Abstract

Quantum dot (QD) and quantum rod (QR) nanocrystals are widely used non-organic nanocrystals. Their strong fluorescence and photostability make them suitable for biomedical imaging applications. However, their pH-dependence and antibunching properties have not been studied much, especially in aqueous conditions. In this report, we used fluorescence correlation spectroscopy (FCS) with high temporal resolution to demonstrate that the fluorescent blinking and antibunching of QDs/QRs can be changed by varying the pH of their solutions. Furthermore, herein, we reported the relationship between the aggregation and antibunching relaxation time of QDs/QRs for the first time. The findings of this study suggest that FCS can be used to discover novel environmental indicators via observing nanosecond and microsecond phenomena.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
EMCCD-based spectrally resolved fluorescence correlation spectroscopy

Felix Bestvater, Zahir Seghiri, Moon Sik Kang, Nadine Gröner, Ji Young Lee, Kang-Bin Im, and Malte Wachsmuth
Opt. Express 18(23) 23818-23828 (2010)

Excitation saturation in two-photon fluorescence correlation spectroscopy

Keith Berland and Guoqing Shen
Appl. Opt. 42(27) 5566-5576 (2003)

Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector

Johtaro Yamamoto, Makoto Oura, Taro Yamashita, Shigehito Miki, Takashi Jin, Tokuko Haraguchi, Yasushi Hiraoka, Hirotaka Terai, and Masataka Kinjo
Opt. Express 23(25) 32633-32642 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
    [Crossref] [PubMed]
  2. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
    [Crossref] [PubMed]
  3. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
    [Crossref] [PubMed]
  4. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
    [Crossref] [PubMed]
  5. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
    [Crossref] [PubMed]
  6. T. Pons, H. T. Uyeda, I. L. Medintz, and H. Mattoussi, “Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots,” J. Phys. Chem. B 110(41), 20308–20316 (2006).
    [Crossref] [PubMed]
  7. H. Qian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111(45), 16852–16857 (2007).
    [Crossref]
  8. M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
    [Crossref] [PubMed]
  9. J. Hu, L. Li Ls, W. Yang, L. Manna, L. Wang Lw, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292(5524), 2060–2063 (2001).
    [Crossref] [PubMed]
  10. M. Tomasulo, I. Yildiz, and F. M. Raymo, “pH-sensitive quantum dots,” J. Phys. Chem. B 110(9), 3853–3855 (2006).
    [Crossref] [PubMed]
  11. Y. Chen and Z. Rosenzweig, “Luminescent CdS quantum dots as selective ion probes,” Anal. Chem. 74(19), 5132–5138 (2002).
    [Crossref] [PubMed]
  12. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys. 112(7), 3117–3120 (2000).
    [Crossref]
  13. J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102(40), 14284–14289 (2005).
    [Crossref] [PubMed]
  14. A. A. de Thomaz, D. B. Almeida, V. B. Pelegati, H. F. Carvalho, and C. L. Cesar, “Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking,” J. Phys. Chem. B 119(11), 4294–4299 (2015).
    [Crossref] [PubMed]
  15. G. Messin, J. P. Hermier, E. Giacobino, P. Desbiolles, and M. Dahan, “Bunching and antibunching in the fluorescence of semiconductor nanocrystals,” Opt. Lett. 26(23), 1891–1893 (2001).
    [Crossref] [PubMed]
  16. P. Zhang, L. Li, C. Dong, H. Qian, and J. Ren, “Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy,” Anal. Chim. Acta 546(1), 46–51 (2005).
    [Crossref]
  17. T. Liedl, S. Keller, F. C. Simmel, J. O. Rädler, and W. J. Parak, “Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy,” Small 1(10), 997–1003 (2005).
    [Crossref] [PubMed]
  18. J. Wang, X. Huang, F. Zan, C.-G. Guo, C. Cao, and J. Ren, “Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy,” Electrophoresis 33(13), 1987–1995 (2012).
    [Crossref] [PubMed]
  19. C. Dong, H. Qian, N. Fang, and J. Ren, “Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy,” J. Phys. Chem. B 110(23), 11069–11075 (2006).
    [Crossref] [PubMed]
  20. L. Shao, C. Dong, F. Sang, H. Qian, and J. Ren, “Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy,” J. Fluoresc. 19(1), 151–157 (2009).
    [Crossref] [PubMed]
  21. S. Doose, J. M. Tsay, F. Pinaud, and S. Weiss, “Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy,” Anal. Chem. 77(7), 2235–2242 (2005).
    [Crossref] [PubMed]
  22. M. J. Murcia, D. L. Shaw, E. C. Long, and C. A. Naumann, “Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings,” Opt. Commun. 281(7), 1771–1780 (2008).
    [Crossref] [PubMed]
  23. R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
    [Crossref] [PubMed]
  24. J. L. Swift, R. Heuff, and D. T. Cramb, “A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots,” Biophys. J. 90(4), 1396–1410 (2006).
    [Crossref] [PubMed]
  25. D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29(11), 705–708 (1972).
    [Crossref]
  26. M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
    [Crossref]
  27. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
    [Crossref]
  28. L. C. Hwang and T. Wohland, “Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation,” ChemPhysChem 5(4), 549–551 (2004).
    [Crossref] [PubMed]
  29. J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
    [Crossref] [PubMed]
  30. J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
    [Crossref] [PubMed]
  31. M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
    [Crossref] [PubMed]
  32. J. Han and K. Burgess, “Fluorescent indicators for intracellular pH,” Chem. Rev. 110(5), 2709–2728 (2010).
    [Crossref] [PubMed]
  33. M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6, 31091 (2016).
    [Crossref] [PubMed]
  34. M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
    [Crossref] [PubMed]

2016 (1)

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6, 31091 (2016).
[Crossref] [PubMed]

2015 (3)

J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
[Crossref] [PubMed]

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

A. A. de Thomaz, D. B. Almeida, V. B. Pelegati, H. F. Carvalho, and C. L. Cesar, “Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking,” J. Phys. Chem. B 119(11), 4294–4299 (2015).
[Crossref] [PubMed]

2012 (2)

J. Wang, X. Huang, F. Zan, C.-G. Guo, C. Cao, and J. Ren, “Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy,” Electrophoresis 33(13), 1987–1995 (2012).
[Crossref] [PubMed]

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

2010 (1)

J. Han and K. Burgess, “Fluorescent indicators for intracellular pH,” Chem. Rev. 110(5), 2709–2728 (2010).
[Crossref] [PubMed]

2009 (2)

L. Shao, C. Dong, F. Sang, H. Qian, and J. Ren, “Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy,” J. Fluoresc. 19(1), 151–157 (2009).
[Crossref] [PubMed]

M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[Crossref] [PubMed]

2008 (1)

M. J. Murcia, D. L. Shaw, E. C. Long, and C. A. Naumann, “Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings,” Opt. Commun. 281(7), 1771–1780 (2008).
[Crossref] [PubMed]

2007 (2)

R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
[Crossref] [PubMed]

H. Qian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111(45), 16852–16857 (2007).
[Crossref]

2006 (5)

M. Tomasulo, I. Yildiz, and F. M. Raymo, “pH-sensitive quantum dots,” J. Phys. Chem. B 110(9), 3853–3855 (2006).
[Crossref] [PubMed]

C. Dong, H. Qian, N. Fang, and J. Ren, “Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy,” J. Phys. Chem. B 110(23), 11069–11075 (2006).
[Crossref] [PubMed]

T. Pons, H. T. Uyeda, I. L. Medintz, and H. Mattoussi, “Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots,” J. Phys. Chem. B 110(41), 20308–20316 (2006).
[Crossref] [PubMed]

J. L. Swift, R. Heuff, and D. T. Cramb, “A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots,” Biophys. J. 90(4), 1396–1410 (2006).
[Crossref] [PubMed]

J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
[Crossref] [PubMed]

2005 (7)

S. Doose, J. M. Tsay, F. Pinaud, and S. Weiss, “Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy,” Anal. Chem. 77(7), 2235–2242 (2005).
[Crossref] [PubMed]

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

P. Zhang, L. Li, C. Dong, H. Qian, and J. Ren, “Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy,” Anal. Chim. Acta 546(1), 46–51 (2005).
[Crossref]

T. Liedl, S. Keller, F. C. Simmel, J. O. Rädler, and W. J. Parak, “Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy,” Small 1(10), 997–1003 (2005).
[Crossref] [PubMed]

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102(40), 14284–14289 (2005).
[Crossref] [PubMed]

2004 (1)

L. C. Hwang and T. Wohland, “Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation,” ChemPhysChem 5(4), 549–551 (2004).
[Crossref] [PubMed]

2003 (1)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

2002 (1)

Y. Chen and Z. Rosenzweig, “Luminescent CdS quantum dots as selective ion probes,” Anal. Chem. 74(19), 5132–5138 (2002).
[Crossref] [PubMed]

2001 (2)

J. Hu, L. Li Ls, W. Yang, L. Manna, L. Wang Lw, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292(5524), 2060–2063 (2001).
[Crossref] [PubMed]

G. Messin, J. P. Hermier, E. Giacobino, P. Desbiolles, and M. Dahan, “Bunching and antibunching in the fluorescence of semiconductor nanocrystals,” Opt. Lett. 26(23), 1891–1893 (2001).
[Crossref] [PubMed]

2000 (1)

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys. 112(7), 3117–3120 (2000).
[Crossref]

1998 (1)

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[Crossref] [PubMed]

1974 (2)

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

1972 (1)

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29(11), 705–708 (1972).
[Crossref]

Alivisatos, A. P.

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

J. Hu, L. Li Ls, W. Yang, L. Manna, L. Wang Lw, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292(5524), 2060–2063 (2001).
[Crossref] [PubMed]

Almeida, D. B.

A. A. de Thomaz, D. B. Almeida, V. B. Pelegati, H. F. Carvalho, and C. L. Cesar, “Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking,” J. Phys. Chem. B 119(11), 4294–4299 (2015).
[Crossref] [PubMed]

Belousov, V. V.

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Burgess, K.

J. Han and K. Burgess, “Fluorescent indicators for intracellular pH,” Chem. Rev. 110(5), 2709–2728 (2010).
[Crossref] [PubMed]

Cao, C.

J. Wang, X. Huang, F. Zan, C.-G. Guo, C. Cao, and J. Ren, “Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy,” Electrophoresis 33(13), 1987–1995 (2012).
[Crossref] [PubMed]

Carvalho, H. F.

A. A. de Thomaz, D. B. Almeida, V. B. Pelegati, H. F. Carvalho, and C. L. Cesar, “Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking,” J. Phys. Chem. B 119(11), 4294–4299 (2015).
[Crossref] [PubMed]

Cesar, C. L.

A. A. de Thomaz, D. B. Almeida, V. B. Pelegati, H. F. Carvalho, and C. L. Cesar, “Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking,” J. Phys. Chem. B 119(11), 4294–4299 (2015).
[Crossref] [PubMed]

Chan, W. C. W.

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[Crossref] [PubMed]

Chen, Y.

Y. Chen and Z. Rosenzweig, “Luminescent CdS quantum dots as selective ion probes,” Anal. Chem. 74(19), 5132–5138 (2002).
[Crossref] [PubMed]

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Cramb, D. T.

R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
[Crossref] [PubMed]

J. L. Swift, R. Heuff, and D. T. Cramb, “A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots,” Biophys. J. 90(4), 1396–1410 (2006).
[Crossref] [PubMed]

Dahan, M.

de Thomaz, A. A.

A. A. de Thomaz, D. B. Almeida, V. B. Pelegati, H. F. Carvalho, and C. L. Cesar, “Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking,” J. Phys. Chem. B 119(11), 4294–4299 (2015).
[Crossref] [PubMed]

Desbiolles, P.

Dong, C.

L. Shao, C. Dong, F. Sang, H. Qian, and J. Ren, “Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy,” J. Fluoresc. 19(1), 151–157 (2009).
[Crossref] [PubMed]

H. Qian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111(45), 16852–16857 (2007).
[Crossref]

C. Dong, H. Qian, N. Fang, and J. Ren, “Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy,” J. Phys. Chem. B 110(23), 11069–11075 (2006).
[Crossref] [PubMed]

P. Zhang, L. Li, C. Dong, H. Qian, and J. Ren, “Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy,” Anal. Chim. Acta 546(1), 46–51 (2005).
[Crossref]

Doose, S.

J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
[Crossref] [PubMed]

S. Doose, J. M. Tsay, F. Pinaud, and S. Weiss, “Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy,” Anal. Chem. 77(7), 2235–2242 (2005).
[Crossref] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Druzhkova, I. N.

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Dudenkova, V. V.

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Ehrenberg, M.

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Elson, E.

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29(11), 705–708 (1972).
[Crossref]

Elson, E. L.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Fang, N.

C. Dong, H. Qian, N. Fang, and J. Ren, “Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy,” J. Phys. Chem. B 110(23), 11069–11075 (2006).
[Crossref] [PubMed]

Fromm, D. P.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys. 112(7), 3117–3120 (2000).
[Crossref]

Fujii, F.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Fukushima, R.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6, 31091 (2016).
[Crossref] [PubMed]

Gallagher, A.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys. 112(7), 3117–3120 (2000).
[Crossref]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Giacobino, E.

Goldman, E. R.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Gu, W.

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

Guo, C.-G.

J. Wang, X. Huang, F. Zan, C.-G. Guo, C. Cao, and J. Ren, “Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy,” Electrophoresis 33(13), 1987–1995 (2012).
[Crossref] [PubMed]

Hamann, H. F.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys. 112(7), 3117–3120 (2000).
[Crossref]

Han, J.

J. Han and K. Burgess, “Fluorescent indicators for intracellular pH,” Chem. Rev. 110(5), 2709–2728 (2010).
[Crossref] [PubMed]

Haraguchi, T.

Hermier, J. P.

Heuff, R.

J. L. Swift, R. Heuff, and D. T. Cramb, “A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots,” Biophys. J. 90(4), 1396–1410 (2006).
[Crossref] [PubMed]

Heuff, R. F.

R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
[Crossref] [PubMed]

Hiraoka, Y.

Hu, J.

J. Hu, L. Li Ls, W. Yang, L. Manna, L. Wang Lw, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292(5524), 2060–2063 (2001).
[Crossref] [PubMed]

Huang, X.

J. Wang, X. Huang, F. Zan, C.-G. Guo, C. Cao, and J. Ren, “Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy,” Electrophoresis 33(13), 1987–1995 (2012).
[Crossref] [PubMed]

Hwang, L. C.

L. C. Hwang and T. Wohland, “Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation,” ChemPhysChem 5(4), 549–551 (2004).
[Crossref] [PubMed]

Ishikawa, H.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6, 31091 (2016).
[Crossref] [PubMed]

Iwane, A. H.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Jin, T.

J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
[Crossref] [PubMed]

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Keller, S.

T. Liedl, S. Keller, F. C. Simmel, J. O. Rädler, and W. J. Parak, “Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy,” Small 1(10), 997–1003 (2005).
[Crossref] [PubMed]

Kinjo, M.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6, 31091 (2016).
[Crossref] [PubMed]

J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
[Crossref] [PubMed]

Komori, Y.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Kuno, M.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys. 112(7), 3117–3120 (2000).
[Crossref]

Larabell, C.

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

Larson, D. R.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102(40), 14284–14289 (2005).
[Crossref] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Li, L.

P. Zhang, L. Li, C. Dong, H. Qian, and J. Ren, “Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy,” Anal. Chim. Acta 546(1), 46–51 (2005).
[Crossref]

Li Ls, L.

J. Hu, L. Li Ls, W. Yang, L. Manna, L. Wang Lw, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292(5524), 2060–2063 (2001).
[Crossref] [PubMed]

Liedl, T.

T. Liedl, S. Keller, F. C. Simmel, J. O. Rädler, and W. J. Parak, “Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy,” Small 1(10), 997–1003 (2005).
[Crossref] [PubMed]

Long, E. C.

M. J. Murcia, D. L. Shaw, E. C. Long, and C. A. Naumann, “Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings,” Opt. Commun. 281(7), 1771–1780 (2008).
[Crossref] [PubMed]

Lukina, M. M.

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Lukyanov, S. A.

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Magde, D.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29(11), 705–708 (1972).
[Crossref]

Manna, L.

J. Hu, L. Li Ls, W. Yang, L. Manna, L. Wang Lw, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292(5524), 2060–2063 (2001).
[Crossref] [PubMed]

Matlashov, M. E.

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Mattoussi, H.

T. Pons, H. T. Uyeda, I. L. Medintz, and H. Mattoussi, “Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots,” J. Phys. Chem. B 110(41), 20308–20316 (2006).
[Crossref] [PubMed]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Medintz, I. L.

T. Pons, H. T. Uyeda, I. L. Medintz, and H. Mattoussi, “Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots,” J. Phys. Chem. B 110(41), 20308–20316 (2006).
[Crossref] [PubMed]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Messin, G.

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Miki, S.

Mikuni, S.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6, 31091 (2016).
[Crossref] [PubMed]

Murcia, M. J.

M. J. Murcia, D. L. Shaw, E. C. Long, and C. A. Naumann, “Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings,” Opt. Commun. 281(7), 1771–1780 (2008).
[Crossref] [PubMed]

Naumann, C. A.

M. J. Murcia, D. L. Shaw, E. C. Long, and C. A. Naumann, “Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings,” Opt. Commun. 281(7), 1771–1780 (2008).
[Crossref] [PubMed]

Nesbitt, D. J.

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys. 112(7), 3117–3120 (2000).
[Crossref]

Nie, S.

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[Crossref] [PubMed]

Novak, J. A.

M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[Crossref] [PubMed]

Ohmachi, M.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Oura, M.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6, 31091 (2016).
[Crossref] [PubMed]

J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
[Crossref] [PubMed]

Parak, W. J.

T. Liedl, S. Keller, F. C. Simmel, J. O. Rädler, and W. J. Parak, “Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy,” Small 1(10), 997–1003 (2005).
[Crossref] [PubMed]

Pelegati, V. B.

A. A. de Thomaz, D. B. Almeida, V. B. Pelegati, H. F. Carvalho, and C. L. Cesar, “Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking,” J. Phys. Chem. B 119(11), 4294–4299 (2015).
[Crossref] [PubMed]

Peng, J.

H. Qian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111(45), 16852–16857 (2007).
[Crossref]

Pinaud, F.

S. Doose, J. M. Tsay, F. Pinaud, and S. Weiss, “Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy,” Anal. Chem. 77(7), 2235–2242 (2005).
[Crossref] [PubMed]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Pons, T.

T. Pons, H. T. Uyeda, I. L. Medintz, and H. Mattoussi, “Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots,” J. Phys. Chem. B 110(41), 20308–20316 (2006).
[Crossref] [PubMed]

Prodanetz, N. N.

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Qian, H.

L. Shao, C. Dong, F. Sang, H. Qian, and J. Ren, “Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy,” J. Fluoresc. 19(1), 151–157 (2009).
[Crossref] [PubMed]

H. Qian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111(45), 16852–16857 (2007).
[Crossref]

C. Dong, H. Qian, N. Fang, and J. Ren, “Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy,” J. Phys. Chem. B 110(23), 11069–11075 (2006).
[Crossref] [PubMed]

P. Zhang, L. Li, C. Dong, H. Qian, and J. Ren, “Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy,” Anal. Chim. Acta 546(1), 46–51 (2005).
[Crossref]

Qiu, X.

H. Qian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111(45), 16852–16857 (2007).
[Crossref]

Rädler, J. O.

T. Liedl, S. Keller, F. C. Simmel, J. O. Rädler, and W. J. Parak, “Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy,” Small 1(10), 997–1003 (2005).
[Crossref] [PubMed]

Raymo, F. M.

M. Tomasulo, I. Yildiz, and F. M. Raymo, “pH-sensitive quantum dots,” J. Phys. Chem. B 110(9), 3853–3855 (2006).
[Crossref] [PubMed]

Ren, J.

J. Wang, X. Huang, F. Zan, C.-G. Guo, C. Cao, and J. Ren, “Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy,” Electrophoresis 33(13), 1987–1995 (2012).
[Crossref] [PubMed]

L. Shao, C. Dong, F. Sang, H. Qian, and J. Ren, “Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy,” J. Fluoresc. 19(1), 151–157 (2009).
[Crossref] [PubMed]

H. Qian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111(45), 16852–16857 (2007).
[Crossref]

C. Dong, H. Qian, N. Fang, and J. Ren, “Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy,” J. Phys. Chem. B 110(23), 11069–11075 (2006).
[Crossref] [PubMed]

P. Zhang, L. Li, C. Dong, H. Qian, and J. Ren, “Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy,” Anal. Chim. Acta 546(1), 46–51 (2005).
[Crossref]

Rigler, R.

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Rosenzweig, Z.

Y. Chen and Z. Rosenzweig, “Luminescent CdS quantum dots as selective ion probes,” Anal. Chem. 74(19), 5132–5138 (2002).
[Crossref] [PubMed]

Sang, F.

L. Shao, C. Dong, F. Sang, H. Qian, and J. Ren, “Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy,” J. Fluoresc. 19(1), 151–157 (2009).
[Crossref] [PubMed]

Shao, L.

L. Shao, C. Dong, F. Sang, H. Qian, and J. Ren, “Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy,” J. Fluoresc. 19(1), 151–157 (2009).
[Crossref] [PubMed]

Shaw, D. L.

M. J. Murcia, D. L. Shaw, E. C. Long, and C. A. Naumann, “Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings,” Opt. Commun. 281(7), 1771–1780 (2008).
[Crossref] [PubMed]

Shepard, J. R. E.

M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[Crossref] [PubMed]

Shirmanova, M. V.

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Simmel, F. C.

T. Liedl, S. Keller, F. C. Simmel, J. O. Rädler, and W. J. Parak, “Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy,” Small 1(10), 997–1003 (2005).
[Crossref] [PubMed]

Snopova, L. B.

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Swift, J. L.

R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
[Crossref] [PubMed]

J. L. Swift, R. Heuff, and D. T. Cramb, “A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots,” Biophys. J. 90(4), 1396–1410 (2006).
[Crossref] [PubMed]

Terai, H.

Tomasulo, M.

M. Tomasulo, I. Yildiz, and F. M. Raymo, “pH-sensitive quantum dots,” J. Phys. Chem. B 110(9), 3853–3855 (2006).
[Crossref] [PubMed]

Tsay, J. M.

J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
[Crossref] [PubMed]

S. Doose, J. M. Tsay, F. Pinaud, and S. Weiss, “Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy,” Anal. Chem. 77(7), 2235–2242 (2005).
[Crossref] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Uyeda, H. T.

T. Pons, H. T. Uyeda, I. L. Medintz, and H. Mattoussi, “Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots,” J. Phys. Chem. B 110(41), 20308–20316 (2006).
[Crossref] [PubMed]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Vishwasrao, H. D.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102(40), 14284–14289 (2005).
[Crossref] [PubMed]

Walling, M. A.

M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[Crossref] [PubMed]

Wang, J.

J. Wang, X. Huang, F. Zan, C.-G. Guo, C. Cao, and J. Ren, “Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy,” Electrophoresis 33(13), 1987–1995 (2012).
[Crossref] [PubMed]

Wang Lw, L.

J. Hu, L. Li Ls, W. Yang, L. Manna, L. Wang Lw, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292(5524), 2060–2063 (2001).
[Crossref] [PubMed]

Webb, W. W.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102(40), 14284–14289 (2005).
[Crossref] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29(11), 705–708 (1972).
[Crossref]

Weiss, S.

J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
[Crossref] [PubMed]

S. Doose, J. M. Tsay, F. Pinaud, and S. Weiss, “Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy,” Anal. Chem. 77(7), 2235–2242 (2005).
[Crossref] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Williams, R. M.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Wohland, T.

L. C. Hwang and T. Wohland, “Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation,” ChemPhysChem 5(4), 549–551 (2004).
[Crossref] [PubMed]

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Xu, Y.

H. Qian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111(45), 16852–16857 (2007).
[Crossref]

Yamamoto, J.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6, 31091 (2016).
[Crossref] [PubMed]

J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
[Crossref] [PubMed]

Yamashita, T.

Yanagida, T.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Yang, W.

J. Hu, L. Li Ls, W. Yang, L. Manna, L. Wang Lw, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292(5524), 2060–2063 (2001).
[Crossref] [PubMed]

Yao, J.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102(40), 14284–14289 (2005).
[Crossref] [PubMed]

Yildiz, I.

M. Tomasulo, I. Yildiz, and F. M. Raymo, “pH-sensitive quantum dots,” J. Phys. Chem. B 110(9), 3853–3855 (2006).
[Crossref] [PubMed]

Zagaynova, E. V.

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Zan, F.

J. Wang, X. Huang, F. Zan, C.-G. Guo, C. Cao, and J. Ren, “Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy,” Electrophoresis 33(13), 1987–1995 (2012).
[Crossref] [PubMed]

Zhang, P.

P. Zhang, L. Li, C. Dong, H. Qian, and J. Ren, “Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy,” Anal. Chim. Acta 546(1), 46–51 (2005).
[Crossref]

Zipfel, W. R.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102(40), 14284–14289 (2005).
[Crossref] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Anal. Chem. (2)

Y. Chen and Z. Rosenzweig, “Luminescent CdS quantum dots as selective ion probes,” Anal. Chem. 74(19), 5132–5138 (2002).
[Crossref] [PubMed]

S. Doose, J. M. Tsay, F. Pinaud, and S. Weiss, “Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy,” Anal. Chem. 77(7), 2235–2242 (2005).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

P. Zhang, L. Li, C. Dong, H. Qian, and J. Ren, “Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy,” Anal. Chim. Acta 546(1), 46–51 (2005).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

M. V. Shirmanova, I. N. Druzhkova, M. M. Lukina, M. E. Matlashov, V. V. Belousov, L. B. Snopova, N. N. Prodanetz, V. V. Dudenkova, S. A. Lukyanov, and E. V. Zagaynova, “Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2,” Biochim. Biophys. Acta 1850(9), 1905–1911 (2015).
[Crossref] [PubMed]

Biophys. J. (1)

J. L. Swift, R. Heuff, and D. T. Cramb, “A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots,” Biophys. J. 90(4), 1396–1410 (2006).
[Crossref] [PubMed]

Biopolymers (1)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Chem. Phys. (1)

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Chem. Rev. (1)

J. Han and K. Burgess, “Fluorescent indicators for intracellular pH,” Chem. Rev. 110(5), 2709–2728 (2010).
[Crossref] [PubMed]

ChemPhysChem (1)

L. C. Hwang and T. Wohland, “Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation,” ChemPhysChem 5(4), 549–551 (2004).
[Crossref] [PubMed]

Electrophoresis (1)

J. Wang, X. Huang, F. Zan, C.-G. Guo, C. Cao, and J. Ren, “Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy,” Electrophoresis 33(13), 1987–1995 (2012).
[Crossref] [PubMed]

Int. J. Mol. Sci. (1)

M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
[Crossref] [PubMed]

J. Chem. Phys. (1)

M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior,” J. Chem. Phys. 112(7), 3117–3120 (2000).
[Crossref]

J. Fluoresc. (1)

L. Shao, C. Dong, F. Sang, H. Qian, and J. Ren, “Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy,” J. Fluoresc. 19(1), 151–157 (2009).
[Crossref] [PubMed]

J. Phys. Chem. B (4)

M. Tomasulo, I. Yildiz, and F. M. Raymo, “pH-sensitive quantum dots,” J. Phys. Chem. B 110(9), 3853–3855 (2006).
[Crossref] [PubMed]

A. A. de Thomaz, D. B. Almeida, V. B. Pelegati, H. F. Carvalho, and C. L. Cesar, “Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking,” J. Phys. Chem. B 119(11), 4294–4299 (2015).
[Crossref] [PubMed]

C. Dong, H. Qian, N. Fang, and J. Ren, “Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy,” J. Phys. Chem. B 110(23), 11069–11075 (2006).
[Crossref] [PubMed]

T. Pons, H. T. Uyeda, I. L. Medintz, and H. Mattoussi, “Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots,” J. Phys. Chem. B 110(41), 20308–20316 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

H. Qian, C. Dong, J. Peng, X. Qiu, Y. Xu, and J. Ren, “High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition,” J. Phys. Chem. C 111(45), 16852–16857 (2007).
[Crossref]

Nat. Mater. (1)

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

M. J. Murcia, D. L. Shaw, E. C. Long, and C. A. Naumann, “Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings,” Opt. Commun. 281(7), 1771–1780 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29(11), 705–708 (1972).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102(40), 14284–14289 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6, 31091 (2016).
[Crossref] [PubMed]

Science (4)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[Crossref] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

J. Hu, L. Li Ls, W. Yang, L. Manna, L. Wang Lw, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292(5524), 2060–2063 (2001).
[Crossref] [PubMed]

Small (1)

T. Liedl, S. Keller, F. C. Simmel, J. O. Rädler, and W. J. Parak, “Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy,” Small 1(10), 997–1003 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 QR quantification. (a) TEM image of QRs. Yellow region of interests (ROIs) indicate the QRs selected for quantification. (b) Length distribution. (c) Width distribution.
Fig. 2
Fig. 2 Normalized CCFs of QDs/QRs in PBS. Antibunching, blinking, and translational diffusion were simultaneously observed in the CCFs. Measurement time: 120 s.
Fig. 3
Fig. 3 CCFs of QDs/QRs in a pH-controlled solution. (a) Normalized CCF in a pH-controlled solution. Measurements were performed just after the dissolution of the QDs/QRs in the solvent. (b)-(d) Blinking fraction, blinking relaxation time, and antibunching relaxation time of the QDs/QRs just after the dissolution. Fitting analysis was performed using the CCFs in Fig. 3(a). (e) Normalized CCF in a pH-controlled solution. The measurements were performed 1 h after the dissolution. (f)-(h) Blinking fraction, blinking relaxation time, and antibunching relaxation time of the QDs/QRs 1 h after the dissolution. Fitting analysis was performed using the CCFs in Fig. 3(e). Measurement time: 120 s
Fig. 4
Fig. 4 Time-dependent oligomerization and change in the photophysical parameters of the QDs. (a) Time-dependent CCF change for QD525, (b) Time-dependent CCF change for QD545. (c)-(e). Blinking relaxation time, blinking fraction, and antibunching time obtained from the time-course data ((a) and (b)). Time point indicates the time at which (a) and (b) were measured. 1 denotes the shortest time, while 5 denotes the longest time after the dissolution. Measurement time: 60 s.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G 1 , 2 ( τ ) = I 1 ( t ) I 2 ( t + τ ) I 1 ( t ) I 2 ( t ) 1 = G D ( τ ) G B ( τ ) G A B ( τ ) .
G D ( τ ) = 1 N ( 1 + τ τ D ) 1 ( 1 + τ τ D s 2 ) 1 2
G B ( τ ) = 1 + f B exp ( τ τ B ) .
G A B ( τ ) = 1 exp ( τ τ A B ) .

Metrics