Abstract

We demonstrate ultrasmall demultiplexers based on photolithographic photonic crystals. The footprint of the demultiplexers is 110 μm2 per channel. Our in-plane demultiplexers are clad with silica, which makes them stable and easy to integrate with other silicon photonic devices. We describe two types of demultiplexers with spacings of 136 and 267 GHz between channels for application to dense wavelength division multiplexing. Integrated titanium nitride heaters allow us to precisely control the channel wavelength. We report a 2.5 Gbps transmittance experiment with sufficiently small crosstalk and discuss ways of achieving even lower crosstalk between channels.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasmall demultiplexer by use of one-dimensional photonic crystal

Kazuaki Oya, Tatsuhiro Nakazawa, Shigeo Kittaka, Keiji Tsunetomo, Kenji Kintaka, Junji Nishii, and Kazuyuki Hirao
Opt. Lett. 30(2) 192-194 (2005)

Ultra-compact 32-channel drop filter with 100 GHz spacing

Yasushi Takahashi, Takashi Asano, Daiki Yamashita, and Susumu Noda
Opt. Express 22(4) 4692-4698 (2014)

A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects

Xuezhe Zheng, Ivan Shubin, Guoliang Li, Thierry Pinguet, Attila Mekis, Jin Yao, Hiren Thacker, Ying Luo, Joey Costa, Kannan Raj, John E. Cunningham, and Ashok V. Krishnamoorthy
Opt. Express 18(5) 5151-5160 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, A. Sugita, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS)Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, 2001), paper WB2–1.
    [Crossref]
  2. Y. Hibino, H. Okazaki, Y. Hida, and Y. Ohmori, “Propagation loss characteristics of long silica-based optical waveguides on 5 inch Si wafers,” Electron. Lett. 29(21), 1847–1848 (1993).
    [Crossref]
  3. S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, “N x N cyclic-frequency router with improved performance based on arrayed-waveguide grating,” J. Lightwave Technol. 27(18), 4097–4104 (2009).
    [Crossref]
  4. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), 673–675 (2004).
    [Crossref]
  5. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
    [Crossref]
  6. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
    [Crossref] [PubMed]
  7. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007).
    [Crossref] [PubMed]
  8. Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
    [Crossref] [PubMed]
  9. S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38(16), 2961–2964 (2013).
    [Crossref] [PubMed]
  10. S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8202207 (2014).
    [Crossref]
  11. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
    [Crossref]
  12. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [Crossref] [PubMed]
  13. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690 (2001).
    [Crossref]
  14. B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
    [Crossref] [PubMed]
  15. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
    [Crossref]
  16. H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226–2228 (2004).
    [Crossref]
  17. Y. Akahane, T. Asano, H. Takano, B.-S. Song, Y. Takana, and S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
    [Crossref] [PubMed]
  18. H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
    [Crossref] [PubMed]
  19. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14(25), 12394–12400 (2006).
    [Crossref] [PubMed]
  20. B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photonics Technol. Lett. 20(7), 532–534 (2008).
    [Crossref]
  21. T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
    [Crossref]
  22. Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
    [Crossref] [PubMed]
  23. F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
    [Crossref]
  24. Y. Ooka, T. Tetsumoto, A. Fushimi, W. Yoshiki, and T. Tanabe, “CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform,” Sci. Rep. 5, 11312 (2015).
    [Crossref] [PubMed]

2015 (1)

Y. Ooka, T. Tetsumoto, A. Fushimi, W. Yoshiki, and T. Tanabe, “CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform,” Sci. Rep. 5, 11312 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
[Crossref] [PubMed]

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8202207 (2014).
[Crossref]

2013 (2)

S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38(16), 2961–2964 (2013).
[Crossref] [PubMed]

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photonics Technol. Lett. 20(7), 532–534 (2008).
[Crossref]

2007 (1)

2006 (4)

2005 (1)

2004 (2)

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226–2228 (2004).
[Crossref]

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), 673–675 (2004).
[Crossref]

2003 (2)

B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

2001 (1)

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690 (2001).
[Crossref]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

1998 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

1993 (1)

Y. Hibino, H. Okazaki, Y. Hida, and Y. Ohmori, “Propagation loss characteristics of long silica-based optical waveguides on 5 inch Si wafers,” Electron. Lett. 29(21), 1847–1848 (1993).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, H. Takano, B.-S. Song, Y. Takana, and S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[Crossref] [PubMed]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226–2228 (2004).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

Ang, K. W.

Asano, T.

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
[Crossref] [PubMed]

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photonics Technol. Lett. 20(7), 532–534 (2008).
[Crossref]

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

Y. Akahane, T. Asano, H. Takano, B.-S. Song, Y. Takana, and S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[Crossref] [PubMed]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226–2228 (2004).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Baba, T.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), 673–675 (2004).
[Crossref]

Baets, R.

Baets, R. G.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

Bellanca, G.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Bogaerts, W.

Bramerie, L.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Cheben, P.

Chen, E. H.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Cheung, S.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8202207 (2014).
[Crossref]

Chutinan, A.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690 (2001).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Combrie, S.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

De Rossi, A.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Delâge, A.

Densmore, A.

Dumon, P.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Englund, D.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Fan, S.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

Fang, Q.

Fukazawa, T.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), 673–675 (2004).
[Crossref]

Fushimi, A.

Y. Ooka, T. Tetsumoto, A. Fushimi, W. Yoshiki, and T. Tanabe, “CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform,” Sci. Rep. 5, 11312 (2015).
[Crossref] [PubMed]

Gay, M.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Harris, N. C.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Haus, H. A.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

Hibino, Y.

Y. Hibino, H. Okazaki, Y. Hida, and Y. Ohmori, “Propagation loss characteristics of long silica-based optical waveguides on 5 inch Si wafers,” Electron. Lett. 29(21), 1847–1848 (1993).
[Crossref]

Hida, Y.

Y. Hibino, H. Okazaki, Y. Hida, and Y. Ohmori, “Propagation loss characteristics of long silica-based optical waveguides on 5 inch Si wafers,” Electron. Lett. 29(21), 1847–1848 (1993).
[Crossref]

Imada, M.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690 (2001).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Ishii, M.

Itoh, M.

Jaenen, P.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Janz, S.

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

Kamei, S.

Kaneko, A.

Kuramochi, E.

Kwong, D.-L.

Kymissis, I.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Lamontagne, B.

Lapointe, J.

Lehoucq, G.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Lengle, K.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Li, L.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Liow, T.-Y.

Lo, G. Q.

Malaguti, S.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Meng, F.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Mitsugi, S.

Mochizuki, M.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690 (2001).
[Crossref]

Nagashima, T.

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photonics Technol. Lett. 20(7), 532–534 (2008).
[Crossref]

Nguyen, T. N.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Nie, J.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Noda, S.

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
[Crossref] [PubMed]

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photonics Technol. Lett. 20(7), 532–534 (2008).
[Crossref]

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

Y. Akahane, T. Asano, H. Takano, B.-S. Song, Y. Takana, and S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[Crossref] [PubMed]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226–2228 (2004).
[Crossref]

B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690 (2001).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Notomi, M.

Ohmori, Y.

Y. Hibino, H. Okazaki, Y. Hida, and Y. Ohmori, “Propagation loss characteristics of long silica-based optical waveguides on 5 inch Si wafers,” Electron. Lett. 29(21), 1847–1848 (1993).
[Crossref]

Ohno, F.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), 673–675 (2004).
[Crossref]

Okamoto, K.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8202207 (2014).
[Crossref]

Okazaki, H.

Y. Hibino, H. Okazaki, Y. Hida, and Y. Ohmori, “Propagation loss characteristics of long silica-based optical waveguides on 5 inch Si wafers,” Electron. Lett. 29(21), 1847–1848 (1993).
[Crossref]

Ooka, Y.

Y. Ooka, T. Tetsumoto, A. Fushimi, W. Yoshiki, and T. Tanabe, “CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform,” Sci. Rep. 5, 11312 (2015).
[Crossref] [PubMed]

Pathak, S.

Pervez, N.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Post, E.

Schmid, J. H.

Schröder, T.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Shibata, T.

Shinya, A.

Shiue, R. J.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Simon, J. C.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Song, B. S.

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photonics Technol. Lett. 20(7), 532–534 (2008).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

Song, B.-S.

Song, J. F.

Su, T.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8202207 (2014).
[Crossref]

Taillaert, D.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

Takahashi, Y.

Takana, Y.

Takano, H.

Tanabe, T.

Y. Ooka, T. Tetsumoto, A. Fushimi, W. Yoshiki, and T. Tanabe, “CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform,” Sci. Rep. 5, 11312 (2015).
[Crossref] [PubMed]

Tetsumoto, T.

Y. Ooka, T. Tetsumoto, A. Fushimi, W. Yoshiki, and T. Tanabe, “CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform,” Sci. Rep. 5, 11312 (2015).
[Crossref] [PubMed]

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Thual, M.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Trillo, S.

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

Van Thourhout, D.

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

Waldron, P.

Wan, N.

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

Xu, D.-X.

Yamashita, D.

Yoo, S. J. B.

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8202207 (2014).
[Crossref]

Yoshiki, W.

Y. Ooka, T. Tetsumoto, A. Fushimi, W. Yoshiki, and T. Tanabe, “CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform,” Sci. Rep. 5, 11312 (2015).
[Crossref] [PubMed]

Yu, M. B.

Appl. Phys. Lett. (4)

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690 (2001).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003).
[Crossref]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226–2228 (2004).
[Crossref]

F. Meng, R. J. Shiue, N. Wan, L. Li, J. Nie, N. C. Harris, E. H. Chen, T. Schröder, N. Pervez, I. Kymissis, and D. Englund, “Waveguide-integrated photonic crystal spectrometer with camera readout,” Appl. Phys. Lett. 105(5), 051103 (2014).
[Crossref]

Electron. Lett. (1)

Y. Hibino, H. Okazaki, Y. Hida, and Y. Ohmori, “Propagation loss characteristics of long silica-based optical waveguides on 5 inch Si wafers,” Electron. Lett. 29(21), 1847–1848 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Cheung, T. Su, K. Okamoto, and S. J. B. Yoo, “Ultra-compact silicon photonic 512 × 512 25 GHz Arrayed Waveguide Grating Router,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8202207 (2014).
[Crossref]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photonics Technol. Lett. 20(7), 532–534 (2008).
[Crossref]

T. N. Nguyen, M. Gay, K. Lengle, L. Bramerie, M. Thual, J. C. Simon, S. Malaguti, G. Bellanca, S. Trillo, S. Combrie, G. Lehoucq, and A. De Rossi, “100-Gb/s wavelength division demultiplexing using a photonic crystal four-channel drop filter,” IEEE Photonics Technol. Lett. 25(9), 813–816 (2013).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), 673–675 (2004).
[Crossref]

Nature (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Opt. Express (7)

Y. Akahane, T. Asano, H. Takano, B.-S. Song, Y. Takana, and S. Noda, “Two-dimensional photonic-crystal-slab channeldrop filter with flat-top response,” Opt. Express 13(7), 2512–2530 (2005).
[Crossref] [PubMed]

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14(25), 12394–12400 (2006).
[Crossref] [PubMed]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007).
[Crossref] [PubMed]

Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultra-compact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22(4), 4692–4698 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80(5), 960–963 (1998).
[Crossref]

Sci. Rep. (1)

Y. Ooka, T. Tetsumoto, A. Fushimi, W. Yoshiki, and T. Tanabe, “CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform,” Sci. Rep. 5, 11312 (2015).
[Crossref] [PubMed]

Science (1)

B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[Crossref] [PubMed]

Other (1)

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, A. Sugita, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS)Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, 2001), paper WB2–1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic illustration of an eight-channel DeMUX. The hole diameter is 269 nm and the slab thickness is 210 nm. WM nanocavities are created by shifting the PhC hole positions 9, 6, and 3 nm. An eight-channel DeMUX has a step lattice constants of 1 nm. (b) Resonant wavelength of WM nanocavities, calculated with three-dimensional FDTD simulation. (c) Cross-section of DeMUX. Silicon PhCs have a 2000-nm-thick silica cladding. Titanium nitride heaters are embedded in the silica cladding and connected with aluminum wires.
Fig. 2
Fig. 2 (a) SEM image of a fabricated DeMUX. The silica cladding is removed for the SEM observation. (b) Optical microscope image of an eight-channel DeMUX. (c) Heater tunability of the eight-channel DeMUX. (d), (e) Transmission spectra of eight- and 16-channel DeMUXs, with channel spacings of 267 and 136 GHz, respectively.
Fig. 3
Fig. 3 (a) Setup for measuring eye diagrams and crosstalk. TLD: tunable laser diode (Santec TSL-510, linewidth of 200 kHz). EO: electro-optical modulator. EDFA: erbium-doped fiber amplifier. BPF: band-pass filter. VOA: variable optical attenuator. PPG: pulse pattern generator (Keysight 81134A, 3.35-GHz bandwidth). OSO: optical sampling oscilloscope (Agilent 86103A, 2.85-GHz bandwidth). (b), (c) Eye diagrams of the output at channel 1 with PRBS of 210 – 1 at 1 Gbps and 2.5 Gbps, respectively. Insets are reference eye diagrams when the DeMUX was replaced with another VOA with an attenuation the same as the transmittance of the channel 1 resonance. (d) Measured crosstalk with 1-GHz square pulse. Output signals in the same row were measured when the input signal had the same center wavelength. Output signals in the same columns were measured at the same output channels.
Fig. 4
Fig. 4 Transmission spectra calculated with two-dimensional FDTD simulation. Output W1.05 waveguides are placed in the same position as in the fabricated structure (a) and are shifted three rows to the right (b). In the two-dimensional FDTD simulation, we set the effective refractive index of silicon, neff, at 2.81. The diameter is specified at 300 nm to tune the resonances as in the experiment. The loaded Q of the optimized structure is 2.0 × 104.
Fig. 5
Fig. 5 (a) Transmission spectra of channels 1 (red) and 8 (dark blue) of the fabricated DeMUX. (b) and (c) are the calculated transmission spectra of channels 1 and 8 for the original structure and the three-column shift optimized structure, respectively. The inset shows the |Ey| profile of the band-edge mode, corresponding to the peak indicated with the arrow.

Tables (1)

Tables Icon

Table 1 Supplementary Reports in OSA Journals.

Metrics