Abstract

In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object

Feng Pan, Wen Xiao, Shuo Liu, FanJing Wang, Lu Rong, and Rui Li
Opt. Express 19(5) 3862-3869 (2011)

High topographical accuracy by optical shot noise reduction in digital holographic microscopy

Miguel León-Rodríguez, Ramón Rodríguez-Vera, Juan A. Rayas, and Sergio Calixto
J. Opt. Soc. Am. A 29(4) 498-506 (2012)

Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens

Robin Schubert, Angelika Vollmer, Steffi Ketelhut, and Björn Kemper
Biomed. Opt. Express 5(12) 4213-4222 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Kim, Digital holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
  2. P. Picart, New Techniques in Digital Holography (ISTE-Wiley, 2015).
  3. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2005).
  4. J. W. Goodman, Optical Methods for Suppressing Speckle, in Speckle Phenomena in Optics (Roberts & Company, 2007).
  5. J. Garcia-Sucerquia, “Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode,” Appl. Opt. 52(1), A232–A239 (2013).
    [Crossref] [PubMed]
  6. R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).
  7. P. Langehanenberg, G. V. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
    [Crossref]
  8. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
    [Crossref] [PubMed]
  9. Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
    [Crossref] [PubMed]
  10. J. Dohet-Eraly, C. Yourassowsky, A. E. Mallahi, and F. Dubois, “Quantitative assessment of noise reduction with partial spatial coherence illumination in digital holographic microscopy,” Opt. Lett. 41(1), 111–114 (2016).
    [Crossref] [PubMed]
  11. B. R. A. Michael and C. H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
  12. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  13. S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
    [Crossref] [PubMed]
  14. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47(19), D38–D43 (2008).
    [Crossref] [PubMed]
  15. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8(7), 653–655 (2010).
    [Crossref]
  16. W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. Wang, and A. He, “Improvement of speckle noise suppression in digital holography by rotating linear polarization state,” Chin. Opt. Lett. 9(6), 060901 (2011).
    [Crossref]
  17. F. Pan, W. Xiao, S. Liu, and L. Rong, “Coherent noise reduction in digital holographic microscopy by laterally shifting camera,” Opt. Commun. 292, 68–72 (2013).
    [Crossref]
  18. F. Pan, W. Xiao, S. Liu, F. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express 19(5), 3862–3869 (2011).
    [Crossref] [PubMed]
  19. C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
    [Crossref]
  20. Y. Wang, P. Meng, D. Wang, L. Rong, and S. Panezai, “Speckle noise suppression in digital holography by angular diversity with phase-only spatial light modulator,” Opt. Express 21(17), 19568–19578 (2013).
    [Crossref] [PubMed]
  21. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009).
    [Crossref] [PubMed]
  22. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
    [Crossref] [PubMed]
  23. J. Leng, X. Z. Sang, and B. B. Yan, “Speckle noise reduction in digital holography with spatial light modulator and nonlocal means algorithm,” Chin. Opt. Lett. 12(4), 040301 (2014).
    [Crossref]
  24. V. Bianco, P. Memmolo, M. Paturzo, and P. Ferraro, “On-speckle suppression in IR digital holography,” Opt. Lett. 41(22), 5226–5229 (2016).
    [Crossref] [PubMed]
  25. P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express 17(7), 5473–5480 (2009).
    [Crossref] [PubMed]
  26. S. Montresor and P. Picart, “Quantitative appraisal for noise reduction in digital holographic phase imaging,” Opt. Express 24(13), 14322–14343 (2016).
    [Crossref] [PubMed]
  27. J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
    [Crossref]
  28. X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
    [Crossref]
  29. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24(6), 1617–1622 (2007).
    [Crossref] [PubMed]
  30. A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
    [Crossref]
  31. A. Uzan, Y. Rivenson, and A. Stern, “Speckle denoising in digital holography by nonlocal means filtering,” Appl. Opt. 52(1), A195–A200 (2013).
    [Crossref] [PubMed]
  32. M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 53(11), 112314 (2014).
    [Crossref]
  33. V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38(5), 619–621 (2013).
    [Crossref] [PubMed]
  34. D. Hincapie, J. Herrera-Ramírez, and J. Garcia-Sucerquia, “Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms,” Opt. Lett. 40(8), 1623–1626 (2015).
    [Crossref] [PubMed]
  35. M. Haouat, J. Garcia-Sucerquia, A. Kellou, and P. Picart, “Reduction of speckle noise in holographic images using spatial jittering in numerical reconstructions,” Opt. Lett. 42(6), 1047–1050 (2017).
    [Crossref] [PubMed]
  36. V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5(9), 1–12 (2016).
    [Crossref]
  37. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  38. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
    [Crossref] [PubMed]
  39. J. C. Dainty, Laser Speckle and Related Phenomena (2nd ed.) (Springer-Verlag, 1984).

2017 (2)

2016 (4)

2015 (1)

2014 (3)

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 53(11), 112314 (2014).
[Crossref]

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

J. Leng, X. Z. Sang, and B. B. Yan, “Speckle noise reduction in digital holography with spatial light modulator and nonlocal means algorithm,” Chin. Opt. Lett. 12(4), 040301 (2014).
[Crossref]

2013 (5)

2012 (1)

B. R. A. Michael and C. H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).

2011 (4)

2010 (4)

L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8(7), 653–655 (2010).
[Crossref]

S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
[Crossref] [PubMed]

P. Langehanenberg, G. V. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[Crossref]

X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
[Crossref]

2009 (2)

2008 (2)

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47(19), D38–D43 (2008).
[Crossref] [PubMed]

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[Crossref]

2007 (2)

2006 (1)

2005 (1)

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[Crossref]

1999 (1)

Aspert, N.

Badizadegan, K.

Bally, G. V.

P. Langehanenberg, G. V. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[Crossref]

Bianco, V.

Bourquin, S.

Cai, X. O.

X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
[Crossref]

Cao, C. H.

B. R. A. Michael and C. H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).

Castro, A.

Charrière, F.

Choi, W.

Choi, Y.

Colomb, T.

Cuche, E.

Dan, D.

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

Dasari, R.

Depeursinge, C.

Ding, H.

Distante, C.

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 53(11), 112314 (2014).
[Crossref]

Dohet-Eraly, J.

Dubois, F.

Feld, M. S.

Feng, P.

Ferraro, P.

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5(9), 1–12 (2016).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, and P. Ferraro, “On-speckle suppression in IR digital holography,” Opt. Lett. 41(22), 5226–5229 (2016).
[Crossref] [PubMed]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 53(11), 112314 (2014).
[Crossref]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38(5), 619–621 (2013).
[Crossref] [PubMed]

Finizio, A.

Frauel, Y.

Garcia-Sucerquia, J.

Garcia-Sucerquia, J. G.

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[Crossref]

Gillette, M. U.

Goodman, J. W.

Guo, R. L.

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

Haouat, M.

He, A.

Hennelly, B. M.

Herrera-Ramírez, J.

Hincapie, D.

Jaffery, Z. A.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[Crossref]

Javidi, B.

Joannes, L.

Kang, X.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[Crossref]

Kellou, A.

Kemper, B.

P. Langehanenberg, G. V. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[Crossref]

Kim, K.

Kubota, S.

Kühn, J.

Langehanenberg, P.

P. Langehanenberg, G. V. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[Crossref]

Lee, K.

Lee, K. J.

Lee, S.

Legros, J. C.

Lei, M.

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

Leng, J.

Leo, M.

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 53(11), 112314 (2014).
[Crossref]

Li, R.

Liu, S.

Lu, R.

Mallahi, A. E.

Marian, A.

Marquet, P.

Maycock, J.

McDonald, J. B.

Memmolo, P.

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5(9), 1–12 (2016).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, and P. Ferraro, “On-speckle suppression in IR digital holography,” Opt. Lett. 41(22), 5226–5229 (2016).
[Crossref] [PubMed]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 53(11), 112314 (2014).
[Crossref]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38(5), 619–621 (2013).
[Crossref] [PubMed]

Meng, P.

Michael, B. R. A.

B. R. A. Michael and C. H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).

Millet, L.

Min, J. W.

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

Mir, M.

Moinuddin,

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[Crossref]

Montfort, F.

Montresor, S.

Naughton, T. J.

Nitanai, E.

Nomura, T.

Numata, T.

Okamura, M.

Pan, F.

Panezai, S.

Park, Y.

Paturzo, M.

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5(9), 1–12 (2016).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, and P. Ferraro, “On-speckle suppression in IR digital holography,” Opt. Lett. 41(22), 5226–5229 (2016).
[Crossref] [PubMed]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 53(11), 112314 (2014).
[Crossref]

V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett. 38(5), 619–621 (2013).
[Crossref] [PubMed]

Picart, P.

Piccolo, R.

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 53(11), 112314 (2014).
[Crossref]

Popescu, G.

Prieto, D. V.

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[Crossref]

Quan, C. G.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[Crossref]

Ramirez, J. A. H.

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[Crossref]

Rivenson, Y.

Rogers, J.

Rong, L.

Sang, X. Z.

Sharma, A.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[Crossref]

Sheoran, G.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[Crossref]

Shin, S.

Stern, A.

Tay, C. J.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[Crossref]

Unarunotai, S.

Uzan, A.

Wang, D.

Wang, F.

Wang, Y.

Wang, Z.

Wen, X.

Xiao, W.

Yan, B. B.

Yan, S. H.

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

Yang, T. D.

Yang, Y. L.

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

Yao, B. L.

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

Yaqoob, Z.

Yourassowsky, C.

Yu, X. H.

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

Zhang, J.

Zhou, M. L.

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

Appl. Opt. (5)

Chin. Opt. Lett. (3)

J. Mod. Opt. (1)

P. Langehanenberg, G. V. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[Crossref]

J. Opt. (1)

R. L. Guo, B. L. Yao, J. W. Min, M. L. Zhou, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, and D. Dan, “LED-based digital holographic microscopy with slightly off-axis interferometry,” J. Opt. 125408, 1–8 (2014).

J. Opt. Soc. Am. A (2)

Light Sci. Appl. (1)

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, and P. Ferraro, “Quasi noise-free digital holography,” Light Sci. Appl. 5(9), 1–12 (2016).
[Crossref]

Nat. Photonics (1)

B. R. A. Michael and C. H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).

Opt. Commun. (1)

F. Pan, W. Xiao, S. Liu, and L. Rong, “Coherent noise reduction in digital holographic microscopy by laterally shifting camera,” Opt. Commun. 292, 68–72 (2013).
[Crossref]

Opt. Eng. (2)

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[Crossref]

M. Leo, R. Piccolo, C. Distante, P. Memmolo, M. Paturzo, and P. Ferraro, “Multilevel bidimensional empirical mode decomposition: a new speckle reduction method in digital holography,” Opt. Eng. 53(11), 112314 (2014).
[Crossref]

Opt. Express (7)

Opt. Lasers Eng. (1)

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[Crossref]

Opt. Lett. (6)

Optik (Stuttg.) (2)

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[Crossref]

X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
[Crossref]

Other (6)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

J. C. Dainty, Laser Speckle and Related Phenomena (2nd ed.) (Springer-Verlag, 1984).

M. K. Kim, Digital holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

P. Picart, New Techniques in Digital Holography (ISTE-Wiley, 2015).

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2005).

J. W. Goodman, Optical Methods for Suppressing Speckle, in Speckle Phenomena in Optics (Roberts & Company, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The fringe visibility versus the optical path different between the R and O beams. (a): the digital hologram, (b): the calculation results, (c) (d) and (e): the experimental results, the cutouts (indicated with a white rectangle) of the holograms recorded with different (LO-LR).
Fig. 2
Fig. 2 Schematic of the experimental system. Laser, a multimode semiconductor laser; λ/2, half-wave plate; PBS, polarizing beam splitter; BE, beam expander with spatial filter; M, mirror; L, lens; O, object wave; R, reference wave; MO, microscope objective; BS, beam splitter; CMOS, camera; OPR, optical path retarder to adjust the optical path length of the reference beam.
Fig. 3
Fig. 3 The experimental results of the noise decorrelation by changing the LR and keeping LO. (a) and (b): the amplitude images with a reference LR and a shifted LR, (c) and (d): the phase images with a reference LR and a shifted LR, (e): the normalized cross correlations (γ) of the noise patterns over the LR-LO, where the horizontal axis is expressed as the multiple of the interference period.
Fig. 4
Fig. 4 (a) and (b): the amplitude images from a single hologram and after 15 averaging process, (c) and (d): the phase images from a single hologram and after 15 averaging process, (e): the standard deviation in the amplitude and phase images over the number of reconstructed images for averaging process.
Fig. 5
Fig. 5 (a): 3D phase image from a single hologram, (b): phase image after 15 averaging processes, (c) phase distributions along a line before and after the averaging process.
Fig. 6
Fig. 6 The measurement results of a microlens. (a) and (b): the amplitude image from a single hologram and after 15 averaging process, (c) and (d): the phase image before and after the averaging process.
Fig. 7
Fig. 7 (a) and (b): 3D wrapped phase images before and after averaging process, (c) and (d): unwrapped phase images corresponding (a) and (b), (e) and (f): compensated phase images corresponding (c) and (d), (g): phase profiles along a straight line indicated by a white line in (e).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I H = | R | 2 + | O | 2 + R O+R O .
E= n=( N1 )/2 n=( N1 )/2 A n exp{ i[ ( k+nΔk )L+ φ n ] } .
R= R 0 n=( N1 )/2 n=( N1 )/2 A n exp{ i[ ( k+nΔk ) L R + φ n ] } . O= O 0 n=( N1 )/2 n=( N1 )/2 A n exp{ i[ ( k+nΔk ) L O + φ n ] } .
R * O= R 0 O 0 n=( N1 )/2 n=( N1 )/2 m=( N1 )/2 m=( N1 )/2 A n A m exp[ ik( L O L R ) ] ×exp[ iΔk( m L O n L R ) ]exp[ i( φ m φ n ) ].
R * O= R 0 O 0 exp[ ik( L O L R ) ] n=( N1 )/2 n=( N1 )/2 m=( N1 )/2 m=( N1 )/2 δ n,m A n A m ×exp[ iΔk( n L O m L R ) ]exp[ i( φ m φ n ) ].
δ n,m ={ 1 ( n=m ) 0 ( nm )
R * O= R 0 O 0 exp[ ik( L O L R ) ] n=( N1 )/2 n=( N1 )/2 A n 2 exp[ iΔkn( L O L R ) ] .
R * O= R 0 * O 0 exp[ ik( L O L R ) ]{ sin[ NΔk( L O L R )/2 ] sin[ Δk( L O L R )/2 ] }.
γ= n,m [ ϕ 0 ( n,m ) ϕ ¯ 0 ][ ϕ L ( n,m ) ϕ ¯ L ] n,m [ ϕ 0 ( n,m ) ϕ ¯ 0 ] 2 n,m [ ϕ L ( n,m ) ϕ ¯ L ] 2 .
σ= n,m [ ϕ( n,m ) ϕ ¯ ] 2 /( n×m1 ) .

Metrics