Abstract

In this paper, a photonics-based dual-band linear frequency-modulated continuous wave (LFMCW) radar receiver is proposed. The system core is a microwave photonic in-phase and quadrature (I/Q) mixer, whose inherent large bandwidth, high I/Q balance and favorable uniformity enable the receiver to operate over an extremely wide frequency range. An integrated dual-band waveform offers the possibility of independent detection, allowing the sharing of hardware resources and joint dechirp processing of dual bands. In the proof-of-concept experiment, the distance measurements of S- and C-bands are implemented, with a high and uniform image rejection exceeding 28 and 30 dB, respectively. The image rejections of the two bands can be further improved to 43 and 41 dB at least by digital signal processing (DSP). The proposed photonic-assisted receiver is thus able to simplify the architecture and improve performance for the multispectral sensing application.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging

Xingwei Ye, Fangzheng Zhang, Yue Yang, and Shilong Pan
Photon. Res. 7(3) 265-272 (2019)

Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging

Fangzheng Zhang, Qingshui Guo, Ziqian Wang, Pei Zhou, Guoqiang Zhang, Jun Sun, and Shilong Pan
Opt. Express 25(14) 16274-16281 (2017)

All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter

Yongsheng Gao, Aijun Wen, Wei Chen, and Xiaoyan Li
Opt. Lett. 42(6) 1105-1108 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Skolnik, Radar Handbook, 3rd Ed (McGraw-Hill,2008).
  2. Z. Zhou, P. Caccetta, and N. C. Sims, “Multiband SAR data for rangeland pasture monitoring,” in Geoscience and Remote Sensing Symposium (IEEE, 2016), pp. 160–173.
    [Crossref]
  3. D. B. Trizna, C. Bachmann, M. Sletten, N. Allan, J. Toporkov, and R. Harris, “Projection pursuit classification of multiband polarimetric SAR land images,” IEEE Trans. Geosci. Remote Sens. 39(11), 2380–2386 (2001).
    [Crossref]
  4. S. Seto, T. Iguchi, and T. Oki, “The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission’s single/dual-frequency radar measurements,” IEEE Trans. Geosci. Remote Sens. 51(12), 5239–5251 (2013).
    [Crossref]
  5. J. A. Casey, S. E. L. Howell, A. Tivy, and C. Haas, “Separability of sea ice types from wide swath C-and L-band synthetic aperture radar imagery acquired during the melt season,” Remote Sens. Environ. 174, 321–328 (2016).
    [Crossref]
  6. N. M. Frew, D. M. Glover, E. J. Bock, and S. J. McCue, “A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter,” J. Geophys. Res. 112(C11), C11003 (2007).
    [Crossref]
  7. P. Van Dorp, R. Ebeling, and A. G. Huizing, “High resolution radar imaging using coherent multiband processing techniques,” in IEEE Radar Conf. (IEEE, 2010), pp. 981–986.
  8. M. Vespe, C. J. Baker, and H. D. Griffiths, “Automatic target recognition using multi-diversity radar,” IET Radar Sonar & Navigation 1(6), 470–478 (2007).
    [Crossref]
  9. J. Tian, J. Sun, G. Wang, Y. Wang, and W. Tan, “Multiband radar signal coherent fusion processing with IAA and ap FFT,” Signal Process. lett. 20 (5), 463–466 (2013).
    [Crossref]
  10. M. Edwards, D. Madsen, C. Stringham, A. Margulis, B. Wicks, and D. Long, “microASAR: A small, robust LFM-CW SAR for operation on UAVs and small aircraft,” in Proc. in Geoscience and Remote Sensing Symposium (IEEE, 2008), pp. V-514–V-517.
    [Crossref]
  11. G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring,” IEEE Trans. Microw. Theory Tech. 62(11), 2812–2822 (2014).
    [Crossref]
  12. N. Joram, B. Al-Qudsi, J. Wagner, A. Strobel, and F. Ellinger, “Design of a multi-band FMCW radar module,” in 10th Workshop on Positioning Navigation and Communication (IEEE, 2013), pp. 1–6.
    [Crossref]
  13. M. M. Jatlaoui, F. Chebila, P. Pons, and H. Aubert, “New micro-sensors identification techniques based on reconfigurable multi-band scatterers,” in Asia Pacific Microwave Conference (IEEE, 2009), pp. 968–971.
    [Crossref]
  14. Z. Li and K. Wu, “On the leakage of FMCW radar front-end receiver,” in Global Symposium on Millimeter Waves, (IEEE, 2008), pp. 127–130.
    [Crossref]
  15. J. M. Muñoz-Ferreras and R. Gómez-García, “A deramping-based multiband radar sensor concept with enhanced ISAR capabilities,” IEEE Sens. J. 13(9), 3361–3368 (2013).
    [Crossref]
  16. X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
    [Crossref]
  17. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
    [Crossref]
  18. P. Ghelfi, F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “Photonics for radars operating on multiple coherent bands,” J. Lightwave Technol. 34(2), 500–507 (2016).
    [Crossref]
  19. H. Emami and N. Sarkhosh, “Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar,” J. Opt. Soc. Am. A 31(6), 1320–1325 (2014).
    [Crossref] [PubMed]
  20. H. Yu, M. Chen, Q. Guo, M. Hoekman, H. Chen, A. Leinse, R. G. Heideman, R. Mateman, S. Yang, and S. Xie, “All-optical full-band RF receiver based on an integrated ultra-high-Q bandpass filter,” J. Lightwave Technol. 34(2), 701–706 (2016).
    [Crossref]
  21. J. Li, J. Xiao, and X. Song, “Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer (invited paper),” Chin. Opt. Lett. 15(1), 010014 (2017).
  22. I. L. Newberg, C. M. Gee, G. D. Thurmond, and H. W. Yen, “Long microwave delay fiber-optic link for radar testing,” IEEE Trans. Microw. Theory Tech. 38(5), 664–666 (1990).
    [Crossref]

2017 (1)

2016 (4)

P. Ghelfi, F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “Photonics for radars operating on multiple coherent bands,” J. Lightwave Technol. 34(2), 500–507 (2016).
[Crossref]

H. Yu, M. Chen, Q. Guo, M. Hoekman, H. Chen, A. Leinse, R. G. Heideman, R. Mateman, S. Yang, and S. Xie, “All-optical full-band RF receiver based on an integrated ultra-high-Q bandpass filter,” J. Lightwave Technol. 34(2), 701–706 (2016).
[Crossref]

J. A. Casey, S. E. L. Howell, A. Tivy, and C. Haas, “Separability of sea ice types from wide swath C-and L-band synthetic aperture radar imagery acquired during the melt season,” Remote Sens. Environ. 174, 321–328 (2016).
[Crossref]

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

2015 (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
[Crossref]

2014 (2)

G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring,” IEEE Trans. Microw. Theory Tech. 62(11), 2812–2822 (2014).
[Crossref]

H. Emami and N. Sarkhosh, “Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar,” J. Opt. Soc. Am. A 31(6), 1320–1325 (2014).
[Crossref] [PubMed]

2013 (3)

J. Tian, J. Sun, G. Wang, Y. Wang, and W. Tan, “Multiband radar signal coherent fusion processing with IAA and ap FFT,” Signal Process. lett. 20 (5), 463–466 (2013).
[Crossref]

J. M. Muñoz-Ferreras and R. Gómez-García, “A deramping-based multiband radar sensor concept with enhanced ISAR capabilities,” IEEE Sens. J. 13(9), 3361–3368 (2013).
[Crossref]

S. Seto, T. Iguchi, and T. Oki, “The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission’s single/dual-frequency radar measurements,” IEEE Trans. Geosci. Remote Sens. 51(12), 5239–5251 (2013).
[Crossref]

2007 (2)

N. M. Frew, D. M. Glover, E. J. Bock, and S. J. McCue, “A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter,” J. Geophys. Res. 112(C11), C11003 (2007).
[Crossref]

M. Vespe, C. J. Baker, and H. D. Griffiths, “Automatic target recognition using multi-diversity radar,” IET Radar Sonar & Navigation 1(6), 470–478 (2007).
[Crossref]

2001 (1)

D. B. Trizna, C. Bachmann, M. Sletten, N. Allan, J. Toporkov, and R. Harris, “Projection pursuit classification of multiband polarimetric SAR land images,” IEEE Trans. Geosci. Remote Sens. 39(11), 2380–2386 (2001).
[Crossref]

1990 (1)

I. L. Newberg, C. M. Gee, G. D. Thurmond, and H. W. Yen, “Long microwave delay fiber-optic link for radar testing,” IEEE Trans. Microw. Theory Tech. 38(5), 664–666 (1990).
[Crossref]

Allan, N.

D. B. Trizna, C. Bachmann, M. Sletten, N. Allan, J. Toporkov, and R. Harris, “Projection pursuit classification of multiband polarimetric SAR land images,” IEEE Trans. Geosci. Remote Sens. 39(11), 2380–2386 (2001).
[Crossref]

Al-Qudsi, B.

N. Joram, B. Al-Qudsi, J. Wagner, A. Strobel, and F. Ellinger, “Design of a multi-band FMCW radar module,” in 10th Workshop on Positioning Navigation and Communication (IEEE, 2013), pp. 1–6.
[Crossref]

Aubert, H.

M. M. Jatlaoui, F. Chebila, P. Pons, and H. Aubert, “New micro-sensors identification techniques based on reconfigurable multi-band scatterers,” in Asia Pacific Microwave Conference (IEEE, 2009), pp. 968–971.
[Crossref]

Bachmann, C.

D. B. Trizna, C. Bachmann, M. Sletten, N. Allan, J. Toporkov, and R. Harris, “Projection pursuit classification of multiband polarimetric SAR land images,” IEEE Trans. Geosci. Remote Sens. 39(11), 2380–2386 (2001).
[Crossref]

Baker, C. J.

M. Vespe, C. J. Baker, and H. D. Griffiths, “Automatic target recognition using multi-diversity radar,” IET Radar Sonar & Navigation 1(6), 470–478 (2007).
[Crossref]

Bock, E. J.

N. M. Frew, D. M. Glover, E. J. Bock, and S. J. McCue, “A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter,” J. Geophys. Res. 112(C11), C11003 (2007).
[Crossref]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “Photonics for radars operating on multiple coherent bands,” J. Lightwave Technol. 34(2), 500–507 (2016).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
[Crossref]

Caccetta, P.

Z. Zhou, P. Caccetta, and N. C. Sims, “Multiband SAR data for rangeland pasture monitoring,” in Geoscience and Remote Sensing Symposium (IEEE, 2016), pp. 160–173.
[Crossref]

Casey, J. A.

J. A. Casey, S. E. L. Howell, A. Tivy, and C. Haas, “Separability of sea ice types from wide swath C-and L-band synthetic aperture radar imagery acquired during the melt season,” Remote Sens. Environ. 174, 321–328 (2016).
[Crossref]

Chebila, F.

M. M. Jatlaoui, F. Chebila, P. Pons, and H. Aubert, “New micro-sensors identification techniques based on reconfigurable multi-band scatterers,” in Asia Pacific Microwave Conference (IEEE, 2009), pp. 968–971.
[Crossref]

Chen, H.

Chen, M.

Ebeling, R.

P. Van Dorp, R. Ebeling, and A. G. Huizing, “High resolution radar imaging using coherent multiband processing techniques,” in IEEE Radar Conf. (IEEE, 2010), pp. 981–986.

Edwards, M.

M. Edwards, D. Madsen, C. Stringham, A. Margulis, B. Wicks, and D. Long, “microASAR: A small, robust LFM-CW SAR for operation on UAVs and small aircraft,” in Proc. in Geoscience and Remote Sensing Symposium (IEEE, 2008), pp. V-514–V-517.
[Crossref]

Ellinger, F.

N. Joram, B. Al-Qudsi, J. Wagner, A. Strobel, and F. Ellinger, “Design of a multi-band FMCW radar module,” in 10th Workshop on Positioning Navigation and Communication (IEEE, 2013), pp. 1–6.
[Crossref]

Emami, H.

Frew, N. M.

N. M. Frew, D. M. Glover, E. J. Bock, and S. J. McCue, “A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter,” J. Geophys. Res. 112(C11), C11003 (2007).
[Crossref]

Gee, C. M.

I. L. Newberg, C. M. Gee, G. D. Thurmond, and H. W. Yen, “Long microwave delay fiber-optic link for radar testing,” IEEE Trans. Microw. Theory Tech. 38(5), 664–666 (1990).
[Crossref]

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “Photonics for radars operating on multiple coherent bands,” J. Lightwave Technol. 34(2), 500–507 (2016).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
[Crossref]

Glover, D. M.

N. M. Frew, D. M. Glover, E. J. Bock, and S. J. McCue, “A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter,” J. Geophys. Res. 112(C11), C11003 (2007).
[Crossref]

Gómez-García, R.

J. M. Muñoz-Ferreras and R. Gómez-García, “A deramping-based multiband radar sensor concept with enhanced ISAR capabilities,” IEEE Sens. J. 13(9), 3361–3368 (2013).
[Crossref]

Griffiths, H. D.

M. Vespe, C. J. Baker, and H. D. Griffiths, “Automatic target recognition using multi-diversity radar,” IET Radar Sonar & Navigation 1(6), 470–478 (2007).
[Crossref]

Gu, C.

G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring,” IEEE Trans. Microw. Theory Tech. 62(11), 2812–2822 (2014).
[Crossref]

Guo, Q.

Haas, C.

J. A. Casey, S. E. L. Howell, A. Tivy, and C. Haas, “Separability of sea ice types from wide swath C-and L-band synthetic aperture radar imagery acquired during the melt season,” Remote Sens. Environ. 174, 321–328 (2016).
[Crossref]

Harris, R.

D. B. Trizna, C. Bachmann, M. Sletten, N. Allan, J. Toporkov, and R. Harris, “Projection pursuit classification of multiband polarimetric SAR land images,” IEEE Trans. Geosci. Remote Sens. 39(11), 2380–2386 (2001).
[Crossref]

Heideman, R. G.

Hoekman, M.

Howell, S. E. L.

J. A. Casey, S. E. L. Howell, A. Tivy, and C. Haas, “Separability of sea ice types from wide swath C-and L-band synthetic aperture radar imagery acquired during the melt season,” Remote Sens. Environ. 174, 321–328 (2016).
[Crossref]

Huizing, A. G.

P. Van Dorp, R. Ebeling, and A. G. Huizing, “High resolution radar imaging using coherent multiband processing techniques,” in IEEE Radar Conf. (IEEE, 2010), pp. 981–986.

Iguchi, T.

S. Seto, T. Iguchi, and T. Oki, “The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission’s single/dual-frequency radar measurements,” IEEE Trans. Geosci. Remote Sens. 51(12), 5239–5251 (2013).
[Crossref]

Inoue, T.

G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring,” IEEE Trans. Microw. Theory Tech. 62(11), 2812–2822 (2014).
[Crossref]

Jatlaoui, M. M.

M. M. Jatlaoui, F. Chebila, P. Pons, and H. Aubert, “New micro-sensors identification techniques based on reconfigurable multi-band scatterers,” in Asia Pacific Microwave Conference (IEEE, 2009), pp. 968–971.
[Crossref]

Joram, N.

N. Joram, B. Al-Qudsi, J. Wagner, A. Strobel, and F. Ellinger, “Design of a multi-band FMCW radar module,” in 10th Workshop on Positioning Navigation and Communication (IEEE, 2013), pp. 1–6.
[Crossref]

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “Photonics for radars operating on multiple coherent bands,” J. Lightwave Technol. 34(2), 500–507 (2016).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
[Crossref]

Leinse, A.

Li, C.

G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring,” IEEE Trans. Microw. Theory Tech. 62(11), 2812–2822 (2014).
[Crossref]

Li, J.

Li, Z.

Z. Li and K. Wu, “On the leakage of FMCW radar front-end receiver,” in Global Symposium on Millimeter Waves, (IEEE, 2008), pp. 127–130.
[Crossref]

Long, D.

M. Edwards, D. Madsen, C. Stringham, A. Margulis, B. Wicks, and D. Long, “microASAR: A small, robust LFM-CW SAR for operation on UAVs and small aircraft,” in Proc. in Geoscience and Remote Sensing Symposium (IEEE, 2008), pp. V-514–V-517.
[Crossref]

Lu, B.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Madsen, D.

M. Edwards, D. Madsen, C. Stringham, A. Margulis, B. Wicks, and D. Long, “microASAR: A small, robust LFM-CW SAR for operation on UAVs and small aircraft,” in Proc. in Geoscience and Remote Sensing Symposium (IEEE, 2008), pp. V-514–V-517.
[Crossref]

Margulis, A.

M. Edwards, D. Madsen, C. Stringham, A. Margulis, B. Wicks, and D. Long, “microASAR: A small, robust LFM-CW SAR for operation on UAVs and small aircraft,” in Proc. in Geoscience and Remote Sensing Symposium (IEEE, 2008), pp. V-514–V-517.
[Crossref]

Mateman, R.

McCue, S. J.

N. M. Frew, D. M. Glover, E. J. Bock, and S. J. McCue, “A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter,” J. Geophys. Res. 112(C11), C11003 (2007).
[Crossref]

Muñoz-Ferreras, J. M.

J. M. Muñoz-Ferreras and R. Gómez-García, “A deramping-based multiband radar sensor concept with enhanced ISAR capabilities,” IEEE Sens. J. 13(9), 3361–3368 (2013).
[Crossref]

Newberg, I. L.

I. L. Newberg, C. M. Gee, G. D. Thurmond, and H. W. Yen, “Long microwave delay fiber-optic link for radar testing,” IEEE Trans. Microw. Theory Tech. 38(5), 664–666 (1990).
[Crossref]

Oki, T.

S. Seto, T. Iguchi, and T. Oki, “The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission’s single/dual-frequency radar measurements,” IEEE Trans. Geosci. Remote Sens. 51(12), 5239–5251 (2013).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “Photonics for radars operating on multiple coherent bands,” J. Lightwave Technol. 34(2), 500–507 (2016).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
[Crossref]

Pan, W.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
[Crossref]

Pons, P.

M. M. Jatlaoui, F. Chebila, P. Pons, and H. Aubert, “New micro-sensors identification techniques based on reconfigurable multi-band scatterers,” in Asia Pacific Microwave Conference (IEEE, 2009), pp. 968–971.
[Crossref]

Sarkhosh, N.

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, D. Onori, and A. Bogoni, “Photonics for radars operating on multiple coherent bands,” J. Lightwave Technol. 34(2), 500–507 (2016).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
[Crossref]

Seto, S.

S. Seto, T. Iguchi, and T. Oki, “The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission’s single/dual-frequency radar measurements,” IEEE Trans. Geosci. Remote Sens. 51(12), 5239–5251 (2013).
[Crossref]

Sims, N. C.

Z. Zhou, P. Caccetta, and N. C. Sims, “Multiband SAR data for rangeland pasture monitoring,” in Geoscience and Remote Sensing Symposium (IEEE, 2016), pp. 160–173.
[Crossref]

Sletten, M.

D. B. Trizna, C. Bachmann, M. Sletten, N. Allan, J. Toporkov, and R. Harris, “Projection pursuit classification of multiband polarimetric SAR land images,” IEEE Trans. Geosci. Remote Sens. 39(11), 2380–2386 (2001).
[Crossref]

Song, X.

Stöhr, A.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Stringham, C.

M. Edwards, D. Madsen, C. Stringham, A. Margulis, B. Wicks, and D. Long, “microASAR: A small, robust LFM-CW SAR for operation on UAVs and small aircraft,” in Proc. in Geoscience and Remote Sensing Symposium (IEEE, 2008), pp. V-514–V-517.
[Crossref]

Strobel, A.

N. Joram, B. Al-Qudsi, J. Wagner, A. Strobel, and F. Ellinger, “Design of a multi-band FMCW radar module,” in 10th Workshop on Positioning Navigation and Communication (IEEE, 2013), pp. 1–6.
[Crossref]

Sun, J.

J. Tian, J. Sun, G. Wang, Y. Wang, and W. Tan, “Multiband radar signal coherent fusion processing with IAA and ap FFT,” Signal Process. lett. 20 (5), 463–466 (2013).
[Crossref]

Tan, W.

J. Tian, J. Sun, G. Wang, Y. Wang, and W. Tan, “Multiband radar signal coherent fusion processing with IAA and ap FFT,” Signal Process. lett. 20 (5), 463–466 (2013).
[Crossref]

Thurmond, G. D.

I. L. Newberg, C. M. Gee, G. D. Thurmond, and H. W. Yen, “Long microwave delay fiber-optic link for radar testing,” IEEE Trans. Microw. Theory Tech. 38(5), 664–666 (1990).
[Crossref]

Tian, J.

J. Tian, J. Sun, G. Wang, Y. Wang, and W. Tan, “Multiband radar signal coherent fusion processing with IAA and ap FFT,” Signal Process. lett. 20 (5), 463–466 (2013).
[Crossref]

Tivy, A.

J. A. Casey, S. E. L. Howell, A. Tivy, and C. Haas, “Separability of sea ice types from wide swath C-and L-band synthetic aperture radar imagery acquired during the melt season,” Remote Sens. Environ. 174, 321–328 (2016).
[Crossref]

Toporkov, J.

D. B. Trizna, C. Bachmann, M. Sletten, N. Allan, J. Toporkov, and R. Harris, “Projection pursuit classification of multiband polarimetric SAR land images,” IEEE Trans. Geosci. Remote Sens. 39(11), 2380–2386 (2001).
[Crossref]

Trizna, D. B.

D. B. Trizna, C. Bachmann, M. Sletten, N. Allan, J. Toporkov, and R. Harris, “Projection pursuit classification of multiband polarimetric SAR land images,” IEEE Trans. Geosci. Remote Sens. 39(11), 2380–2386 (2001).
[Crossref]

Van Dorp, P.

P. Van Dorp, R. Ebeling, and A. G. Huizing, “High resolution radar imaging using coherent multiband processing techniques,” in IEEE Radar Conf. (IEEE, 2010), pp. 981–986.

Vespe, M.

M. Vespe, C. J. Baker, and H. D. Griffiths, “Automatic target recognition using multi-diversity radar,” IET Radar Sonar & Navigation 1(6), 470–478 (2007).
[Crossref]

Wagner, J.

N. Joram, B. Al-Qudsi, J. Wagner, A. Strobel, and F. Ellinger, “Design of a multi-band FMCW radar module,” in 10th Workshop on Positioning Navigation and Communication (IEEE, 2013), pp. 1–6.
[Crossref]

Wang, G.

G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring,” IEEE Trans. Microw. Theory Tech. 62(11), 2812–2822 (2014).
[Crossref]

J. Tian, J. Sun, G. Wang, Y. Wang, and W. Tan, “Multiband radar signal coherent fusion processing with IAA and ap FFT,” Signal Process. lett. 20 (5), 463–466 (2013).
[Crossref]

Wang, Y.

J. Tian, J. Sun, G. Wang, Y. Wang, and W. Tan, “Multiband radar signal coherent fusion processing with IAA and ap FFT,” Signal Process. lett. 20 (5), 463–466 (2013).
[Crossref]

Wicks, B.

M. Edwards, D. Madsen, C. Stringham, A. Margulis, B. Wicks, and D. Long, “microASAR: A small, robust LFM-CW SAR for operation on UAVs and small aircraft,” in Proc. in Geoscience and Remote Sensing Symposium (IEEE, 2008), pp. V-514–V-517.
[Crossref]

Wu, K.

Z. Li and K. Wu, “On the leakage of FMCW radar front-end receiver,” in Global Symposium on Millimeter Waves, (IEEE, 2008), pp. 127–130.
[Crossref]

Xiao, J.

Xie, S.

Yan, L.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Yang, S.

Yao, J.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Yen, H. W.

I. L. Newberg, C. M. Gee, G. D. Thurmond, and H. W. Yen, “Long microwave delay fiber-optic link for radar testing,” IEEE Trans. Microw. Theory Tech. 38(5), 664–666 (1990).
[Crossref]

Yu, H.

Zhou, Z.

Z. Zhou, P. Caccetta, and N. C. Sims, “Multiband SAR data for rangeland pasture monitoring,” in Geoscience and Remote Sensing Symposium (IEEE, 2016), pp. 160–173.
[Crossref]

Zou, X.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Microw. Mag. (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state of-the-art functionality,” IEEE Microw. Mag. 6(8), 74–82 (2015).
[Crossref]

IEEE Sens. J. (1)

J. M. Muñoz-Ferreras and R. Gómez-García, “A deramping-based multiband radar sensor concept with enhanced ISAR capabilities,” IEEE Sens. J. 13(9), 3361–3368 (2013).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

D. B. Trizna, C. Bachmann, M. Sletten, N. Allan, J. Toporkov, and R. Harris, “Projection pursuit classification of multiband polarimetric SAR land images,” IEEE Trans. Geosci. Remote Sens. 39(11), 2380–2386 (2001).
[Crossref]

S. Seto, T. Iguchi, and T. Oki, “The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission’s single/dual-frequency radar measurements,” IEEE Trans. Geosci. Remote Sens. 51(12), 5239–5251 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

I. L. Newberg, C. M. Gee, G. D. Thurmond, and H. W. Yen, “Long microwave delay fiber-optic link for radar testing,” IEEE Trans. Microw. Theory Tech. 38(5), 664–666 (1990).
[Crossref]

G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring,” IEEE Trans. Microw. Theory Tech. 62(11), 2812–2822 (2014).
[Crossref]

IET Radar Sonar & Navigation (1)

M. Vespe, C. J. Baker, and H. D. Griffiths, “Automatic target recognition using multi-diversity radar,” IET Radar Sonar & Navigation 1(6), 470–478 (2007).
[Crossref]

J. Geophys. Res. (1)

N. M. Frew, D. M. Glover, E. J. Bock, and S. J. McCue, “A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter,” J. Geophys. Res. 112(C11), C11003 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Remote Sens. Environ. (1)

J. A. Casey, S. E. L. Howell, A. Tivy, and C. Haas, “Separability of sea ice types from wide swath C-and L-band synthetic aperture radar imagery acquired during the melt season,” Remote Sens. Environ. 174, 321–328 (2016).
[Crossref]

Signal Process. lett. (1)

J. Tian, J. Sun, G. Wang, Y. Wang, and W. Tan, “Multiband radar signal coherent fusion processing with IAA and ap FFT,” Signal Process. lett. 20 (5), 463–466 (2013).
[Crossref]

Other (7)

M. Edwards, D. Madsen, C. Stringham, A. Margulis, B. Wicks, and D. Long, “microASAR: A small, robust LFM-CW SAR for operation on UAVs and small aircraft,” in Proc. in Geoscience and Remote Sensing Symposium (IEEE, 2008), pp. V-514–V-517.
[Crossref]

P. Van Dorp, R. Ebeling, and A. G. Huizing, “High resolution radar imaging using coherent multiband processing techniques,” in IEEE Radar Conf. (IEEE, 2010), pp. 981–986.

M. I. Skolnik, Radar Handbook, 3rd Ed (McGraw-Hill,2008).

Z. Zhou, P. Caccetta, and N. C. Sims, “Multiband SAR data for rangeland pasture monitoring,” in Geoscience and Remote Sensing Symposium (IEEE, 2016), pp. 160–173.
[Crossref]

N. Joram, B. Al-Qudsi, J. Wagner, A. Strobel, and F. Ellinger, “Design of a multi-band FMCW radar module,” in 10th Workshop on Positioning Navigation and Communication (IEEE, 2013), pp. 1–6.
[Crossref]

M. M. Jatlaoui, F. Chebila, P. Pons, and H. Aubert, “New micro-sensors identification techniques based on reconfigurable multi-band scatterers,” in Asia Pacific Microwave Conference (IEEE, 2009), pp. 968–971.
[Crossref]

Z. Li and K. Wu, “On the leakage of FMCW radar front-end receiver,” in Global Symposium on Millimeter Waves, (IEEE, 2008), pp. 127–130.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Block diagrams of LFMCW radar receiver using (a) single-band and (b) dual-band LFM waveform.
Fig. 2
Fig. 2 Impact of image component on threshold detection.
Fig. 3
Fig. 3 Block diagram of the proposed photonics-based I/Q receiver for the dual-band LFMCW radar.
Fig. 4
Fig. 4 IRR of beat signal as a function of SSR of two I/Q modulators.
Fig. 5
Fig. 5 IRR of beat signal as a function of amount of (a) phase imbalance and (b) power imbalance.
Fig. 6
Fig. 6 Experimental setup and optical and electrical spectra of the proposed dual-band receiver based on the microwave photonic I/Q mixer.
Fig. 7
Fig. 7 Temporal waveforms and frequency-domain information of the sampled I/Q beat signals. (a) Temporal waveforms in four periods. (b) Parts of temporal waveforms. (c) Beat frequencies without I/Q imbalance compensation (d) Beat frequencies with I/Q imbalance compensation.
Fig. 8
Fig. 8 Power of I/Q beat signal as a function of RF power.
Fig. 9
Fig. 9 IRR as a function of RF input power with and without the I/Q imbalance compensation.
Fig. 10
Fig. 10 Beat frequencies of two targets (a) with and (b) without I/Q imbalance compensation.
Fig. 11
Fig. 11 IRR of (a) target A and (b) target B as a function of RF power of target B.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S T x , i ( t ) = V i cos ( 2 π ( f i t + 1 2 μ i t 2 ) )
S R x , i ( t ) = σ i S T x , i ( t τ )
E L O , i ( t ) = 2 2 P i n J 1 ( β L O , i ) exp [ j 2 π ( ( f c + f i ) t + 1 2 μ i t 2 ) ]
E R F , i ( t ) = 2 2 P i n J 1 ( β R F , i ) exp [ j 2 π ( f c t + f i ( t τ ) + 1 2 μ i ( t τ ) 2 ) ]
[ E 1 E 2 E 3 E 4 ] = 1 2 [ 1 1 1 1 1 j 1 j ] [ E R F , i E L O , i ] = 1 2 [ E R F , i + E L O , i E R F , i E L O , i E R F , i + j E L O , i E R F , i j E L O , i ]
[ I i ( t ) Q i ( t ) ] = [ E 1 E 1 E 2 E 2 E 3 E 3 E 4 E 4 ] = k P 0 J 1 ( β L O , i ) J 1 ( β R F , i ) [ cos ( 2 π μ i τ t + φ i ) sin ( 2 π μ i τ t + φ i ) ]
Y i ( t ) = k P 0 J 1 ( β L O , i ) J 1 ( β R F , i ) exp ( j ( 2 π μ i τ t + φ i ) ) .

Metrics