Abstract

A multi-color solid-state display structure has been fabricated and characterized, which is based on phase-change material Ge2Sb2Te5 (GST) and conducting transparent material indium tin oxide (ITO). The significant influence of ITO is investigated by experiments as well as simulations. We found that the ITO layer in fact plays a significant or even a dominate role in the color change of GST-based multi-layer solid state display structure. Multi-color modulation can be achieved by changing the phase state of both ITO and GST. Based on those results, better color presentation can be realized by improving the design of this new solid-state display.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broader color gamut of color-modulating optical coating display based on indium tin oxide and phase change materials

Zhigang Ni, Shenghong Mou, Tong Zhou, and Zhiyuan Cheng
Appl. Opt. 57(13) 3385-3389 (2018)

Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5

Yurui Qu, Qiang Li, Lu Cai, and Min Qiu
Opt. Mater. Express 8(8) 2312-2320 (2018)

Selective thermal emitters with infrared plasmonic indium tin oxide working in the atmosphere

Thang Duy Dao, Anh Tung Doan, Dang Hai Ngo, Kai Chen, Satoshi Ishii, Akemi Tamanai, and Tadaaki Nagao
Opt. Mater. Express 9(6) 2534-2544 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Mukherjee, W. L. Hsieh, N. Smith, M. Goulding, and J. Heikenfeld, “Electrokinetic pixels with biprimary inks for color displays and color-temperature-tunable smart windows,” Appl. Opt. 54(17), 5603–5609 (2015).
    [Crossref] [PubMed]
  2. M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, “25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
    [Crossref] [PubMed]
  3. M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, “High-quality images on electrophoretic displays,” J. Soc. Inf. Disp. 14(2), 175–180 (2006).
    [Crossref]
  4. A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 Contrast Ratio Transmissive Electrowetting Displays,” J. Disp. Technol. 7(11), 583–585 (2011).
    [Crossref]
  5. G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
    [Crossref]
  6. T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
    [Crossref]
  7. D. R. Rosseinsky and R. J. Mortimer, “Electrochromic systems and the prospects for devices,” Adv. Mater. 13(11), 783–793 (2001).
    [Crossref]
  8. H. N. Kim, S. M. Cho, C. S. Ah, J. Song, H. Ryu, Y. H. Kim, and T. Y. Kim, “Electrochromic mirror using viologen-anchored nanoparticles,” Mater. Res. Bull. 82, 16–21 (2016).
    [Crossref]
  9. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
    [Crossref] [PubMed]
  10. M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
    [Crossref]
  11. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
    [Crossref] [PubMed]
  12. P. Hosseini and H. Bhaskaran, “Colour performance and stack optimisation in phase change material based nano-displays,” Proc. SPIE 9520, 95200M (2015).
    [Crossref]
  13. C. Ríos, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color Depth Modulation and Resolution in Phase-Change Material Nanodisplays,” Adv. Mater. 28(23), 4720–4726 (2016).
    [Crossref] [PubMed]
  14. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
    [Crossref] [PubMed]
  15. H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
    [Crossref]
  16. F. Jedema, “Phase-change materials: designing optical media of the future,” Nat. Mater. 6(2), 90–91 (2007).
    [Crossref] [PubMed]
  17. N. Kato, I. Konomi, Y. Seno, and T. Motohiro, “In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment,” Appl. Surf. Sci. 244(1–4), 281–284 (2005).
    [Crossref]
  18. A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
    [Crossref]
  19. Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
    [Crossref]
  20. J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
    [Crossref]
  21. V. Pamukchieva and A. Szekeres, “Optical properties of GexSb20-xTe80 thin films and their changes by light illumination,” Opt. Mater. 30(7), 1088–1092 (2008).
    [Crossref]
  22. K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. (to be published).
  23. Y. Lyu, S. Mou, Y. Bai, Y. Sun, and Z. Cheng, “Multi-color Modulation in Solid-state Display based on Phase Changing Materials,” in 13th IEEE International Conference on Solid-State and Intergrated Circuit Technology (2016).
  24. L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Tech. 166(1), 44–50 (2003).
    [Crossref]
  25. T. S. Sathiaraj, “Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level,” Microelectronics J. 39(12), 1444–1451 (2008).
    [Crossref]
  26. K. Sun, W. Zhou, X. Tang, Z. Huang, F. Luo, and D. Zhu, “Effects of air annealing on the structure, resistivity, infrared emissivity and transmission of indium tin oxide films,” Surf. Coat. Tech. 206(19–20), 4095–4098 (2012).
    [Crossref]
  27. Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
    [Crossref]

2016 (2)

H. N. Kim, S. M. Cho, C. S. Ah, J. Song, H. Ryu, Y. H. Kim, and T. Y. Kim, “Electrochromic mirror using viologen-anchored nanoparticles,” Mater. Res. Bull. 82, 16–21 (2016).
[Crossref]

C. Ríos, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color Depth Modulation and Resolution in Phase-Change Material Nanodisplays,” Adv. Mater. 28(23), 4720–4726 (2016).
[Crossref] [PubMed]

2015 (3)

P. Hosseini and H. Bhaskaran, “Colour performance and stack optimisation in phase change material based nano-displays,” Proc. SPIE 9520, 95200M (2015).
[Crossref]

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

S. Mukherjee, W. L. Hsieh, N. Smith, M. Goulding, and J. Heikenfeld, “Electrokinetic pixels with biprimary inks for color displays and color-temperature-tunable smart windows,” Appl. Opt. 54(17), 5603–5609 (2015).
[Crossref] [PubMed]

2014 (3)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

2013 (3)

M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, “25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

2012 (1)

K. Sun, W. Zhou, X. Tang, Z. Huang, F. Luo, and D. Zhu, “Effects of air annealing on the structure, resistivity, infrared emissivity and transmission of indium tin oxide films,” Surf. Coat. Tech. 206(19–20), 4095–4098 (2012).
[Crossref]

2011 (2)

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 Contrast Ratio Transmissive Electrowetting Displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

2010 (1)

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

2009 (1)

J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

2008 (2)

V. Pamukchieva and A. Szekeres, “Optical properties of GexSb20-xTe80 thin films and their changes by light illumination,” Opt. Mater. 30(7), 1088–1092 (2008).
[Crossref]

T. S. Sathiaraj, “Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level,” Microelectronics J. 39(12), 1444–1451 (2008).
[Crossref]

2007 (2)

F. Jedema, “Phase-change materials: designing optical media of the future,” Nat. Mater. 6(2), 90–91 (2007).
[Crossref] [PubMed]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

2006 (2)

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, “High-quality images on electrophoretic displays,” J. Soc. Inf. Disp. 14(2), 175–180 (2006).
[Crossref]

2005 (1)

N. Kato, I. Konomi, Y. Seno, and T. Motohiro, “In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment,” Appl. Surf. Sci. 244(1–4), 281–284 (2005).
[Crossref]

2003 (1)

L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Tech. 166(1), 44–50 (2003).
[Crossref]

2001 (1)

D. R. Rosseinsky and R. J. Mortimer, “Electrochromic systems and the prospects for devices,” Adv. Mater. 13(11), 783–793 (2001).
[Crossref]

Ah, C. S.

H. N. Kim, S. M. Cho, C. S. Ah, J. Song, H. Ryu, Y. H. Kim, and T. Y. Kim, “Electrochromic mirror using viologen-anchored nanoparticles,” Mater. Res. Bull. 82, 16–21 (2016).
[Crossref]

Aizenberg, J.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Amundson, K.

M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, “High-quality images on electrophoretic displays,” J. Soc. Inf. Disp. 14(2), 175–180 (2006).
[Crossref]

Asheghi, M.

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Bai, Y.

Y. Lyu, S. Mou, Y. Bai, Y. Sun, and Z. Cheng, “Multi-color Modulation in Solid-state Display based on Phase Changing Materials,” in 13th IEEE International Conference on Solid-State and Intergrated Circuit Technology (2016).

Bao, Z.

M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, “25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[Crossref] [PubMed]

Benson, B.

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

Bhaskaran, H.

C. Ríos, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color Depth Modulation and Resolution in Phase-Change Material Nanodisplays,” Adv. Mater. 28(23), 4720–4726 (2016).
[Crossref] [PubMed]

P. Hosseini and H. Bhaskaran, “Colour performance and stack optimisation in phase change material based nano-displays,” Proc. SPIE 9520, 95200M (2015).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Blanchard, R.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Byrnes, S. J.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Chen, P.

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Cheng, W.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 Contrast Ratio Transmissive Electrowetting Displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Cheng, Z.

Y. Lyu, S. Mou, Y. Bai, Y. Sun, and Z. Cheng, “Multi-color Modulation in Solid-state Display based on Phase Changing Materials,” in 13th IEEE International Conference on Solid-State and Intergrated Circuit Technology (2016).

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. (to be published).

Chigrin, D. N.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Cho, S. M.

H. N. Kim, S. M. Cho, C. S. Ah, J. Song, H. Ryu, Y. H. Kim, and T. Y. Kim, “Electrochromic mirror using viologen-anchored nanoparticles,” Mater. Res. Bull. 82, 16–21 (2016).
[Crossref]

Chortos, A.

M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, “25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[Crossref] [PubMed]

Combs, G.

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

Da Silva, J. L. F.

J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Ding, J.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. (to be published).

Du, K.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. (to be published).

Eom, S. H.

J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Gelinck, G. H.

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Goodson, K. E.

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Goulding, M.

Hammock, M. L.

M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, “25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[Crossref] [PubMed]

Heikenfeld, J.

Henze, D.

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

Henzen, A.

M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, “High-quality images on electrophoretic displays,” J. Soc. Inf. Disp. 14(2), 175–180 (2006).
[Crossref]

Hoffman, R.

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

Hosseini, P.

C. Ríos, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color Depth Modulation and Resolution in Phase-Change Material Nanodisplays,” Adv. Mater. 28(23), 4720–4726 (2016).
[Crossref] [PubMed]

P. Hosseini and H. Bhaskaran, “Colour performance and stack optimisation in phase change material based nano-displays,” Proc. SPIE 9520, 95200M (2015).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Hsieh, W. L.

Hu, Y.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Huang, Z.

K. Sun, W. Zhou, X. Tang, Z. Huang, F. Luo, and D. Zhu, “Effects of air annealing on the structure, resistivity, infrared emissivity and transmission of indium tin oxide films,” Surf. Coat. Tech. 206(19–20), 4095–4098 (2012).
[Crossref]

Huitema, H. E. A.

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

Jedema, F.

F. Jedema, “Phase-change materials: designing optical media of the future,” Nat. Mater. 6(2), 90–91 (2007).
[Crossref] [PubMed]

Johnson, M. T.

M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, “High-quality images on electrophoretic displays,” J. Soc. Inf. Disp. 14(2), 175–180 (2006).
[Crossref]

Kang, H. S.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 Contrast Ratio Transmissive Electrowetting Displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Kang, Y. S.

J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Kato, N.

N. Kato, I. Konomi, Y. Seno, and T. Motohiro, “In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment,” Appl. Surf. Sci. 244(1–4), 281–284 (2005).
[Crossref]

Kats, M. A.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Khang, Y. H.

J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Kim, H. N.

H. N. Kim, S. M. Cho, C. S. Ah, J. Song, H. Ryu, Y. H. Kim, and T. Y. Kim, “Electrochromic mirror using viologen-anchored nanoparticles,” Mater. Res. Bull. 82, 16–21 (2016).
[Crossref]

Kim, S.

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Kim, T. Y.

H. N. Kim, S. M. Cho, C. S. Ah, J. Song, H. Ryu, Y. H. Kim, and T. Y. Kim, “Electrochromic mirror using viologen-anchored nanoparticles,” Mater. Res. Bull. 82, 16–21 (2016).
[Crossref]

Kim, Y. H.

H. N. Kim, S. M. Cho, C. S. Ah, J. Song, H. Ryu, Y. H. Kim, and T. Y. Kim, “Electrochromic mirror using viologen-anchored nanoparticles,” Mater. Res. Bull. 82, 16–21 (2016).
[Crossref]

Koch, T.

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

Kolle, M.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Konomi, I.

N. Kato, I. Konomi, Y. Seno, and T. Motohiro, “In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment,” Appl. Surf. Sci. 244(1–4), 281–284 (2005).
[Crossref]

Korthuis, V.

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

Lee, H.

J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Lee, T. Y.

J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Li, Q.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. (to be published).

Liang, J.

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Lindenberg, A. M.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Liu, B.

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Liu, Q.

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

Lu, Y.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. (to be published).

Luo, F.

K. Sun, W. Zhou, X. Tang, Z. Huang, F. Luo, and D. Zhu, “Effects of air annealing on the structure, resistivity, infrared emissivity and transmission of indium tin oxide films,” Surf. Coat. Tech. 206(19–20), 4095–4098 (2012).
[Crossref]

Lyu, Y.

Y. Lyu, S. Mou, Y. Bai, Y. Sun, and Z. Cheng, “Multi-color Modulation in Solid-state Display based on Phase Changing Materials,” in 13th IEEE International Conference on Solid-State and Intergrated Circuit Technology (2016).

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. (to be published).

Mabeck, J.

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

McCreary, M. D.

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

Meng, L.-J.

L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Tech. 166(1), 44–50 (2003).
[Crossref]

Michel, A.-K. U.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Mortimer, R. J.

D. R. Rosseinsky and R. J. Mortimer, “Electrochromic systems and the prospects for devices,” Adv. Mater. 13(11), 783–793 (2001).
[Crossref]

Motohiro, T.

N. Kato, I. Konomi, Y. Seno, and T. Motohiro, “In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment,” Appl. Surf. Sci. 244(1–4), 281–284 (2005).
[Crossref]

Mou, S.

Y. Lyu, S. Mou, Y. Bai, Y. Sun, and Z. Cheng, “Multi-color Modulation in Solid-state Display based on Phase Changing Materials,” in 13th IEEE International Conference on Solid-State and Intergrated Circuit Technology (2016).

Mukherjee, S.

Pamukchieva, V.

V. Pamukchieva and A. Szekeres, “Optical properties of GexSb20-xTe80 thin films and their changes by light illumination,” Opt. Mater. 30(7), 1088–1092 (2008).
[Crossref]

Park, J. W.

J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Patry, S. F.

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

Placido, F.

L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Tech. 166(1), 44–50 (2003).
[Crossref]

Qiu, M.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. (to be published).

Rajendran, B.

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Raoux, S.

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Reifenberg, J. P.

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Ríos, C.

C. Ríos, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color Depth Modulation and Resolution in Phase-Change Material Nanodisplays,” Adv. Mater. 28(23), 4720–4726 (2016).
[Crossref] [PubMed]

Rosseinsky, D. R.

D. R. Rosseinsky and R. J. Mortimer, “Electrochromic systems and the prospects for devices,” Adv. Mater. 13(11), 783–793 (2001).
[Crossref]

Ryu, H.

H. N. Kim, S. M. Cho, C. S. Ah, J. Song, H. Ryu, Y. H. Kim, and T. Y. Kim, “Electrochromic mirror using viologen-anchored nanoparticles,” Mater. Res. Bull. 82, 16–21 (2016).
[Crossref]

Sathiaraj, T. S.

T. S. Sathiaraj, “Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level,” Microelectronics J. 39(12), 1444–1451 (2008).
[Crossref]

Schultz, A.

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 Contrast Ratio Transmissive Electrowetting Displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

Seno, Y.

N. Kato, I. Konomi, Y. Seno, and T. Motohiro, “In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment,” Appl. Surf. Sci. 244(1–4), 281–284 (2005).
[Crossref]

Smith, N.

Sohn, S.

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

Song, J.

H. N. Kim, S. M. Cho, C. S. Ah, J. Song, H. Ryu, Y. H. Kim, and T. Y. Kim, “Electrochromic mirror using viologen-anchored nanoparticles,” Mater. Res. Bull. 82, 16–21 (2016).
[Crossref]

Song, S.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Song, Z.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Sui, Y.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Sun, K.

K. Sun, W. Zhou, X. Tang, Z. Huang, F. Luo, and D. Zhu, “Effects of air annealing on the structure, resistivity, infrared emissivity and transmission of indium tin oxide films,” Surf. Coat. Tech. 206(19–20), 4095–4098 (2012).
[Crossref]

Sun, Y.

Y. Lyu, S. Mou, Y. Bai, Y. Sun, and Z. Cheng, “Multi-color Modulation in Solid-state Display based on Phase Changing Materials,” in 13th IEEE International Conference on Solid-State and Intergrated Circuit Technology (2016).

Szekeres, A.

V. Pamukchieva and A. Szekeres, “Optical properties of GexSb20-xTe80 thin films and their changes by light illumination,” Opt. Mater. 30(7), 1088–1092 (2008).
[Crossref]

Tan, C.

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Tang, X.

K. Sun, W. Zhou, X. Tang, Z. Huang, F. Luo, and D. Zhu, “Effects of air annealing on the structure, resistivity, infrared emissivity and transmission of indium tin oxide films,” Surf. Coat. Tech. 206(19–20), 4095–4098 (2012).
[Crossref]

Taubner, T.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Taylor, R. A.

C. Ríos, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color Depth Modulation and Resolution in Phase-Change Material Nanodisplays,” Adv. Mater. 28(23), 4720–4726 (2016).
[Crossref] [PubMed]

Tee, B. C. K.

M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, “25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[Crossref] [PubMed]

Tok, J. B. H.

M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, “25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[Crossref] [PubMed]

Touwslager, F.

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

van de Kamer, J.

M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, “High-quality images on electrophoretic displays,” J. Soc. Inf. Disp. 14(2), 175–180 (2006).
[Crossref]

Van Lieshout, P. J. G.

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

Van Mil, M.

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

Van Veenendaal, E.

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

Whitesides, T.

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

Wong, H. P.

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Wright, C. D.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Wu, W.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Wu, Z.

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Wuttig, M.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

Xu, F.

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Xu, Z.

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Xue, J.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Yamada, N.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

Yang, G.

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Yeo, J.-S.

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

Yuan, L.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Zalden, P.

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Zehner, R.

M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, “High-quality images on electrophoretic displays,” J. Soc. Inf. Disp. 14(2), 175–180 (2006).
[Crossref]

Zhang, J.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Zhang, L.

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Zhang, R.

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Zheng, Y.

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Zhou, G.

M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, “High-quality images on electrophoretic displays,” J. Soc. Inf. Disp. 14(2), 175–180 (2006).
[Crossref]

Zhou, W.

K. Sun, W. Zhou, X. Tang, Z. Huang, F. Luo, and D. Zhu, “Effects of air annealing on the structure, resistivity, infrared emissivity and transmission of indium tin oxide films,” Surf. Coat. Tech. 206(19–20), 4095–4098 (2012).
[Crossref]

Zhou, Z.-L.

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

Zhu, D.

K. Sun, W. Zhou, X. Tang, Z. Huang, F. Luo, and D. Zhu, “Effects of air annealing on the structure, resistivity, infrared emissivity and transmission of indium tin oxide films,” Surf. Coat. Tech. 206(19–20), 4095–4098 (2012).
[Crossref]

Zhu, X.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Zou, H.

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

ACS Photonics (1)

A.-K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Adv. Mater. (3)

C. Ríos, P. Hosseini, R. A. Taylor, and H. Bhaskaran, “Color Depth Modulation and Resolution in Phase-Change Material Nanodisplays,” Adv. Mater. 28(23), 4720–4726 (2016).
[Crossref] [PubMed]

M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, “25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress,” Adv. Mater. 25(42), 5997–6038 (2013).
[Crossref] [PubMed]

D. R. Rosseinsky and R. J. Mortimer, “Electrochromic systems and the prospects for devices,” Adv. Mater. 13(11), 783–793 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, and Z. Song, “Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application,” Appl. Phys. Lett. 107(26), 263105 (2015).
[Crossref]

Appl. Surf. Sci. (1)

N. Kato, I. Konomi, Y. Seno, and T. Motohiro, “In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment,” Appl. Surf. Sci. 244(1–4), 281–284 (2005).
[Crossref]

J. Disp. Technol. (1)

A. Schultz, J. Heikenfeld, H. S. Kang, and W. Cheng, “1000:1 Contrast Ratio Transmissive Electrowetting Displays,” J. Disp. Technol. 7(11), 583–585 (2011).
[Crossref]

J. Inf. Display (1)

T. Koch, J.-S. Yeo, Z.-L. Zhou, Q. Liu, J. Mabeck, G. Combs, V. Korthuis, R. Hoffman, B. Benson, and D. Henze, “Novel flexible reflective color media with electronic inks,” J. Inf. Display 12(1), 5–10 (2011).
[Crossref]

J. Soc. Inf. Disp. (2)

G. H. Gelinck, H. E. A. Huitema, M. Van Mil, E. Van Veenendaal, P. J. G. Van Lieshout, F. Touwslager, S. F. Patry, S. Sohn, T. Whitesides, and M. D. McCreary, “A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture,” J. Soc. Inf. Disp. 14(2), 113–118 (2006).
[Crossref]

M. T. Johnson, G. Zhou, R. Zehner, K. Amundson, A. Henzen, and J. van de Kamer, “High-quality images on electrophoretic displays,” J. Soc. Inf. Disp. 14(2), 175–180 (2006).
[Crossref]

Mater. Res. Bull. (1)

H. N. Kim, S. M. Cho, C. S. Ah, J. Song, H. Ryu, Y. H. Kim, and T. Y. Kim, “Electrochromic mirror using viologen-anchored nanoparticles,” Mater. Res. Bull. 82, 16–21 (2016).
[Crossref]

Mater. Sci. Semicond. Process. (1)

Z. Xu, P. Chen, Z. Wu, F. Xu, G. Yang, B. Liu, C. Tan, L. Zhang, R. Zhang, and Y. Zheng, “Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films,” Mater. Sci. Semicond. Process. 26, 588–592 (2014).
[Crossref]

Microelectronics J. (1)

T. S. Sathiaraj, “Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level,” Microelectronics J. 39(12), 1444–1451 (2008).
[Crossref]

Nat. Mater. (3)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

F. Jedema, “Phase-change materials: designing optical media of the future,” Nat. Mater. 6(2), 90–91 (2007).
[Crossref] [PubMed]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref] [PubMed]

Nature (1)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Opt. Mater. (1)

V. Pamukchieva and A. Szekeres, “Optical properties of GexSb20-xTe80 thin films and their changes by light illumination,” Opt. Mater. 30(7), 1088–1092 (2008).
[Crossref]

Phys. Rev. B (1)

J. W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y. S. Kang, T. Y. Lee, and Y. H. Khang, “Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2Te3 from ellipsometry and density functional theory,” Phys. Rev. B 80(11), 115209 (2009).
[Crossref]

Proc. IEEE (1)

H. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE 98(12), 2201–2227 (2010).
[Crossref]

Proc. SPIE (1)

P. Hosseini and H. Bhaskaran, “Colour performance and stack optimisation in phase change material based nano-displays,” Proc. SPIE 9520, 95200M (2015).
[Crossref]

Surf. Coat. Tech. (2)

K. Sun, W. Zhou, X. Tang, Z. Huang, F. Luo, and D. Zhu, “Effects of air annealing on the structure, resistivity, infrared emissivity and transmission of indium tin oxide films,” Surf. Coat. Tech. 206(19–20), 4095–4098 (2012).
[Crossref]

L.-J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications,” Surf. Coat. Tech. 166(1), 44–50 (2003).
[Crossref]

Other (2)

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. (to be published).

Y. Lyu, S. Mou, Y. Bai, Y. Sun, and Z. Cheng, “Multi-color Modulation in Solid-state Display based on Phase Changing Materials,” in 13th IEEE International Conference on Solid-State and Intergrated Circuit Technology (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic representation of (a) ITO/Pt (IP) sample and (b) ITO/GST/ITO/Pt (IGIP) sample. At the interface of every two adjacent layers, two arrows represent the reflection and penetration of incident light.
Fig. 2
Fig. 2 Varying colors of four as-deposited IP (ITO/Pt) samples. (a) Image of 4 types of IP samples under natural sunlight of which the ITO thickness is 70, 120, 180, 230 nm, respectively. (b) The measured reflection spectrums of IP samples in visible wavelength.
Fig. 3
Fig. 3 (a) Visual Appearance of IP structures after annealed at 25°C, 150°C, 220°C, 400°C for 5 minutes are observed under natural sunlight. For each temperature, the thermal process is applied once (left) or three times (right) to check the dependence of color on annealing times. The thickness of ITO layer is 180 nm. (b) Refractive index and extinction coefficient of as-deposited and annealed ITO at 220°C and 400°C.
Fig. 4
Fig. 4 (a) Visual appearance of IP samples with identical structure and process as those in Fig. 3. (b)~(f) Contrastive colors of [IG(IP)x]y structures after two cycles of deposition and anneal processes, where x refers to the temperature of first anneal on IP structure before deposition of IG, and y is the temperature of second anneal on entire IGIP structure. The value t is the thickness of bottom ITO layer. (b) Images of IGIP samples under natural sunlight, exhibiting color change caused by crystallization of ITO and GST. (c) Simulated colors of IGIPs by numerical method with identical structure as (b), which agree well with experimental colors in (b). (d) (e) and (f) More simulated colors of IGIPs with different value of t.
Fig. 5
Fig. 5 The measured spectrums and absolute values of percentage change in reflectivity of relevant IGIP structures. (a) The spectrums of [IG (IP)400]y and [IG (IP)x]25, referring to the 3rd column and 1st row in Fig. 4(b). (b) Absolute values of percentage change in reflectivity of [IG (IP)x]y are calculated by formula ∆R (%) = (Rafter anneal-Rbefore anneal)/Rbefore anneal × 100%. ∆R1 and ∆R2 indicate the influence of GST, comparing the variation of reflectivity from [IG (IP)400]25 to [IG (IP)400]220 and then to [IG (IP)400]400. ∆R3 and ∆R4 indicate the influence of ITO, comparing the variation of reflectivity from [IG (IP)25]25 to [IG (IP)220]25 and then to [IG (IP)400]25.

Metrics