Abstract

Imaging fluorescent markers with brightness, photostability, and continuous emission with auto fluorescence background suppression in biological samples has always been challenging due to limitations of available and economical techniques. Here we report a new approach, to achieve high contrast imaging inside small and difficult biological systems with special geometry such as fire ants, an important agricultural pest, using a homemade cost-effective optical system. Unlike the commonly used rare-earth doped fluoride nanoparticles, we utilized nanoparticles with a high upconversion efficiency in water. Specifically Y2O3:Er+3,Yb+3 nanoparticles (40-50 nm diameter) were fed to fire ants as food and then a simple illuminating experiment was conducted at 980 nm wavelength at relatively low pump intensity8 kW.cm2. The locations were further confirmed by X-ray tomography, where most particles aggregated inside the ant’s mouth. High resolution, fast, and economical optical imaging system opens the door for studying more complex biological systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multifunctional nanoheater based on NaGdF4:Yb3+, Er3+ upconversion nanoparticles

Qiyue Shao, Lilai Ouyang, Lifei Jin, and Jianqing Jiang
Opt. Express 23(23) 30057-30066 (2015)

Engineering water-tolerant core/shell upconversion nanoparticles for optical temperature sensing

Masfer H. Alkahtani, Carmen L. Gomes, and Philip R. Hemmer
Opt. Lett. 42(13) 2451-2454 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
    [Crossref] [PubMed]
  2. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
    [Crossref] [PubMed]
  3. X. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
    [Crossref]
  4. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
    [Crossref] [PubMed]
  5. G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
    [Crossref]
  6. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
    [Crossref] [PubMed]
  7. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  8. D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
    [Crossref]
  9. F. Zhang, “Surface Modification and Bioconjugation of Upconversion Nanoparticles,” in Photon Upconversion Nanomaterials (Springer Berlin Heidelberg, Berlin, Heidelberg, 2015), pp. 159–185.
  10. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
    [Crossref] [PubMed]
  11. T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
    [Crossref]
  12. C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
    [Crossref]
  13. X. Huang, “Enhancement of near-infrared to near-infrared upconversion luminescence in sub-10-nm ultra-small LaF(3):Yb(3+)/Tm(3+) nanoparticles through lanthanide doping,” Opt. Lett. 40(22), 5231–5234 (2015).
    [Crossref] [PubMed]
  14. X. Huang, “Giant enhancement of upconversion emission in (NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+) core/shell nanoparticles excited at 808 nm,” Opt. Lett. 40(15), 3599–3602 (2015).
    [Crossref] [PubMed]
  15. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
    [Crossref] [PubMed]
  16. J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors (Basel) 12(3), 2414–2435 (2012).
    [Crossref] [PubMed]
  17. Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, and L. Lu, “A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging,” Angew. Chem. Int. Ed. Engl. 51(6), 1437–1442 (2012).
    [Crossref] [PubMed]
  18. S.-B. Yu and A. D. Watson, “Metal-Based X-ray Contrast Media,” Chem. Rev. 99(9), 2353–2378 (1999).
    [Crossref] [PubMed]
  19. S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
    [Crossref] [PubMed]
  20. J. C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
    [Crossref] [PubMed]
  21. S. S. H. Tahira Gul, F. Zafar Ahmad Khan, and S. Amir Manzoor, “Potential of Nanotechnology in Agriculture and Crop Protection: A Review,” Applied Sciences and Business Economics 1, 3–8 (2014).
  22. S. S. Mukhopadhyay, “Nanotechnology in agriculture: prospects and constraints,” Nanotechnol. Sci. Appl. 7, 63–71 (2014).
    [Crossref] [PubMed]
  23. Y. Chen, C. Sanchez, Y. Yue, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor),” J. Synchrotron Radiat. 23(5), 1197–1201 (2016).
    [Crossref] [PubMed]
  24. L. Diez, L. Urbain, P. Lejeune, and C. Detrain, “Emergency measures: Adaptive response to pathogen intrusion in the ant nest,” Behav. Processes 116, 80–86 (2015).
    [Crossref] [PubMed]
  25. A. Rocha, Y. Zhou, S. Kundu, J. M. González, S. BradleighVinson, and H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis,” J. Nanobiotechnology 9(1), 5 (2011).
    [Crossref] [PubMed]
  26. X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8(6), 643–676 (2013).
    [Crossref]
  27. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  28. W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
    [Crossref]
  29. G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
    [Crossref]
  30. X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
    [Crossref] [PubMed]
  31. Y. Chen, C. Sanchez, Y. Yue, M. de Almeida, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging,” J. Nanobiotechnology 14(1), 23 (2016).
    [Crossref] [PubMed]

2017 (1)

X. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
[Crossref]

2016 (5)

Y. Chen, C. Sanchez, Y. Yue, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor),” J. Synchrotron Radiat. 23(5), 1197–1201 (2016).
[Crossref] [PubMed]

W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
[Crossref]

G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Y. Chen, C. Sanchez, Y. Yue, M. de Almeida, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging,” J. Nanobiotechnology 14(1), 23 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (5)

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

S. S. H. Tahira Gul, F. Zafar Ahmad Khan, and S. Amir Manzoor, “Potential of Nanotechnology in Agriculture and Crop Protection: A Review,” Applied Sciences and Business Economics 1, 3–8 (2014).

S. S. Mukhopadhyay, “Nanotechnology in agriculture: prospects and constraints,” Nanotechnol. Sci. Appl. 7, 63–71 (2014).
[Crossref] [PubMed]

2013 (2)

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8(6), 643–676 (2013).
[Crossref]

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

2012 (3)

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors (Basel) 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, and L. Lu, “A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging,” Angew. Chem. Int. Ed. Engl. 51(6), 1437–1442 (2012).
[Crossref] [PubMed]

2011 (2)

A. Rocha, Y. Zhou, S. Kundu, J. M. González, S. BradleighVinson, and H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis,” J. Nanobiotechnology 9(1), 5 (2011).
[Crossref] [PubMed]

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

2010 (2)

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

J. C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

2008 (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

2007 (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

2005 (1)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2003 (2)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

1999 (1)

S.-B. Yu and A. D. Watson, “Metal-Based X-ray Contrast Media,” Chem. Rev. 99(9), 2353–2378 (1999).
[Crossref] [PubMed]

Ai, K.

Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, and L. Lu, “A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging,” Angew. Chem. Int. Ed. Engl. 51(6), 1437–1442 (2012).
[Crossref] [PubMed]

Alexandrou, A.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Aloni, S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

Altoe, M. V. P.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

Amir Manzoor, S.

S. S. H. Tahira Gul, F. Zafar Ahmad Khan, and S. Amir Manzoor, “Potential of Nanotechnology in Agriculture and Crop Protection: A Review,” Applied Sciences and Business Economics 1, 3–8 (2014).

Andersson-Engels, S.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Barnard, E. S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Bessodes, M.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Boilot, J.-P.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Boyer, J. C.

J. C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

BradleighVinson, S.

A. Rocha, Y. Zhou, S. Kundu, J. M. González, S. BradleighVinson, and H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis,” J. Nanobiotechnology 9(1), 5 (2011).
[Crossref] [PubMed]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Cao, W.

G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Chan, E. M.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

Chanéac, C.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chen, J.

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors (Basel) 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Chen, W.

W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
[Crossref]

Chen, X.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, C. Sanchez, Y. Yue, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor),” J. Synchrotron Radiat. 23(5), 1197–1201 (2016).
[Crossref] [PubMed]

Y. Chen, C. Sanchez, Y. Yue, M. de Almeida, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging,” J. Nanobiotechnology 14(1), 23 (2016).
[Crossref] [PubMed]

G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Cohen, B. E.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

Collins, D. P.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Dantelle, G.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

de Almeida, M.

Y. Chen, C. Sanchez, Y. Yue, M. de Almeida, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging,” J. Nanobiotechnology 14(1), 23 (2016).
[Crossref] [PubMed]

Detrain, C.

L. Diez, L. Urbain, P. Lejeune, and C. Detrain, “Emergency measures: Adaptive response to pathogen intrusion in the ant nest,” Behav. Processes 116, 80–86 (2015).
[Crossref] [PubMed]

Diez, L.

L. Diez, L. Urbain, P. Lejeune, and C. Detrain, “Emergency measures: Adaptive response to pathogen intrusion in the ant nest,” Behav. Processes 116, 80–86 (2015).
[Crossref] [PubMed]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Duan, C.

G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Feng, W.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Gacoin, T.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Gargas, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

González, J. M.

Y. Chen, C. Sanchez, Y. Yue, M. de Almeida, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging,” J. Nanobiotechnology 14(1), 23 (2016).
[Crossref] [PubMed]

Y. Chen, C. Sanchez, Y. Yue, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor),” J. Synchrotron Radiat. 23(5), 1197–1201 (2016).
[Crossref] [PubMed]

A. Rocha, Y. Zhou, S. Kundu, J. M. González, S. BradleighVinson, and H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis,” J. Nanobiotechnology 9(1), 5 (2011).
[Crossref] [PubMed]

Gourier, D.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Hadjipanayi, M.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Hao, J.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

He, S.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

He, Y.

Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, and L. Lu, “A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging,” Angew. Chem. Int. Ed. Engl. 51(6), 1437–1442 (2012).
[Crossref] [PubMed]

Huang, X.

Ji, M.

W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
[Crossref]

Jiang, G.

G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Jolivet, J. P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Katsumata, K.-i.

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

Kidokoro, T.

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

Kundu, S.

A. Rocha, Y. Zhou, S. Kundu, J. M. González, S. BradleighVinson, and H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis,” J. Nanobiotechnology 9(1), 5 (2011).
[Crossref] [PubMed]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Lejeune, P.

L. Diez, L. Urbain, P. Lejeune, and C. Detrain, “Emergency measures: Adaptive response to pathogen intrusion in the ant nest,” Behav. Processes 116, 80–86 (2015).
[Crossref] [PubMed]

Li, F.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Li, J.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Li, X.

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8(6), 643–676 (2013).
[Crossref]

Liang, H.

Y. Chen, C. Sanchez, Y. Yue, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor),” J. Synchrotron Radiat. 23(5), 1197–1201 (2016).
[Crossref] [PubMed]

Y. Chen, C. Sanchez, Y. Yue, M. de Almeida, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging,” J. Nanobiotechnology 14(1), 23 (2016).
[Crossref] [PubMed]

A. Rocha, Y. Zhou, S. Kundu, J. M. González, S. BradleighVinson, and H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis,” J. Nanobiotechnology 9(1), 5 (2011).
[Crossref] [PubMed]

Liu, H.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Liu, J.

Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, and L. Lu, “A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging,” Angew. Chem. Int. Ed. Engl. 51(6), 1437–1442 (2012).
[Crossref] [PubMed]

Liu, X.

W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
[Crossref]

Liu, Y.

Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, and L. Lu, “A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging,” Angew. Chem. Int. Ed. Engl. 51(6), 1437–1442 (2012).
[Crossref] [PubMed]

Lu, L.

Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, and L. Lu, “A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging,” Angew. Chem. Int. Ed. Engl. 51(6), 1437–1442 (2012).
[Crossref] [PubMed]

Lu, W.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Matsushita, N.

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

Mialon, G.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Milliron, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

Mukhopadhyay, S. S.

S. S. Mukhopadhyay, “Nanotechnology in agriculture: prospects and constraints,” Nanotechnol. Sci. Appl. 7, 63–71 (2014).
[Crossref] [PubMed]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Okada, K.

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

Ostrowski, A. D.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

Parkinson, D. Y.

Y. Chen, C. Sanchez, Y. Yue, M. de Almeida, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging,” J. Nanobiotechnology 14(1), 23 (2016).
[Crossref] [PubMed]

Y. Chen, C. Sanchez, Y. Yue, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor),” J. Synchrotron Radiat. 23(5), 1197–1201 (2016).
[Crossref] [PubMed]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Qian, J.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Qiu, J.

W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
[Crossref]

Rao, L.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Rocha, A.

A. Rocha, Y. Zhou, S. Kundu, J. M. González, S. BradleighVinson, and H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis,” J. Nanobiotechnology 9(1), 5 (2011).
[Crossref] [PubMed]

Sanchez, C.

Y. Chen, C. Sanchez, Y. Yue, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor),” J. Synchrotron Radiat. 23(5), 1197–1201 (2016).
[Crossref] [PubMed]

Y. Chen, C. Sanchez, Y. Yue, M. de Almeida, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging,” J. Nanobiotechnology 14(1), 23 (2016).
[Crossref] [PubMed]

Sang, X.

W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
[Crossref]

Sanii, B.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Scherman, D.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Schuck, P. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

Seguin, J.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Shi, C.

W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
[Crossref]

Soga, K.

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

Somesfalean, G.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Sun, Y.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Tahira Gul, S. S. H.

S. S. H. Tahira Gul, F. Zafar Ahmad Khan, and S. Amir Manzoor, “Potential of Nanotechnology in Agriculture and Crop Protection: A Review,” Applied Sciences and Business Economics 1, 3–8 (2014).

Tan, Y.-W.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Taniguchi, T.

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

Tao, T.

W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
[Crossref]

Taylor, R. A.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Tokuzen, K.

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

Tomita, K.

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Tsujiuchi, K.

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

Türkcan, S.

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

Urbain, L.

L. Diez, L. Urbain, P. Lejeune, and C. Detrain, “Emergency measures: Adaptive response to pathogen intrusion in the ant nest,” Behav. Processes 116, 80–86 (2015).
[Crossref] [PubMed]

Urban, J. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

van Veggel, F. C.

J. C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Wang, H.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Watson, A. D.

S.-B. Yu and A. D. Watson, “Metal-Based X-ray Contrast Media,” Chem. Rev. 99(9), 2353–2378 (1999).
[Crossref] [PubMed]

Webb, W. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wei, X.

G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Xu, C. T.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Yang, B.

G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Yi, Z.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Yin, M.

G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Yu, S.-B.

S.-B. Yu and A. D. Watson, “Metal-Based X-ray Contrast Media,” Chem. Rev. 99(9), 2353–2378 (1999).
[Crossref] [PubMed]

Yuan, Q.

Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, and L. Lu, “A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging,” Angew. Chem. Int. Ed. Engl. 51(6), 1437–1442 (2012).
[Crossref] [PubMed]

Yue, Y.

Y. Chen, C. Sanchez, Y. Yue, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor),” J. Synchrotron Radiat. 23(5), 1197–1201 (2016).
[Crossref] [PubMed]

Y. Chen, C. Sanchez, Y. Yue, M. de Almeida, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging,” J. Nanobiotechnology 14(1), 23 (2016).
[Crossref] [PubMed]

Zafar Ahmad Khan, F.

S. S. H. Tahira Gul, F. Zafar Ahmad Khan, and S. Amir Manzoor, “Potential of Nanotechnology in Agriculture and Crop Protection: A Review,” Applied Sciences and Business Economics 1, 3–8 (2014).

Zeng, S.

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Zhan, Q.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Zhang, F.

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8(6), 643–676 (2013).
[Crossref]

Zhao, D.

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8(6), 643–676 (2013).
[Crossref]

Zhao, J. X.

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors (Basel) 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

Zheng, S.

W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
[Crossref]

Zhou, S.

G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Zhou, Y.

A. Rocha, Y. Zhou, S. Kundu, J. M. González, S. BradleighVinson, and H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis,” J. Nanobiotechnology 9(1), 5 (2011).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, and L. Lu, “A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging,” Angew. Chem. Int. Ed. Engl. 51(6), 1437–1442 (2012).
[Crossref] [PubMed]

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Applied Sciences and Business Economics (1)

S. S. H. Tahira Gul, F. Zafar Ahmad Khan, and S. Amir Manzoor, “Potential of Nanotechnology in Agriculture and Crop Protection: A Review,” Applied Sciences and Business Economics 1, 3–8 (2014).

Behav. Processes (1)

L. Diez, L. Urbain, P. Lejeune, and C. Detrain, “Emergency measures: Adaptive response to pathogen intrusion in the ant nest,” Behav. Processes 116, 80–86 (2015).
[Crossref] [PubMed]

Biomaterials (1)

S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, and J. Hao, “Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization,” Biomaterials 35(9), 2934–2941 (2014).
[Crossref] [PubMed]

Chem. Rev. (3)

S.-B. Yu and A. D. Watson, “Metal-Based X-ray Contrast Media,” Chem. Rev. 99(9), 2353–2378 (1999).
[Crossref] [PubMed]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

J. Alloys Compd. (1)

X. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
[Crossref]

J. Mater. Sci. (1)

T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K.-i. Katsumata, N. Matsushita, and K. Okada, “NIR-excited NIR and visible luminescent properties of amphipathic YVO4: Er3+/Yb3+ nanoparticles,” J. Mater. Sci. 47(5), 2241–2247 (2012).
[Crossref]

J. Nanobiotechnology (2)

A. Rocha, Y. Zhou, S. Kundu, J. M. González, S. BradleighVinson, and H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis,” J. Nanobiotechnology 9(1), 5 (2011).
[Crossref] [PubMed]

Y. Chen, C. Sanchez, Y. Yue, M. de Almeida, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging,” J. Nanobiotechnology 14(1), 23 (2016).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

G. Mialon, S. Türkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J.-P. Boilot, “High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle Level,” J. Phys. Chem. C 114(51), 22449–22454 (2010).
[Crossref]

J. Synchrotron Radiat. (1)

Y. Chen, C. Sanchez, Y. Yue, J. M. González, D. Y. Parkinson, and H. Liang, “Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor),” J. Synchrotron Radiat. 23(5), 1197–1201 (2016).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Nano Today (1)

X. Li, F. Zhang, and D. Zhao, “Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges,” Nano Today 8(6), 643–676 (2013).
[Crossref]

Nanoscale (1)

J. C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Nanotechnol. Sci. Appl. (1)

S. S. Mukhopadhyay, “Nanotechnology in agriculture: prospects and constraints,” Nanotechnol. Sci. Appl. 7, 63–71 (2014).
[Crossref] [PubMed]

Nat Nano (1)

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat Nano 9(4), 300–305 (2014).
[Crossref]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref] [PubMed]

Nat. Methods (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

RSC Advances (2)

W. Chen, C. Shi, T. Tao, M. Ji, S. Zheng, X. Sang, X. Liu, and J. Qiu, “Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles,” RSC Advances 6(26), 21540–21545 (2016).
[Crossref]

G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, and W. Cao, “794 nm excited core-shell upconversion nanoparticles for optical temperature sensing,” RSC Advances 6(14), 11795–11801 (2016).
[Crossref]

Science (2)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Sensors (Basel) (1)

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors (Basel) 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

Other (1)

F. Zhang, “Surface Modification and Bioconjugation of Upconversion Nanoparticles,” in Photon Upconversion Nanomaterials (Springer Berlin Heidelberg, Berlin, Heidelberg, 2015), pp. 159–185.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Southern fire ant feeding: (a) on a solution of Honey and water provided at libitum; (b) from a mealworm previously fed with Y 2 O 3 :E r +3 ,Y b +3 NPs.
Fig. 2
Fig. 2 Schematic drawing of a confocal laser scanning microscope setup consisting of a 4f imaging system, a photon counter, and a spectrometer.
Fig. 3
Fig. 3 (a) A schematic illustration of Y 2 O 3 : Er +3 , Yb +3   upconversion nanoparticles under 980 nm laser excitation. (b) A Schematic drawing of energy transfer mechanism between E r +3 and Y b +3 . Curved dashed, straight dashed and full arrows represent energy transfer, multi-phonon relaxation, and radiative emission process, respectively [5]. (c) Upconversion luminescence spectra of 1wt% of Y 2 O 3 : Er +3 , Yb +3   upconversion nanoparticles spin coated on cover slip and covered by a droplet of water under 980 nm laser excitation at different laser powers.
Fig. 4
Fig. 4 (a) A high magnification TEM image of Y 2 O 3 : Er +3 , Yb +3   upconversion nanoparticles dissolved in water and droped on a TEM grid. (b) A particle size distribution of 1mg/ml of Y 2 O 3 : Er +3 , Yb +3   upconversion nanoparticles taken by (DLS).
Fig. 5
Fig. 5 (a) and (b) Upconversion imaging of fire ants fed with Y 2 O 3 : Er +3 , Yb +3   nanoparticles. These high contrast images were scanned by a 2D galvoscanner and emitted light collected by a photon counter. The inset presents photo luminescence (PL) spectra of the UCNPs in the green spots.
Fig. 6
Fig. 6 (a) and (b). Three dimensional X-ray imaging of UCNPs inside two fire ants. The UCNPs inside the ant’s body (ants’ mouths) are segmented and marked in red. The size of frame box is 1.15 x 1.09 x 3.08 mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( I 4 15/2 ) Er +3 +( F 2 5/2 )  Yb +3  ( I 4 11/2 ) Er +3 +( F 2 7/2 )  Yb +3  

Metrics