalić, J. Keaveney, C. S. Adams, and I. G. Hughes, “Single-photon interference due to motion in an atomic collective excitation,” Phys. Rev. Lett. 118(25), 253601 (2017).
[Crossref] [PubMed]

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289 (2015).
[Crossref] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

Ahmed, E. H.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83(6), 063419 (2011).
[Crossref]

Akulshin, A. M.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

Arimondo, E.

E. Arimondo, “V coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[Crossref]

Aumiler, D.

S. Vdović, T. Ban, D. Aumiler, and G. Pichler, “EIT at 52S1/2 → 62P3/2 transition in a mismatched V-type rubidium system,” Opt. Commun. 272(2), 407–413 (2007).
[Crossref]

Ban, T.

S. Vdović, T. Ban, D. Aumiler, and G. Pichler, “EIT at 52S1/2 → 62P3/2 transition in a mismatched V-type rubidium system,” Opt. Commun. 272(2), 407–413 (2007).
[Crossref]

Barreiro, S.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Benabid, F.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94(14), 141103 (2009).
[Crossref]

Bimbard, E.

Bird, D. M.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94(14), 141103 (2009).
[Crossref]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Boon, J. R.

J. R. Boon, E. Zekou, D. J. Fulton, and M. H. Duun, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A 57(2), 1323–1328 (1998).
[Crossref]

Budker, D.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3(4), 227–234 (2007).
[Crossref]

Burns, M. M.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21(6), 1955–1968 (1980).
[Crossref]

Cai, H.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt. 61(8), 631–635(2014).
[Crossref]

Chen, D.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt. 61(8), 631–635(2014).
[Crossref]

Cho, C. H.

H. R. Noh, S. E. Park, L. Z. Li, J. D. Park, and C. H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express 19(23), 23444–23452 (2011).
[Crossref] [PubMed]

L. Z. Li, S. E. Park, H. R. Noh, J. D. Park, and C. H. Cho, “Modulation Transfer Spectroscopy for a Two-Level Atomic System with a Non-Cycling Transition,” J. Phys. Soc. Jpn. 80(7), 074301 (2011).
[Crossref]

Choi, G. W.

G. W. Choi and H. R. Noh, “On the Doppler Averaging of Susceptibility in Pump-probe Laser Spectroscopy,” Opt. Rev. 22(4), 521–525 (2015).
[Crossref]

Couny, F.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94(14), 141103 (2009).
[Crossref]

de Echaniz, S. R.

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64(1), 013812 (2001).
[Crossref]

Dey, S.

S. Dey, S. Mitra, P. N. Ghosh, and B. Ray, “EIT line shape in an open and partially closed multilevel V-type system,” Optik 126(20), 2711–2717 (2015).
[Crossref]

Dunn, M. H.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

Durrant, A. V.

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64(1), 013812 (2001).
[Crossref]

Duun, M. H.

J. R. Boon, E. Zekou, D. J. Fulton, and M. H. Duun, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A 57(2), 1323–1328 (1998).
[Crossref]

Edmonds, A. R.

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1960).

Feld, M. S.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21(6), 1955–1968 (1980).
[Crossref]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Fry, E.

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

Fulton, D. J.

J. R. Boon, E. Zekou, D. J. Fulton, and M. H. Duun, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A 57(2), 1323–1328 (1998).
[Crossref]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

Ghosh, P. N.

S. Dey, S. Mitra, P. N. Ghosh, and B. Ray, “EIT line shape in an open and partially closed multilevel V-type system,” Optik 126(20), 2711–2717 (2015).
[Crossref]

Gong, S.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt. 61(8), 631–635(2014).
[Crossref]

Greentree, A. D.

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64(1), 013812 (2001).
[Crossref]

Hammerer, K.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Harris, S. E.

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Hayashi, N.

Hinshelwood, D. D.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21(6), 1955–1968 (1980).
[Crossref]

Hoshina, Y.

Huennekens, J.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83(6), 063419 (2011).
[Crossref]

J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium line,” J. Phys. B 29(12), 2629–2643 (1996).
[Crossref]

Hughes, I. G.

D. J. Whiting, N. Šibalić, J. Keaveney, C. S. Adams, and I. G. Hughes, “Single-photon interference due to motion in an atomic collective excitation,” Phys. Rev. Lett. 118(25), 253601 (2017).
[Crossref] [PubMed]

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289 (2015).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Jackson, T. R.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

Jia, S.

J. Zhao, L. Wang, L. Xiao, Y. Zhao, W. Yin, and S. Jia, “Experimental measurement of absorption and dispersion in V-type cesium atom,” Opt. Commun. 206(4–6), 341–345 (2002).
[Crossref]

Keaveney, J.

D. J. Whiting, N. Šibalić, J. Keaveney, C. S. Adams, and I. G. Hughes, “Single-photon interference due to motion in an atomic collective excitation,” Phys. Rev. Lett. 118(25), 253601 (2017).
[Crossref] [PubMed]

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289 (2015).
[Crossref] [PubMed]

Khadka, U.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

Kirova, T.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83(6), 063419 (2011).
[Crossref]

Kumar, M. A.

M. A. Kumar and S. Singh, “Additional one-photon coherence-induced transparency in a Doppler-broadened V-type system,” Phys. Rev. A 87(6), 065801 (2013).
[Crossref]

Lazoudis, A.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83(6), 063419 (2011).
[Crossref]

Lezama, A.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Li, L. Z.

L. Z. Li, S. E. Park, H. R. Noh, J. D. Park, and C. H. Cho, “Modulation Transfer Spectroscopy for a Two-Level Atomic System with a Non-Cycling Transition,” J. Phys. Soc. Jpn. 80(7), 074301 (2011).
[Crossref]

H. R. Noh, S. E. Park, L. Z. Li, J. D. Park, and C. H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express 19(23), 23444–23452 (2011).
[Crossref] [PubMed]

Light, P. S.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94(14), 141103 (2009).
[Crossref]

Lukin, M.

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

Lukin, M. D.

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
[Crossref]

Lyyra, A. M.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83(6), 063419 (2011).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64(1), 013812 (2001).
[Crossref]

Meystre, P.

P. Meystre and M. Sargent, Elements of Quantum Optics (Springer, 2007).

Mitra, S.

S. Dey, S. Mitra, P. N. Ghosh, and B. Ray, “EIT line shape in an open and partially closed multilevel V-type system,” Optik 126(20), 2711–2717 (2015).
[Crossref]

Mitsunaga, M.

Mohapatra, A. K.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

Mølmer, K.

M. Saffman, T.G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

Moon, H. S.

Moseley, R. R.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

Murnick, D. E.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21(6), 1955–1968 (1980).
[Crossref]

Namiotka, R. K.

J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium line,” J. Phys. B 29(12), 2629–2643 (1996).
[Crossref]

Nikonov, D.

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

Niu, Y.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt. 61(8), 631–635(2014).
[Crossref]

Noh, H. R.

G. W. Choi and H. R. Noh, “On the Doppler Averaging of Susceptibility in Pump-probe Laser Spectroscopy,” Opt. Rev. 22(4), 521–525 (2015).
[Crossref]

H. S. Moon and H. R. Noh, “Comparison between transparencies of 5S1/2-5P3/2-4D5/2 and 5S1/2-5P3/2-5D5/2 transitions of 87Rb atoms,” J. Opt. Soc. Am. B 29(7), 1557–1562 (2012).
[Crossref]

H. R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85(3), 033817 (2012).
[Crossref]

L. Z. Li, S. E. Park, H. R. Noh, J. D. Park, and C. H. Cho, “Modulation Transfer Spectroscopy for a Two-Level Atomic System with a Non-Cycling Transition,” J. Phys. Soc. Jpn. 80(7), 074301 (2011).
[Crossref]

H. R. Noh, S. E. Park, L. Z. Li, J. D. Park, and C. H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express 19(23), 23444–23452 (2011).
[Crossref] [PubMed]

Padmabandu, G.

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

Pappas, P. G.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21(6), 1955–1968 (1980).
[Crossref]

Park, J. D.

L. Z. Li, S. E. Park, H. R. Noh, J. D. Park, and C. H. Cho, “Modulation Transfer Spectroscopy for a Two-Level Atomic System with a Non-Cycling Transition,” J. Phys. Soc. Jpn. 80(7), 074301 (2011).
[Crossref]

H. R. Noh, S. E. Park, L. Z. Li, J. D. Park, and C. H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express 19(23), 23444–23452 (2011).
[Crossref] [PubMed]

Park, S. E.

H. R. Noh, S. E. Park, L. Z. Li, J. D. Park, and C. H. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express 19(23), 23444–23452 (2011).
[Crossref] [PubMed]

L. Z. Li, S. E. Park, H. R. Noh, J. D. Park, and C. H. Cho, “Modulation Transfer Spectroscopy for a Two-Level Atomic System with a Non-Cycling Transition,” J. Phys. Soc. Jpn. 80(7), 074301 (2011).
[Crossref]

Pearce, G. J.

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94(14), 141103 (2009).
[Crossref]

Pichler, G.

S. Vdović, T. Ban, D. Aumiler, and G. Pichler, “EIT at 52S1/2 → 62P3/2 transition in a mismatched V-type rubidium system,” Opt. Commun. 272(2), 407–413 (2007).
[Crossref]

Polzik, E. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Qi, P.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83(6), 063419 (2011).
[Crossref]

Qu, R.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt. 61(8), 631–635(2014).
[Crossref]

Ray, B.

S. Dey, S. Mitra, P. N. Ghosh, and B. Ray, “EIT line shape in an open and partially closed multilevel V-type system,” Optik 126(20), 2711–2717 (2015).
[Crossref]

Romalis, M. V.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3(4), 227–234 (2007).
[Crossref]

Saffman, M.

M. Saffman, T.G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

Sagle, J.

J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium line,” J. Phys. B 29(12), 2629–2643 (1996).
[Crossref]

Sander, F.

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

Sargent, M.

P. Meystre and M. Sargent, Elements of Quantum Optics (Springer, 2007).

Scully, M.

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

Segal, D. M.

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64(1), 013812 (2001).
[Crossref]

Shepherd, S.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

Shijo, K.

Šibalic, N.

D. J. Whiting, N. Šibalić, J. Keaveney, C. S. Adams, and I. G. Hughes, “Single-photon interference due to motion in an atomic collective excitation,” Phys. Rev. Lett. 118(25), 253601 (2017).
[Crossref] [PubMed]

Sinclair, B. D.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

Singh, S.

M. A. Kumar and S. Singh, “Additional one-photon coherence-induced transparency in a Doppler-broadened V-type system,” Phys. Rev. A 87(6), 065801 (2013).
[Crossref]

Sørensen, A. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Sugizono, R.

Tittel, F.

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

Tsubota, K.

Vaccaro, J. A.

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64(1), 013812 (2001).
[Crossref]

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81(4), 421–442 (2005).
[Crossref]

Vdovic, S.

S. Vdović, T. Ban, D. Aumiler, and G. Pichler, “EIT at 52S1/2 → 62P3/2 transition in a mismatched V-type rubidium system,” Opt. Commun. 272(2), 407–413 (2007).
[Crossref]

Walker, T.G.

M. Saffman, T.G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

Wang, L.

J. Zhao, L. Wang, L. Xiao, Y. Zhao, W. Yin, and S. Jia, “Experimental measurement of absorption and dispersion in V-type cesium atom,” Opt. Commun. 206(4–6), 341–345 (2002).
[Crossref]

Weis, A.

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

Welch, G.

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

Whiting, D. J.

D. J. Whiting, N. Šibalić, J. Keaveney, C. S. Adams, and I. G. Hughes, “Single-photon interference due to motion in an atomic collective excitation,” Phys. Rev. Lett. 118(25), 253601 (2017).
[Crossref] [PubMed]

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289 (2015).
[Crossref] [PubMed]

Xiao, L.

J. Zhao, L. Wang, L. Xiao, Y. Zhao, W. Yin, and S. Jia, “Experimental measurement of absorption and dispersion in V-type cesium atom,” Opt. Commun. 206(4–6), 341–345 (2002).
[Crossref]

Xiao, M.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

Yin, W.

J. Zhao, L. Wang, L. Xiao, Y. Zhao, W. Yin, and S. Jia, “Experimental measurement of absorption and dispersion in V-type cesium atom,” Opt. Commun. 206(4–6), 341–345 (2002).
[Crossref]

Ying, K.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt. 61(8), 631–635(2014).
[Crossref]

Yoshida, I.

Zekou, E.

J. R. Boon, E. Zekou, D. J. Fulton, and M. H. Duun, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A 57(2), 1323–1328 (1998).
[Crossref]

Zentile, M. A.

Zhang, Y.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

Zhao, J.

J. Zhao, L. Wang, L. Xiao, Y. Zhao, W. Yin, and S. Jia, “Experimental measurement of absorption and dispersion in V-type cesium atom,” Opt. Commun. 206(4–6), 341–345 (2002).
[Crossref]

Zhao, Y.

J. Zhao, L. Wang, L. Xiao, Y. Zhao, W. Yin, and S. Jia, “Experimental measurement of absorption and dispersion in V-type cesium atom,” Opt. Commun. 206(4–6), 341–345 (2002).
[Crossref]

Appl. Phys. B (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81(4), 421–442 (2005).
[Crossref]

Appl. Phys. Lett. (1)

P. S. Light, F. Benabid, G. J. Pearce, F. Couny, and D. M. Bird, “Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes,” Appl. Phys. Lett. 94(14), 141103 (2009).
[Crossref]

Found. Phys. (1)

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, and F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28(4), 621–638 (1998).
[Crossref]

J. Mod. Opt. (1)

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt. 61(8), 631–635(2014).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium line,” J. Phys. B 29(12), 2629–2643 (1996).
[Crossref]

J. Phys. Soc. Jpn. (1)

L. Z. Li, S. E. Park, H. R. Noh, J. D. Park, and C. H. Cho, “Modulation Transfer Spectroscopy for a Two-Level Atomic System with a Non-Cycling Transition,” J. Phys. Soc. Jpn. 80(7), 074301 (2011).
[Crossref]

Nature Phys. (1)

D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3(4), 227–234 (2007).
[Crossref]

Opt. Commun. (2)

J. Zhao, L. Wang, L. Xiao, Y. Zhao, W. Yin, and S. Jia, “Experimental measurement of absorption and dispersion in V-type cesium atom,” Opt. Commun. 206(4–6), 341–345 (2002).
[Crossref]

S. Vdović, T. Ban, D. Aumiler, and G. Pichler, “EIT at 52S1/2 → 62P3/2 transition in a mismatched V-type rubidium system,” Opt. Commun. 272(2), 407–413 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Rev. (1)

G. W. Choi and H. R. Noh, “On the Doppler Averaging of Susceptibility in Pump-probe Laser Spectroscopy,” Opt. Rev. 22(4), 521–525 (2015).
[Crossref]

Optik (1)

S. Dey, S. Mitra, P. N. Ghosh, and B. Ray, “EIT line shape in an open and partially closed multilevel V-type system,” Optik 126(20), 2711–2717 (2015).
[Crossref]

Phys. Rev. A (10)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21(6), 1955–1968 (1980).
[Crossref]

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83(6), 063419 (2011).
[Crossref]

H. R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85(3), 033817 (2012).
[Crossref]

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

M. A. Kumar and S. Singh, “Additional one-photon coherence-induced transparency in a Doppler-broadened V-type system,” Phys. Rev. A 87(6), 065801 (2013).
[Crossref]

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64(1), 013812 (2001).
[Crossref]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

J. R. Boon, E. Zekou, D. J. Fulton, and M. H. Duun, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A 57(2), 1323–1328 (1998).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

Phys. Rev. Lett. (5)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

D. J. Whiting, N. Šibalić, J. Keaveney, C. S. Adams, and I. G. Hughes, “Single-photon interference due to motion in an atomic collective excitation,” Phys. Rev. Lett. 118(25), 253601 (2017).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Prog. Opt. (1)

E. Arimondo, “V coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[Crossref]

Rev. Mod. Phys. (4)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

M. Saffman, T.G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75(2), 457–472 (2003).
[Crossref]

Other (2)

P. Meystre and M. Sargent, Elements of Quantum Optics (Springer, 2007).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1960).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Energy level diagram of the V-type EIT. The frequency spacings are presented in units of MHz. (b) Detailed energy level diagrams showing the laser couplings for parallel and perpendicular polarization configurations.
Fig. 2
Fig. 2 Detailed schematic of the experimental setup. External cavity diode laser (ECDL), saturated absorption spectroscopy (SAS), beam splitter (BS), polarizing beam splitter (PBS), half-wave plate (HWP), band pass filter (BPF), and photo diode (PD).
Fig. 3
Fig. 3 (a) Typical experimental and (b) calculated results of EIT spectra. The polarization configurations are ππ and ππ for the upper and lower traces, respectively.
Fig. 4
Fig. 4 (a) Experimental and (b) calculated EIT spectra for various coupling powers in perpendicular polarization configuration.
Fig. 5
Fig. 5 (a) Experimental and (b) calculated EIT spectra for various coupling powers in parallel polarization configuration.
Fig. 6
Fig. 6 Simple energy level diagram for an open V-type three-level atomic system.
Fig. 7
Fig. 7 Imaginary parts of the susceptibilities (a) in the closed system (Γ23 = Γ2) and (b) in the open system (Γ23 = 0.95Γ2).
Fig. 8
Fig. 8 Amplitudes of χ1, χ2, and χ1 + χ2 as a function of Γ232.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

ρ ˙ = i [ H 0 + V , ρ ] + ρ ˙ sp ,
H 0 = m = 3 3 δ 2 | F e = 3 , m F e = 3 , m | m = 2 2 ( δ 2 + Δ 32 ) | F e = 2 , m F e = 2 , m | m = 1 1 ( δ 2 + Δ 31 ) | F e = 1 , m F e = 1 , m | m = 2 2 δ 1 | F ¯ e = 2 , m F ¯ e = 2 , m | m = 1 1 ( δ 1 + Δ ¯ 21 ) | F ¯ e = 1 , m F ¯ e = 1 , m | ,
V = Ω 2 2 F e = 1 3 m = F g F g C F g = 2 , m F e , m | F e , m F g , m | + Ω 1 2 = 1 1 F ¯ e = 1 2 m = F g F g a C ¯ F g = 2 , m F ¯ e , m + | F ¯ e , m + F g , m | + h . c . ,
a ± 1 = 0 , a 0 = 1 , for π π , a ± 1 = 1 2 , a 0 = 0 , for π π ,
α = N at 3 λ 1 2 2 π Γ 1 Ω 1 1 π u Im d v e ( v / u ) 2 × = 1 1 F ¯ e = 1 2 m = F g F g a * C ¯ F g = 2 , m F ¯ e , m + F ¯ e , m + | ρ | F g , m ,
ρ ˙ 13 = i Δ 1 ρ 13 + i 2 Ω 2 ρ 12 + i 2 Ω 1 ( ρ 11 ρ 33 ) ,
ρ ˙ 12 = i Δ 0 ρ 12 + i 2 Ω 2 ρ 13 i 2 Ω 1 ρ 32 ,
ρ ˙ 32 = i Δ 2 ρ 32 i 2 Ω 1 ρ 12 + i 2 Ω 2 ( ρ 33 ρ 22 ) ,
ρ ˙ 11 = ( Γ 1 + Γ t ) ρ 11 + i 2 Ω 1 ( ρ 13 ρ 31 ) ,
ρ ˙ 22 = ( Γ 2 + Γ t ) ρ 22 + i 2 Ω 2 ( ρ 23 ρ 32 ) ,
ρ ˙ 33 = Γ t ( ρ 33 1 ) + Γ 13 ρ 11 + Γ 23 ρ 22 i 2 Ω 1 ( ρ 13 ρ 31 ) i 2 Ω 2 ( ρ 23 ρ 32 ) ,
Δ 0 = δ 1 δ 2 + i γ 12 , Δ 1 = δ 1 + i γ 13 , Δ 2 = δ 2 i γ 23 .
ρ 13 = Ω 1 2 Δ 1 + Ω 1 2 Δ 1 ( ρ 33 ρ 11 1 ) Ω 2 2 Δ 1 ρ 12 .
ρ 12 = Ω 1 Ω 2 [ Δ 2 ( ρ 11 ρ 33 ) + Δ 1 ( ρ 33 ρ 22 ) ] Δ 2 ( 4 Δ 0 Δ 1 Ω 2 2 ) , ρ 11 = 0 ρ 22 = s 2 [ 1 + s ( 1 + Γ 2 Γ 23 2 Γ t ) ] , ρ 33 = 2 + s 2 [ 1 + s ( 1 + Γ 2 Γ 23 2 Γ t ) ] , s = Ω 2 2 / ( γ 23 Γ 2 ) 1 + ( δ 2 / γ 23 ) 2 ,
χ = 3 λ 1 3 4 π 2 N at Γ 1 Ω 1 d v π u e ( v / u ) 2 ρ 13 .
χ = χ 0 + χ 1 + χ 2 ,
χ 0 = i C 0 exp [ ( δ p + i γ 13 k u ) 2 ] Erfc [ i ( δ p + i γ 13 k u ) ] ,
C 0 = 3 λ 3 8 π 3 / 2 Γ 1 N at k u .
χ 1 = C 0 ( Γ 2 Γ 23 + Γ t ) Ω 2 2 2 Q Γ 2 Γ t K 1 ,
χ 2 = C 0 i ( 1 + Q ) K 2 Ω 2 2 Q K 1 ( 4 K 0 K 1 Ω 2 2 ) ,
K 0 = δ p δ c + i γ 12 , K 1 = δ p δ c + i ( γ 13 + Q γ 23 ) , K 2 = δ p δ c + i γ 13 + i γ 23 ( 1 + ( Q 1 ) Γ t Γ 2 Γ 3 + 2 Γ t ) , Q = 1 + Ω 2 2 γ 23 Γ 2 ( 1 + Γ 2 Γ 23 2 Γ t ) .
I 1 = C 0 b ( 1 + ξ x ) b ( 1 + 2 ξ x ) + ξ ( 1 + 2 ξ x ) , I 2 = C 0 ξ b b ( 1 + 2 ξ x ) + ξ ( 1 + 2 ξ x ) ,
b Ω 2 Γ 2 , x Γ 23 Γ 2 , ξ Γ t Γ 2 .
I 1 ( 0 ) C 0 ( 1 ξ b ) , I 2 ( 0 ) C 0 ξ ( 1 ξ b ) ,
I 1 C 0 b 2 + 2 b + C 0 b ( 3 2 + 4 b ) 4 ( 2 + 2 b ) 2 ( 1 x ) ξ , I 2 C 0 b 2 + 2 b C 0 b ( 2 + 4 b ) 4 ( 2 + 2 b ) 2 ( 1 x ) ξ .
F e , m | ρ ˙ sp | F e , m = Γ 2 F e , m | ρ | F e , m Γ t F e , m | ρ | F e , m δ F e , F e δ m , m , F ¯ e , m | ρ ˙ sp | F ¯ e , m = Γ 1 F ¯ e , m | ρ | F ¯ e , m Γ t F ¯ e , m | ρ | F ¯ e , m δ F ¯ e , F ¯ e δ m , m , F ¯ e , m | ρ ˙ sp | F ¯ e , m = Γ 1 + Γ 2 2 F ¯ e , m | ρ | F ¯ e , m , F e , m | ρ ˙ sp | F g , m = Γ 2 2 F e , m | ρ | F g , m , F ¯ e , m | ρ ˙ sp | F g , m = Γ 1 2 F ¯ e , m | ρ | F g , m , F g , m | ρ ˙ sp | F g , m = Γ 2 F e = 1 3 = 1 1 C F g , m F e , m + C F g , m F e , m + F e , m + | ρ | F e , m + + Γ 1 F ¯ e = 1 2 = 1 1 C ¯ F g , m F ¯ e , m + C ¯ F g , m F ¯ e , m + F ¯ e , m + | ρ | F ¯ e , m + Γ t ( F g , | ρ | F g , m 1 8 ) δ m , m ,
μ | ρ ˙ sp | ν = ν | ρ ˙ sp | μ * ,

Metrics