Abstract

In this paper, we propose an ultrathin THz plasmonic metallic strip based on graded grating structure with thermo-optic material, which exhibits a strong engineering of trapping and releasing electromagnetic waves in terahertz regimes. The dispersion properties of the ultrathin spoof slow-wave plasmonic graded grating waveguide are characterized using the finite element method, and the propagation characteristics of the grating structures are thoroughly analyzed by the dispersion curves, electric field magnitude distribution, and electric field vertical distribution. The gradient grating waveguide is demonstrated to be an ideal slow-wave system for trapping and releasing surface plasmon polaritons (SPPs) waves through tuning the refractive index of the thermo-optic material. The reflected location for the SPPs waves on the graded corrugated metal strip at 1.1 THz at different temperatures are compared. It is proved that such ultrathin gradient grating waveguide provides an excellent performance for trapping and releasing surface waves at THz, which permits applications for future optical communications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rainbow trapping and releasing in InSb graded subwavelength grooves by thermal tuning at the terahertz range

Ruoying Kanyang, Fan Zhang, Genquan Han, Yan Liu, Yao Shao, Jincheng Zhang, and Yue Hao
Opt. Mater. Express 8(9) 2954-2966 (2018)

Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies

Yan Yang, Xiaopeng Shen, Pei Zhao, Hao Chi Zhang, and Tie Jun Cui
Opt. Express 23(6) 7031-7037 (2015)

Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate

Lin Chen, Tian Zhang, Xun Li, and Guoping Wang
Opt. Express 21(23) 28628-28637 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  3. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
    [Crossref] [PubMed]
  4. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
    [Crossref] [PubMed]
  5. M.-H. Shih, “Plsmonics: Small and fast plasmonic modulator,” Nat. Photonics 8(3), 171–172 (2014).
    [Crossref]
  6. N. Abadía, T. Bernadin, P. Chaisakul, S. Olivier, D. Marris-Morini, R. Espiau de Lamaëstre, J. C. Weeber, and L. Vivien, “Low-Power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express 22(9), 11236–11243 (2014).
    [Crossref] [PubMed]
  7. T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
    [Crossref]
  8. Y. K. Gong, X. M. Liu, L. R. Wang, and Y. N. Zhang, “Unidirectional manipulation of surface plasmon polariton by dual-nanocavity in a T-shaped waveguide,” Opt. Commun. 284(3), 795–798 (2011).
    [Crossref]
  9. G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
    [Crossref]
  10. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  11. X. P. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [Crossref]
  12. X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [Crossref]
  13. X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
    [Crossref]
  14. H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]
  15. B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
    [Crossref] [PubMed]
  16. Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
    [Crossref]
  17. X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
    [Crossref]
  18. Y. Yang, X. Shen, P. Zhao, H. C. Zhang, and T. J. Cui, “Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies,” Opt. Express 23(6), 7031–7037 (2015).
    [Crossref] [PubMed]
  19. Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
    [Crossref] [PubMed]
  20. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  21. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  22. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  23. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  24. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
    [Crossref] [PubMed]
  25. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
  26. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications, vol. 5 (Academic, 1998).
  27. O. Madelung, Physics of III–V Compounds (John Wiley & Sons, 1964), ch. 4.
  28. J. Sánchez-Gil and J. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
    [Crossref]
  29. J. Gómez Rivas, C. Janke, P. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
    [Crossref] [PubMed]

2015 (1)

2014 (7)

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

M.-H. Shih, “Plsmonics: Small and fast plasmonic modulator,” Nat. Photonics 8(3), 171–172 (2014).
[Crossref]

N. Abadía, T. Bernadin, P. Chaisakul, S. Olivier, D. Marris-Morini, R. Espiau de Lamaëstre, J. C. Weeber, and L. Vivien, “Low-Power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express 22(9), 11236–11243 (2014).
[Crossref] [PubMed]

2013 (3)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. P. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

2012 (1)

G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
[Crossref]

2011 (2)

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
[Crossref] [PubMed]

Y. K. Gong, X. M. Liu, L. R. Wang, and Y. N. Zhang, “Unidirectional manipulation of surface plasmon polariton by dual-nanocavity in a T-shaped waveguide,” Opt. Commun. 284(3), 795–798 (2011).
[Crossref]

2010 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

2009 (1)

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

2008 (1)

T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

2007 (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

2006 (3)

J. Sánchez-Gil and J. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[Crossref]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Abadía, N.

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Bernadin, T.

Bolivar, P.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Chaisakul, P.

Cheng, Q.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Cui, T. J.

Y. Yang, X. Shen, P. Zhao, H. C. Zhang, and T. J. Cui, “Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies,” Opt. Express 23(6), 7031–7037 (2015).
[Crossref] [PubMed]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. P. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Du, C. L.

T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Espiau de Lamaëstre, R.

Gan, D. C.

T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Gao, X.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

García-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Gómez Rivas, J.

Gong, Y.

Gong, Y. K.

Y. K. Gong, X. M. Liu, L. R. Wang, and Y. N. Zhang, “Unidirectional manipulation of surface plasmon polariton by dual-nanocavity in a T-shaped waveguide,” Opt. Commun. 284(3), 795–798 (2011).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Janke, C.

Jiang, W. X.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Kurz, H.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Li, L. M.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Liao, Z.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Liu, X.

Liu, X. M.

G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
[Crossref]

Y. K. Gong, X. M. Liu, L. R. Wang, and Y. N. Zhang, “Unidirectional manipulation of surface plasmon polariton by dual-nanocavity in a T-shaped waveguide,” Opt. Commun. 284(3), 795–798 (2011).
[Crossref]

Lu, H.

G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
[Crossref]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
[Crossref] [PubMed]

Luo, X. G.

T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

Ma, H. F.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Mao, D.

Marris-Morini, D.

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Olivier, S.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pan, B. C.

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

Rivas, J.

J. Sánchez-Gil and J. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[Crossref]

Sánchez-Gil, J.

J. Sánchez-Gil and J. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[Crossref]

Shen, X.

Y. Yang, X. Shen, P. Zhao, H. C. Zhang, and T. J. Cui, “Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies,” Opt. Express 23(6), 7031–7037 (2015).
[Crossref] [PubMed]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Shen, X. P.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. P. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Shi, J. H.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Shih, M.-H.

M.-H. Shih, “Plsmonics: Small and fast plasmonic modulator,” Nat. Photonics 8(3), 171–172 (2014).
[Crossref]

Vivien, L.

Wang, C. T.

T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

Wang, G. X.

G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
[Crossref]

Wang, L.

Wang, L. R.

Y. K. Gong, X. M. Liu, L. R. Wang, and Y. N. Zhang, “Unidirectional manipulation of surface plasmon polariton by dual-nanocavity in a T-shaped waveguide,” Opt. Commun. 284(3), 795–798 (2011).
[Crossref]

Weeber, J. C.

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

Xu, T.

T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

Yang, Y.

Zayats, A. V.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

Zhang, H. C.

Zhang, Y. N.

Y. K. Gong, X. M. Liu, L. R. Wang, and Y. N. Zhang, “Unidirectional manipulation of surface plasmon polariton by dual-nanocavity in a T-shaped waveguide,” Opt. Commun. 284(3), 795–798 (2011).
[Crossref]

Zhao, J.

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Zhao, P.

Zhao, Y. H.

T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

Zhou, L.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Appl. Phys. Lett. (5)

T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
[Crossref]

G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
[Crossref]

X. P. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

J. Phys. D. (1)

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

Laser Photonics Rev. (2)

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Nat. Photonics (3)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

M.-H. Shih, “Plsmonics: Small and fast plasmonic modulator,” Nat. Photonics 8(3), 171–172 (2014).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. K. Gong, X. M. Liu, L. R. Wang, and Y. N. Zhang, “Unidirectional manipulation of surface plasmon polariton by dual-nanocavity in a T-shaped waveguide,” Opt. Commun. 284(3), 795–798 (2011).
[Crossref]

Opt. Express (5)

Phys. Rev. B (1)

J. Sánchez-Gil and J. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[Crossref]

Phys. Rev. Lett. (2)

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[Crossref] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Other (4)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications, vol. 5 (Academic, 1998).

O. Madelung, Physics of III–V Compounds (John Wiley & Sons, 1964), ch. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 2D schematics of the designed spoof plasmonic graded grating waveguides (a) without and (b) with the thermo-optic material of InSb.
Fig. 2
Fig. 2 The dispersion relations of SPPs in one unit of the designed spoof plasmonic graded grating waveguides with different groove depths at 295 K. Parameters of a, d, H, and t are fixed at 20, 30, 80, and 0.1 μm, respectively.
Fig. 3
Fig. 3 2D electric field magnitude distributions of the designed spoof plasmonic graded grating waveguides without thermo-optic material at 295 K at different frequencies: (a) 0.9 THz, (b) 0.95 THz, (c) 1.0 THz, (d) 1.05 THz, (e) 1.1 THz, and (f) 1.15 THz.
Fig. 4
Fig. 4 Simulated electric field vertical |Ez| distributions of the designed spoof plasmonic graded grating waveguides without thermo-optic material at 295 K along the x direction for different frequencies.
Fig. 5
Fig. 5 (a) Real part and (b) imaginary part of the complex permittivity of InSb as a function of frequency at different temperatures.
Fig. 6
Fig. 6 (a) The dispersion relations of SPPs in one unit of the designed spoof plasmonic graded grating waveguides with the thermo-optic material of InSb and different h at 295 K. Other parameters are a = 20 μm, d = 30 μm H = 80, and t = 20 μm. Temperature dependent dispersion relations of SPPs in one unit of the devices with (b) h = 50 μm (c) h = 60 μm (d) h = 70 μm.
Fig. 7
Fig. 7 2D electric field magnitude distributions of the designed spoof plasmonic graded grating waveguides with thermo-optic material: InSb at 1.1 THz with different temperatures (a) 225 K, (b) 270 K, (c) 325 K.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε ω p 2 ω 2 +iγω
ω p = N e 2 / ε 0 m
N=5.76× 10 20 T 1.5 exp( 0.26 2 k B T )
γ=e m * μ

Metrics