Abstract

A new experimental technique for creating and imaging collisions of micron-sized droplets settling under gravity is presented. A pair of glycerol droplets is suspended in air by means of two optical traps. The droplet relative velocities are determined by the droplet sizes. The impact parameter is precisely controlled by positioning the droplets using the two optical traps. The droplets are released by turning off the trapping light using electro-optical modulators. The motion of the sedimenting droplets is then captured by two synchronized high-speed cameras, at a frame rate of up to 63 kHz. The method allows the direct imaging of the collision of droplets without the influence of the optical confinement imposed by the trapping force. The method will facilitate efficient studies of the microphysics of neutral, as well as charged, liquid droplets and their interactions with light, electric field and thermodynamic environment, such as temperature or vapor concentration.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Longitudinal optical trapping and sizing of aerosol droplets

A. E. Carruthers, J. P. Reid, and A. J. Orr-Ewing
Opt. Express 18(13) 14238-14244 (2010)

Optical properties of micrometer size water droplets studied by cavity ringdown spectroscopy

S. Rudić, R. E. H. Miles, A. J. Orr-Ewing, and J. P. Reid
Appl. Opt. 46(24) 6142-6150 (2007)

Optical Heterodyne Measurement of Cloud Droplet Size Distributions

Jerry P. Gollub, Ilan Chabay, and W. H. Flygare
Appl. Opt. 12(12) 2838-2842 (1973)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Pruppacher and J. D. Klett, Microphysics of clouds and precipitation (Springer, 2010).
    [Crossref]
  2. R. A. Shaw, “Particle-turbulence interactions in atmospheric clouds,” Annu. Rev. Fluid Mech. 35, 183–227 (2003).
    [Crossref]
  3. W. W. Grabowski and L. P. Wang, “Growth of cloud droplets in a turbulent environment,” Annu. Rev. Fluid Mech. 45, 293–324 (2013).
    [Crossref]
  4. T. B. Low and R. List, “Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup,” J. Atmos. Sci. 39 (7), 1591–1606 (1982).
    [Crossref]
  5. K. V. Beard and H. T. Ochs, “Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites,” J. Atmos. Sci. 52, 3977–3996 (1995).
    [Crossref]
  6. R. Bordás, Ch. Roloff, D. Thévenin, and R. A. Shaw, “Experimental determination of droplet collision rates in turbulence,” New J. Phys. 15, 045010 (2013).
    [Crossref]
  7. M. Szakáll, S. Kessler, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops,” Atmos. Res. 142, 67–78 (2014).
    [Crossref]
  8. B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann, “Comparison of measured and calculated collision efficiencies at low temperatures,” Atmos. Chem. Phys. 15, 13759–13776 (2015).
    [Crossref]
  9. B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
    [Crossref]
  10. A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
    [Crossref] [PubMed]
  11. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
    [Crossref]
  12. R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, “Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap,” J. Phys. Chem. A 116, 8873–8884 (2012).
    [Crossref] [PubMed]
  13. M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip 12, 295–301 (2012).
    [Crossref]
  14. Y. Jiang, A. Umemura, and C. K. Law, “An experimental investigation on the collision behaviour of hydrocarbon droplets,” J. Fluid Mech. 234171–190 (1992).
    [Crossref]
  15. K. Gustavsson and B. Mehlig, “Statistical models for spatial patterns of heavy particles in turbulence,” Adv. Phys. 65, 1–57 (2016).
    [Crossref]
  16. C. Tang, P. Zhang, and C. K. Law, “Bouncing, coalescence, and separation in head-on collision of unequal-size droplets,” Phys. Fluids 24, 022101 (2012).
    [Crossref]
  17. A. V. Sergeyev and R. A. Shaw, “An inexpensive uniform-size aerosol generator,” Meas. Sci. Technol. 17, N41–N44 (2006).
    [Crossref]
  18. I. Galinsky, O. Isaaksson, I. R. Salgado, M. Hautefeuille, B. Mehlig, and D. Hanstorp, “Measurement of particle motion in optical tweezers embedded in a Sagnac interferometer,” Opt. Express 23, 27071–27084 (2015).
    [Crossref]
  19. K. Nishino, H. Kato, and K. Torii, “Stereo imaging for simultaneous measurement of size and velocity of particles in dispersed two-phase flow,” Meas. Sci. Technol. 11, 633–645 (2000).
    [Crossref]
  20. X. G. Zhang and R. H. Davis, “The rate of collisions due to Brownian or gravitational motion of small drops,” J. Fluid Mech. 230, 479–504 (1991).
    [Crossref]
  21. X. G. Zhang, R. H. Davis, and M. F. Ruth, “Experimental study of two interacting drops in an immiscible fluid,” J. Fluid Mech. 249, 227–239 (1993).
    [Crossref]
  22. A. Frohn and N. Roth, Dynamics of droplets (Springer-Verlag, 2000).
    [Crossref]
  23. Physical properties of glycerine and its solutions, (Glycerine Producers’ Association, 1963).
  24. J. Lu, H. Nordsiek, and R. A. Shaw, “Clustering of settling charged particles in turbulence: theory and experiments,” New J. Phys. 12, 123030 (2010).
    [Crossref]
  25. D. R. MacGorman and W. D. Rust, The Electrical Nature of Storms (Oxford University Press, 1998).
  26. J. N. Cuzzi, R. C. Hogan, J. M. Paque, and A. R. Dobrovolskis, “Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence,” Astrophys. J. 546, 496–508 (2001).
    [Crossref]
  27. O. Isaksson, M. Karlsteen, M. Rostedt, and D. Hanstorp, “Manipulation of optically levitated particles,” Proc. SPIE 8810, 88100O (2013).
    [Crossref]
  28. M. Ivanov, M. Viderström, K. Chang, C. Ramirez Contreras, B. Mehlig, and D. Hanstorp, “Spectroscopy and optical imaging of coalescing droplets,” Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220I (2016).
    [Crossref]
  29. E. Bodenschatz, S. P. Malinowski, R. A. Shaw, and F. Stratmann, “Can we understand clouds without turbulence?” Science 327, 970–971 (2010).
    [Crossref] [PubMed]

2016 (2)

K. Gustavsson and B. Mehlig, “Statistical models for spatial patterns of heavy particles in turbulence,” Adv. Phys. 65, 1–57 (2016).
[Crossref]

M. Ivanov, M. Viderström, K. Chang, C. Ramirez Contreras, B. Mehlig, and D. Hanstorp, “Spectroscopy and optical imaging of coalescing droplets,” Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220I (2016).
[Crossref]

2015 (2)

I. Galinsky, O. Isaaksson, I. R. Salgado, M. Hautefeuille, B. Mehlig, and D. Hanstorp, “Measurement of particle motion in optical tweezers embedded in a Sagnac interferometer,” Opt. Express 23, 27071–27084 (2015).
[Crossref]

B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann, “Comparison of measured and calculated collision efficiencies at low temperatures,” Atmos. Chem. Phys. 15, 13759–13776 (2015).
[Crossref]

2014 (1)

M. Szakáll, S. Kessler, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops,” Atmos. Res. 142, 67–78 (2014).
[Crossref]

2013 (3)

R. Bordás, Ch. Roloff, D. Thévenin, and R. A. Shaw, “Experimental determination of droplet collision rates in turbulence,” New J. Phys. 15, 045010 (2013).
[Crossref]

W. W. Grabowski and L. P. Wang, “Growth of cloud droplets in a turbulent environment,” Annu. Rev. Fluid Mech. 45, 293–324 (2013).
[Crossref]

O. Isaksson, M. Karlsteen, M. Rostedt, and D. Hanstorp, “Manipulation of optically levitated particles,” Proc. SPIE 8810, 88100O (2013).
[Crossref]

2012 (4)

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

C. Tang, P. Zhang, and C. K. Law, “Bouncing, coalescence, and separation in head-on collision of unequal-size droplets,” Phys. Fluids 24, 022101 (2012).
[Crossref]

R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, “Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap,” J. Phys. Chem. A 116, 8873–8884 (2012).
[Crossref] [PubMed]

M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip 12, 295–301 (2012).
[Crossref]

2010 (2)

E. Bodenschatz, S. P. Malinowski, R. A. Shaw, and F. Stratmann, “Can we understand clouds without turbulence?” Science 327, 970–971 (2010).
[Crossref] [PubMed]

J. Lu, H. Nordsiek, and R. A. Shaw, “Clustering of settling charged particles in turbulence: theory and experiments,” New J. Phys. 12, 123030 (2010).
[Crossref]

2006 (1)

A. V. Sergeyev and R. A. Shaw, “An inexpensive uniform-size aerosol generator,” Meas. Sci. Technol. 17, N41–N44 (2006).
[Crossref]

2004 (1)

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

2003 (1)

R. A. Shaw, “Particle-turbulence interactions in atmospheric clouds,” Annu. Rev. Fluid Mech. 35, 183–227 (2003).
[Crossref]

2001 (1)

J. N. Cuzzi, R. C. Hogan, J. M. Paque, and A. R. Dobrovolskis, “Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence,” Astrophys. J. 546, 496–508 (2001).
[Crossref]

2000 (1)

K. Nishino, H. Kato, and K. Torii, “Stereo imaging for simultaneous measurement of size and velocity of particles in dispersed two-phase flow,” Meas. Sci. Technol. 11, 633–645 (2000).
[Crossref]

1995 (1)

K. V. Beard and H. T. Ochs, “Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites,” J. Atmos. Sci. 52, 3977–3996 (1995).
[Crossref]

1993 (1)

X. G. Zhang, R. H. Davis, and M. F. Ruth, “Experimental study of two interacting drops in an immiscible fluid,” J. Fluid Mech. 249, 227–239 (1993).
[Crossref]

1992 (1)

Y. Jiang, A. Umemura, and C. K. Law, “An experimental investigation on the collision behaviour of hydrocarbon droplets,” J. Fluid Mech. 234171–190 (1992).
[Crossref]

1991 (1)

X. G. Zhang and R. H. Davis, “The rate of collisions due to Brownian or gravitational motion of small drops,” J. Fluid Mech. 230, 479–504 (1991).
[Crossref]

1982 (1)

T. B. Low and R. List, “Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup,” J. Atmos. Sci. 39 (7), 1591–1606 (1982).
[Crossref]

1975 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[Crossref] [PubMed]

Almohamedi, A.

R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, “Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap,” J. Phys. Chem. A 116, 8873–8884 (2012).
[Crossref] [PubMed]

Anand, S.

R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, “Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap,” J. Phys. Chem. A 116, 8873–8884 (2012).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[Crossref] [PubMed]

Bartello, P.

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Beard, K. V.

K. V. Beard and H. T. Ochs, “Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites,” J. Atmos. Sci. 52, 3977–3996 (1995).
[Crossref]

Bodenschatz, E.

E. Bodenschatz, S. P. Malinowski, R. A. Shaw, and F. Stratmann, “Can we understand clouds without turbulence?” Science 327, 970–971 (2010).
[Crossref] [PubMed]

Bordás, R.

R. Bordás, Ch. Roloff, D. Thévenin, and R. A. Shaw, “Experimental determination of droplet collision rates in turbulence,” New J. Phys. 15, 045010 (2013).
[Crossref]

Borrmann, S.

M. Szakáll, S. Kessler, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops,” Atmos. Res. 142, 67–78 (2014).
[Crossref]

Brenguier, J-L

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Chang, K.

M. Ivanov, M. Viderström, K. Chang, C. Ramirez Contreras, B. Mehlig, and D. Hanstorp, “Spectroscopy and optical imaging of coalescing droplets,” Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220I (2016).
[Crossref]

Collins, L. R.

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Cuzzi, J. N.

J. N. Cuzzi, R. C. Hogan, J. M. Paque, and A. R. Dobrovolskis, “Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence,” Astrophys. J. 546, 496–508 (2001).
[Crossref]

Davis, R. H.

X. G. Zhang, R. H. Davis, and M. F. Ruth, “Experimental study of two interacting drops in an immiscible fluid,” J. Fluid Mech. 249, 227–239 (1993).
[Crossref]

X. G. Zhang and R. H. Davis, “The rate of collisions due to Brownian or gravitational motion of small drops,” J. Fluid Mech. 230, 479–504 (1991).
[Crossref]

Devenish, B. J.

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Diehl, K.

M. Szakáll, S. Kessler, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops,” Atmos. Res. 142, 67–78 (2014).
[Crossref]

Dobrovolskis, A. R.

J. N. Cuzzi, R. C. Hogan, J. M. Paque, and A. R. Dobrovolskis, “Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence,” Astrophys. J. 546, 496–508 (2001).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[Crossref] [PubMed]

Fallnich, C.

M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip 12, 295–301 (2012).
[Crossref]

Frohn, A.

A. Frohn and N. Roth, Dynamics of droplets (Springer-Verlag, 2000).
[Crossref]

Galinsky, I.

Grabowski, W. W.

W. W. Grabowski and L. P. Wang, “Growth of cloud droplets in a turbulent environment,” Annu. Rev. Fluid Mech. 45, 293–324 (2013).
[Crossref]

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Gustavsson, K.

K. Gustavsson and B. Mehlig, “Statistical models for spatial patterns of heavy particles in turbulence,” Adv. Phys. 65, 1–57 (2016).
[Crossref]

Hanstorp, D.

M. Ivanov, M. Viderström, K. Chang, C. Ramirez Contreras, B. Mehlig, and D. Hanstorp, “Spectroscopy and optical imaging of coalescing droplets,” Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220I (2016).
[Crossref]

I. Galinsky, O. Isaaksson, I. R. Salgado, M. Hautefeuille, B. Mehlig, and D. Hanstorp, “Measurement of particle motion in optical tweezers embedded in a Sagnac interferometer,” Opt. Express 23, 27071–27084 (2015).
[Crossref]

O. Isaksson, M. Karlsteen, M. Rostedt, and D. Hanstorp, “Manipulation of optically levitated particles,” Proc. SPIE 8810, 88100O (2013).
[Crossref]

Hautefeuille, M.

Hogan, R. C.

J. N. Cuzzi, R. C. Hogan, J. M. Paque, and A. R. Dobrovolskis, “Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence,” Astrophys. J. 546, 496–508 (2001).
[Crossref]

Hopkins, R. J.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

Horstmann, M.

M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip 12, 295–301 (2012).
[Crossref]

Hudson, A. J.

R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, “Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap,” J. Phys. Chem. A 116, 8873–8884 (2012).
[Crossref] [PubMed]

IJzermans, R. H. A.

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Isaaksson, O.

Isaksson, O.

O. Isaksson, M. Karlsteen, M. Rostedt, and D. Hanstorp, “Manipulation of optically levitated particles,” Proc. SPIE 8810, 88100O (2013).
[Crossref]

Ivanov, M.

M. Ivanov, M. Viderström, K. Chang, C. Ramirez Contreras, B. Mehlig, and D. Hanstorp, “Spectroscopy and optical imaging of coalescing droplets,” Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220I (2016).
[Crossref]

Jiang, Y.

Y. Jiang, A. Umemura, and C. K. Law, “An experimental investigation on the collision behaviour of hydrocarbon droplets,” J. Fluid Mech. 234171–190 (1992).
[Crossref]

Karlsteen, M.

O. Isaksson, M. Karlsteen, M. Rostedt, and D. Hanstorp, “Manipulation of optically levitated particles,” Proc. SPIE 8810, 88100O (2013).
[Crossref]

Kato, H.

K. Nishino, H. Kato, and K. Torii, “Stereo imaging for simultaneous measurement of size and velocity of particles in dispersed two-phase flow,” Meas. Sci. Technol. 11, 633–645 (2000).
[Crossref]

Kessler, S.

M. Szakáll, S. Kessler, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops,” Atmos. Res. 142, 67–78 (2014).
[Crossref]

Klett, J. D.

H. R. Pruppacher and J. D. Klett, Microphysics of clouds and precipitation (Springer, 2010).
[Crossref]

Law, C. K.

C. Tang, P. Zhang, and C. K. Law, “Bouncing, coalescence, and separation in head-on collision of unequal-size droplets,” Phys. Fluids 24, 022101 (2012).
[Crossref]

Y. Jiang, A. Umemura, and C. K. Law, “An experimental investigation on the collision behaviour of hydrocarbon droplets,” J. Fluid Mech. 234171–190 (1992).
[Crossref]

List, R.

T. B. Low and R. List, “Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup,” J. Atmos. Sci. 39 (7), 1591–1606 (1982).
[Crossref]

Lohmann, U.

B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann, “Comparison of measured and calculated collision efficiencies at low temperatures,” Atmos. Chem. Phys. 15, 13759–13776 (2015).
[Crossref]

Low, T. B.

T. B. Low and R. List, “Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup,” J. Atmos. Sci. 39 (7), 1591–1606 (1982).
[Crossref]

Lu, J.

J. Lu, H. Nordsiek, and R. A. Shaw, “Clustering of settling charged particles in turbulence: theory and experiments,” New J. Phys. 12, 123030 (2010).
[Crossref]

MacGorman, D. R.

D. R. MacGorman and W. D. Rust, The Electrical Nature of Storms (Oxford University Press, 1998).

Malinowski, S. P.

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

E. Bodenschatz, S. P. Malinowski, R. A. Shaw, and F. Stratmann, “Can we understand clouds without turbulence?” Science 327, 970–971 (2010).
[Crossref] [PubMed]

Marcolli, C.

B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann, “Comparison of measured and calculated collision efficiencies at low temperatures,” Atmos. Chem. Phys. 15, 13759–13776 (2015).
[Crossref]

McGloin, D.

R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, “Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap,” J. Phys. Chem. A 116, 8873–8884 (2012).
[Crossref] [PubMed]

Mehlig, B.

K. Gustavsson and B. Mehlig, “Statistical models for spatial patterns of heavy particles in turbulence,” Adv. Phys. 65, 1–57 (2016).
[Crossref]

M. Ivanov, M. Viderström, K. Chang, C. Ramirez Contreras, B. Mehlig, and D. Hanstorp, “Spectroscopy and optical imaging of coalescing droplets,” Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220I (2016).
[Crossref]

I. Galinsky, O. Isaaksson, I. R. Salgado, M. Hautefeuille, B. Mehlig, and D. Hanstorp, “Measurement of particle motion in optical tweezers embedded in a Sagnac interferometer,” Opt. Express 23, 27071–27084 (2015).
[Crossref]

Mistry, N. S.

R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, “Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap,” J. Phys. Chem. A 116, 8873–8884 (2012).
[Crossref] [PubMed]

Mitchem, L.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

Mitra, S. K.

M. Szakáll, S. Kessler, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops,” Atmos. Res. 142, 67–78 (2014).
[Crossref]

Nagare, B.

B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann, “Comparison of measured and calculated collision efficiencies at low temperatures,” Atmos. Chem. Phys. 15, 13759–13776 (2015).
[Crossref]

Nishino, K.

K. Nishino, H. Kato, and K. Torii, “Stereo imaging for simultaneous measurement of size and velocity of particles in dispersed two-phase flow,” Meas. Sci. Technol. 11, 633–645 (2000).
[Crossref]

Nordsiek, H.

J. Lu, H. Nordsiek, and R. A. Shaw, “Clustering of settling charged particles in turbulence: theory and experiments,” New J. Phys. 12, 123030 (2010).
[Crossref]

Ochs, H. T.

K. V. Beard and H. T. Ochs, “Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites,” J. Atmos. Sci. 52, 3977–3996 (1995).
[Crossref]

Paque, J. M.

J. N. Cuzzi, R. C. Hogan, J. M. Paque, and A. R. Dobrovolskis, “Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence,” Astrophys. J. 546, 496–508 (2001).
[Crossref]

Power, R.

R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, “Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap,” J. Phys. Chem. A 116, 8873–8884 (2012).
[Crossref] [PubMed]

Probst, K.

M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip 12, 295–301 (2012).
[Crossref]

Pruppacher, H. R.

H. R. Pruppacher and J. D. Klett, Microphysics of clouds and precipitation (Springer, 2010).
[Crossref]

Ramirez Contreras, C.

M. Ivanov, M. Viderström, K. Chang, C. Ramirez Contreras, B. Mehlig, and D. Hanstorp, “Spectroscopy and optical imaging of coalescing droplets,” Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220I (2016).
[Crossref]

Reeks, M. W.

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Reid, J. P.

R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, “Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap,” J. Phys. Chem. A 116, 8873–8884 (2012).
[Crossref] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

Roloff, Ch.

R. Bordás, Ch. Roloff, D. Thévenin, and R. A. Shaw, “Experimental determination of droplet collision rates in turbulence,” New J. Phys. 15, 045010 (2013).
[Crossref]

Rostedt, M.

O. Isaksson, M. Karlsteen, M. Rostedt, and D. Hanstorp, “Manipulation of optically levitated particles,” Proc. SPIE 8810, 88100O (2013).
[Crossref]

Roth, N.

A. Frohn and N. Roth, Dynamics of droplets (Springer-Verlag, 2000).
[Crossref]

Rust, W. D.

D. R. MacGorman and W. D. Rust, The Electrical Nature of Storms (Oxford University Press, 1998).

Ruth, M. F.

X. G. Zhang, R. H. Davis, and M. F. Ruth, “Experimental study of two interacting drops in an immiscible fluid,” J. Fluid Mech. 249, 227–239 (1993).
[Crossref]

Salgado, I. R.

Sergeyev, A. V.

A. V. Sergeyev and R. A. Shaw, “An inexpensive uniform-size aerosol generator,” Meas. Sci. Technol. 17, N41–N44 (2006).
[Crossref]

Shaw, R. A.

R. Bordás, Ch. Roloff, D. Thévenin, and R. A. Shaw, “Experimental determination of droplet collision rates in turbulence,” New J. Phys. 15, 045010 (2013).
[Crossref]

J. Lu, H. Nordsiek, and R. A. Shaw, “Clustering of settling charged particles in turbulence: theory and experiments,” New J. Phys. 12, 123030 (2010).
[Crossref]

E. Bodenschatz, S. P. Malinowski, R. A. Shaw, and F. Stratmann, “Can we understand clouds without turbulence?” Science 327, 970–971 (2010).
[Crossref] [PubMed]

A. V. Sergeyev and R. A. Shaw, “An inexpensive uniform-size aerosol generator,” Meas. Sci. Technol. 17, N41–N44 (2006).
[Crossref]

R. A. Shaw, “Particle-turbulence interactions in atmospheric clouds,” Annu. Rev. Fluid Mech. 35, 183–227 (2003).
[Crossref]

Stetzer, O.

B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann, “Comparison of measured and calculated collision efficiencies at low temperatures,” Atmos. Chem. Phys. 15, 13759–13776 (2015).
[Crossref]

Stratmann, F.

E. Bodenschatz, S. P. Malinowski, R. A. Shaw, and F. Stratmann, “Can we understand clouds without turbulence?” Science 327, 970–971 (2010).
[Crossref] [PubMed]

Szakáll, M.

M. Szakáll, S. Kessler, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops,” Atmos. Res. 142, 67–78 (2014).
[Crossref]

Tang, C.

C. Tang, P. Zhang, and C. K. Law, “Bouncing, coalescence, and separation in head-on collision of unequal-size droplets,” Phys. Fluids 24, 022101 (2012).
[Crossref]

Thévenin, D.

R. Bordás, Ch. Roloff, D. Thévenin, and R. A. Shaw, “Experimental determination of droplet collision rates in turbulence,” New J. Phys. 15, 045010 (2013).
[Crossref]

Torii, K.

K. Nishino, H. Kato, and K. Torii, “Stereo imaging for simultaneous measurement of size and velocity of particles in dispersed two-phase flow,” Meas. Sci. Technol. 11, 633–645 (2000).
[Crossref]

Umemura, A.

Y. Jiang, A. Umemura, and C. K. Law, “An experimental investigation on the collision behaviour of hydrocarbon droplets,” J. Fluid Mech. 234171–190 (1992).
[Crossref]

Vassilicos, J. C.

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Viderström, M.

M. Ivanov, M. Viderström, K. Chang, C. Ramirez Contreras, B. Mehlig, and D. Hanstorp, “Spectroscopy and optical imaging of coalescing droplets,” Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220I (2016).
[Crossref]

Wang, L. P.

W. W. Grabowski and L. P. Wang, “Growth of cloud droplets in a turbulent environment,” Annu. Rev. Fluid Mech. 45, 293–324 (2013).
[Crossref]

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Ward, A. D.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

Warhaft, Z.

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Zhang, P.

C. Tang, P. Zhang, and C. K. Law, “Bouncing, coalescence, and separation in head-on collision of unequal-size droplets,” Phys. Fluids 24, 022101 (2012).
[Crossref]

Zhang, X. G.

X. G. Zhang, R. H. Davis, and M. F. Ruth, “Experimental study of two interacting drops in an immiscible fluid,” J. Fluid Mech. 249, 227–239 (1993).
[Crossref]

X. G. Zhang and R. H. Davis, “The rate of collisions due to Brownian or gravitational motion of small drops,” J. Fluid Mech. 230, 479–504 (1991).
[Crossref]

Adv. Phys. (1)

K. Gustavsson and B. Mehlig, “Statistical models for spatial patterns of heavy particles in turbulence,” Adv. Phys. 65, 1–57 (2016).
[Crossref]

Annu. Rev. Fluid Mech. (2)

R. A. Shaw, “Particle-turbulence interactions in atmospheric clouds,” Annu. Rev. Fluid Mech. 35, 183–227 (2003).
[Crossref]

W. W. Grabowski and L. P. Wang, “Growth of cloud droplets in a turbulent environment,” Annu. Rev. Fluid Mech. 45, 293–324 (2013).
[Crossref]

Astrophys. J. (1)

J. N. Cuzzi, R. C. Hogan, J. M. Paque, and A. R. Dobrovolskis, “Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence,” Astrophys. J. 546, 496–508 (2001).
[Crossref]

Atmos. Chem. Phys. (1)

B. Nagare, C. Marcolli, O. Stetzer, and U. Lohmann, “Comparison of measured and calculated collision efficiencies at low temperatures,” Atmos. Chem. Phys. 15, 13759–13776 (2015).
[Crossref]

Atmos. Res. (1)

M. Szakáll, S. Kessler, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops,” Atmos. Res. 142, 67–78 (2014).
[Crossref]

J. Atmos. Sci. (2)

T. B. Low and R. List, “Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup,” J. Atmos. Sci. 39 (7), 1591–1606 (1982).
[Crossref]

K. V. Beard and H. T. Ochs, “Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites,” J. Atmos. Sci. 52, 3977–3996 (1995).
[Crossref]

J. Fluid Mech. (3)

Y. Jiang, A. Umemura, and C. K. Law, “An experimental investigation on the collision behaviour of hydrocarbon droplets,” J. Fluid Mech. 234171–190 (1992).
[Crossref]

X. G. Zhang and R. H. Davis, “The rate of collisions due to Brownian or gravitational motion of small drops,” J. Fluid Mech. 230, 479–504 (1991).
[Crossref]

X. G. Zhang, R. H. Davis, and M. F. Ruth, “Experimental study of two interacting drops in an immiscible fluid,” J. Fluid Mech. 249, 227–239 (1993).
[Crossref]

J. Phys. Chem. A (1)

R. Power, J. P. Reid, S. Anand, D. McGloin, A. Almohamedi, N. S. Mistry, and A. J. Hudson, “Observation of the binary coalescence and equilibration of micrometer-sized droplets of aqueous aerosol in a single-beam gradient-force optical trap,” J. Phys. Chem. A 116, 8873–8884 (2012).
[Crossref] [PubMed]

Lab Chip (1)

M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip 12, 295–301 (2012).
[Crossref]

Meas. Sci. Technol. (2)

A. V. Sergeyev and R. A. Shaw, “An inexpensive uniform-size aerosol generator,” Meas. Sci. Technol. 17, N41–N44 (2006).
[Crossref]

K. Nishino, H. Kato, and K. Torii, “Stereo imaging for simultaneous measurement of size and velocity of particles in dispersed two-phase flow,” Meas. Sci. Technol. 11, 633–645 (2000).
[Crossref]

New J. Phys. (2)

J. Lu, H. Nordsiek, and R. A. Shaw, “Clustering of settling charged particles in turbulence: theory and experiments,” New J. Phys. 12, 123030 (2010).
[Crossref]

R. Bordás, Ch. Roloff, D. Thévenin, and R. A. Shaw, “Experimental determination of droplet collision rates in turbulence,” New J. Phys. 15, 045010 (2013).
[Crossref]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

Phys. Fluids (1)

C. Tang, P. Zhang, and C. K. Law, “Bouncing, coalescence, and separation in head-on collision of unequal-size droplets,” Phys. Fluids 24, 022101 (2012).
[Crossref]

Proc. SPIE (2)

O. Isaksson, M. Karlsteen, M. Rostedt, and D. Hanstorp, “Manipulation of optically levitated particles,” Proc. SPIE 8810, 88100O (2013).
[Crossref]

M. Ivanov, M. Viderström, K. Chang, C. Ramirez Contreras, B. Mehlig, and D. Hanstorp, “Spectroscopy and optical imaging of coalescing droplets,” Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220I (2016).
[Crossref]

Q. J. R. Meteorol. Soc. (1)

B. J. Devenish, P. Bartello, J-L Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L. P. Wang, and Z. Warhaft, “Droplet growth in warm turbulent clouds,” Q. J. R. Meteorol. Soc. 138, 1401–1429 (2012).
[Crossref]

Science (2)

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[Crossref] [PubMed]

E. Bodenschatz, S. P. Malinowski, R. A. Shaw, and F. Stratmann, “Can we understand clouds without turbulence?” Science 327, 970–971 (2010).
[Crossref] [PubMed]

Other (4)

A. Frohn and N. Roth, Dynamics of droplets (Springer-Verlag, 2000).
[Crossref]

Physical properties of glycerine and its solutions, (Glycerine Producers’ Association, 1963).

D. R. MacGorman and W. D. Rust, The Electrical Nature of Storms (Oxford University Press, 1998).

H. R. Pruppacher and J. D. Klett, Microphysics of clouds and precipitation (Springer, 2010).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1: AVI (14788 KB)      Coalescence of two droplets while the bottom droplet is trapped by laser light
» Visualization 2: AVI (8515 KB)      The motion of two droplets settling in quiescent air under gravity that results in kiss-and-tumbling motion
» Visualization 3: AVI (12406 KB)      The motion of two droplets interacting without the influence of laser light that results in coalescence

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The principle scheme for studies of droplet interactions. MO1, MO2 and MO3, MO4 are microscope objectives that focus the laser light and form the “lower” and “upper” optical trap, respectively. The droplets are illuminated with LEDs, and their motion recorded by a pair of cameras with their lines of sight arranged at a 90° angle.
Fig. 2
Fig. 2 Panel (a) shows the geometry for the determination of the impact parameter, χ, of the collision process from its two orthogonal projections on x and y-axes. Two droplets with radii a1 (top) and a2 (bottom) fall in gravitational field, along the z-axis. The parameters χx and χy are the projections of the impact parameter χ onto the x and y-axes, respectively. Panel (b) shows the trajectory of the interacting droplets under gravity, as observed from the reference frame of the larger droplet. χc is the critical impact parameter for a grazing trajectory of the smaller droplet.
Fig. 3
Fig. 3 Sketch of the experimental setup. BS - beam splitter, EOM - electro-optical modulators, M - mirrors, P - polarizers, HW - half-wave plates, PBS - polarizing beam splitters, MO - micro-lenses, LED - illumination, CAM - high speed digital movie camera. The xy coordinate system represents the laboratory frame. The z-axis points out of the page, whereas gravity points into the page.
Fig. 4
Fig. 4 Coalescence of two droplets while the bottom droplet is trapped by laser light as viewed in (a) the xz plane and (b) the yz plane. Panel (c) shows the droplet trajectories as well as their surfaces extracted from the movie recorded in panel (b). Adjacent tick marks on both axes indicate spatial separation of 50 μm. The color bar indicates the progression in time in milliseconds.
Fig. 5
Fig. 5 Projection on x and y directions of time resolved coalescence of two droplets when the bottom droplet is trapped by laser light.
Fig. 6
Fig. 6 The motion of two droplets settling in quiescent air under gravity as viewed on (a) the yz plane and (b) the xz plane that results in kiss-and-tumbling motion. Panel (c) shows the trajectories of the two droplets as seen in panel (b). Adjacent tick marks on both axes indicate spatial separation of 50 μm. Color bar indicates temporal progression in milliseconds.
Fig. 7
Fig. 7 Snapshots of two droplets that interact without the influence of laser light resulting in coalescence as seen on (a) the yz plane and (b) the xz plane. Panel (c) shows the trajectories of the droplets rendered from the images featured in panel (b). Adjacent tick marks on both axes indicate spatial separation of 50 μm. Color bar indicates temporal progression in milliseconds.
Fig. 8
Fig. 8 Frame-by-frame sequence of images showing the coalescence of two droplets sedimenting in quiescent air as seen on the (a) xz plane and (b) the yz plane.

Tables (1)

Tables Icon

Table 1 Droplet Physical Characteristics and the Collision Parameters in the Experiments

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

χ = χ x 2 + χ y 2 .
B = χ a 2 ( 1 + Γ ) ,
V = 2 9 ( ρ d ρ a 1 ) g a 2 ν ,
Re = V a ν ,
St = τ d τ a = 2 9 ( ρ d ρ a 1 ) Re .
We = 2 a 2 ρ d ( V 1 V 2 ) 2 σ ,

Metrics