Abstract

We report an electrically controlled optofluidic zoom system which can achieve a large continuous zoom change and high-resolution image. The zoom system consists of an optofluidic zoom objective and a switchable light path which are controlled by two liquid optical shutters. The proposed zoom system can achieve a large tunable focal length range from 36mm to 92mm. And in this tuning range, the zoom system can correct aberrations dynamically, thus the image resolution is high. Due to large zoom range, the proposed imaging system incorporates both camera configuration and telescope configuration into one system. In addition, the whole system is electrically controlled by three electrowetting liquid lenses and two liquid optical shutters, therefore, the proposed system is very compact and free of mechanical moving parts. The proposed zoom system has potential to take place of conventional zoom systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid driving variable-focus optofluidic lens

Jin-Hui Wang, Wei-Pu Tang, Lin-Yang Li, Liang Xiao, Xin Zhou, and Qiong-Hua Wang
Opt. Express 27(24) 35203-35215 (2019)

Displaceable and focus-tunable electrowetting optofluidic lens

Lei Li, Jin-Hui Wang, Qiong-Hua Wang, and Shin-Tson Wu
Opt. Express 26(20) 25839-25848 (2018)

Ultrathin zoom telescopic objective

Lei Li, Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 24(16) 18674-18684 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Berge and J. Peseux, “Variable focal lens controlled by An external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  2. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  3. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  4. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
    [Crossref] [PubMed]
  5. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
    [Crossref] [PubMed]
  6. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
    [Crossref]
  7. S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
    [Crossref] [PubMed]
  8. L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
    [Crossref] [PubMed]
  9. L. Li, D. Wang, C. Liu, and Q. H. Wang, “Ultrathin zoom telescopic objective,” Opt. Express 24(16), 18674–18684 (2016).
    [Crossref] [PubMed]
  10. D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
    [Crossref] [PubMed]
  11. S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
    [Crossref]
  12. L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
    [Crossref]
  13. Zemax, http://www.zemax.com .
  14. Varioptics, http://www.varioptic.com .
  15. SCHOTT, http://www.schott.com/optocs_devices/english/download/ .

2017 (1)

2016 (2)

2014 (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

2013 (2)

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

2012 (1)

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

2011 (1)

2005 (1)

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by An external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by An external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Brender, T.

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Chang, J. H.

Chen, M. S.

Choi, M.

Fan, Y. H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Gauza, S.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Jung, K. D.

Justis, N.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Kim, W.

Kopp, D.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Lee, E.

Lee, S.

Li, L.

Lin, H. C.

Lin, Y. H.

Liu, C.

Lo, Y. H.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Mishra, K.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Mugele, F.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by An external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Ren, H.

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

van den Ende, D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Wang, D.

Wang, Q. H.

Wu, S. T.

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Xu, S.

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Zappe, H.

Zhang, D. Y.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by An external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Xu, H. Ren, and S. T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Opt. Commun. (1)

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Opt. Eng. (1)

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

Opt. Express (4)

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Other (3)

Zemax, http://www.zemax.com .

Varioptics, http://www.varioptic.com .

SCHOTT, http://www.schott.com/optocs_devices/english/download/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic 3D and cross-sectional structure of the proposed zoom system. (a) Structure of the proposed zoom system. (b) Short focal length mode. (b) Long focal length mode.
Fig. 2
Fig. 2 Configuration of the proposed zoom system.
Fig. 3
Fig. 3 Schematic and cross-sectional structure of the liquid optical shutter. (a) Switch-on state. (b)Switch-off state.
Fig. 4
Fig. 4 2D layout of the proposed zoom system. (a) Short focal length mode. (b) Long focal length mode.
Fig. 5
Fig. 5 Curve radii versus focal length.
Fig. 6
Fig. 6 Blur spots of the proposed zoom system in the whole tuning range.
Fig. 7
Fig. 7 MTF of the proposed zoom system in the whole tuning range. (a) f = 36mm. (b)f = 44mm. (c)f = 52mm. (d)f = 60mm. (e)f = 68mm. (f)f = 76mm. (g)f = 84mm. (h)f = 92mm.
Fig. 8
Fig. 8 Fabricated device. (a) Whole device. (b) Solid elements. (c) Liquid elements.
Fig. 9
Fig. 9 Video stills of the deformation process of liquid optical shutter.
Fig. 10
Fig. 10 Captured images using the proposed zoom system. (a) f = 36mm. (b) f = 44mm. (c) f = 52mm. (d)f = 60mm. (e)f = 68mm. (f)f = 76mm. (g)f = 84mm. (h)f = 92mm.

Tables (1)

Tables Icon

Table 1 Detailed parameters of the proposed zoom system

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f= h tan u ' ,
L= h ' tan u ' ,
f= h h ' L,
cosθ= γ 1 γ 2 γ 12 + ε 2 γ 12 d U 2
f 0 = f 1 ( r 1 , r 2 , r 3 )
L 0 = f 2 ( r 1 , r 2 , r 3 )
RMS= f 3 ( r 1 , r 2 , r 3 )

Metrics