Abstract

A new transmission Raman spectrometer has been developed using a spatial heterodyne spectrometer (SHS), taking advantage of the high etendue inherent in this class of spectrometer to maximize the light collected from the target. The system has been tested against paracetamol tablet samples. The instrument has been shown to accept light from 0.05 mm up to a 3 mm core diameter fibre bundle with a numerical aperture of 0.22, whilst no degradation in resolution is observed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband transmission Raman measurements using a field-widened spatial heterodyne Raman spectrometer with mosaic grating structure

Jun Qiu, Xiangdong Qi, Xiaotian Li, Yuguo Tang, Jiriga Lantu, Xiaotao Mi, and Heshig Bayan
Opt. Express 26(20) 26106-26119 (2018)

Stand-off Raman spectrometer for identification of liquids in a pressurized gas pipelines

Michael Foster, Jonathan Storey, Paul Stockwell, and David Widdup
Opt. Express 23(3) 3027-3034 (2015)

Development of a spatial heterodyne Raman spectrometer with echelle-mirror structure

Jun Qiu, Xiangdong Qi, Xiaotian Li, Zhenyu Ma, Jirigalantu, Yuguo Tang, Xiaotao Mi, Xiaoming Zheng, Rui Zhang, and Bayanheshig
Opt. Express 26(9) 11994-12006 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Pelletier, K. L. Davis, and R. A. Carpio, “Diagnostics and modeling in semiconductor manufacturing,” Proceedings symposium on process control, I, Electrochemical Society, Reno, NV (1995).
  2. I. M. Clegg, C. Norton, N. J. Everall, B. King, and H. Melvin, “On-Line Analysis using Raman Spectroscopy for process control during the manufacture of Titanium Dioxide,” Appl. Spectrosc. 55(9), 1138–1150 (2001).
    [Crossref]
  3. Y. S. Li and J. S. Church, “Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials,” J. Food Drug Anal. 22(1), 29–48 (2014).
    [Crossref] [PubMed]
  4. J. Johansson, S. Pettersson, and S. Folestad, “Characterization of different laser irradiation methods for quantitative Raman tablet assessment,” J. Pharm. Biomed. Anal. 39(3-4), 510–516 (2005).
    [Crossref] [PubMed]
  5. P. Matousek and A. W. Parker, “Bulk Raman analysis of pharmaceutical tablets,” Appl. Spectrosc. 60(12), 1353–1357 (2006).
    [Crossref] [PubMed]
  6. J. Johansson, A. Sparén, O. Svensson, S. Folestad, and M. Claybourn, “Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules,” Appl. Spectrosc. 61(11), 1211–1218 (2007).
    [Crossref] [PubMed]
  7. M. Boiret and Y. M. Ginot, “Counterfeit detection of pharmaceutical tablets with transmission Raman spectroscopy,” Spectrosc. Eur. 23(6), 6–9 (2011).
  8. T. Vigh, T. Horváthová, A. Balogh, P. L. Sóti, G. Drávavölgyi, Z. K. Nagy, and G. Marosi, “Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement,” Eur. J. Pharm. Sci. 49(4), 595–602 (2013).
    [Crossref] [PubMed]
  9. P. Matousek, N. Everall, D. Littlejohn, A. Nordon, and M. Bloomfield, “Dependence of signal on depth in transmission Raman spectroscopy,” Appl. Spectrosc. 65(7), 724–733 (2011).
    [Crossref] [PubMed]
  10. M. J. Pelletier, P. Larkin, and M. Santangelo, “Transmission Fourier Transform Raman spectroscopy of pharmaceutical tablet cores,” Appl. Spectrosc. 66(4), 451–457 (2012).
    [Crossref] [PubMed]
  11. J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial Heterodyne Spectrometer for the exploration of diffuse emission line a far ultraviolet wavelengths,” Astro. Phys. J. 396, 730–740 (1992). J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Thesis (Ph.D.) University of Wisconsin Madison (1991).
  12. M. Foster, J. Storey, P. Stockwell, and D. Widdup, “Stand-off Raman spectrometer for identification of liquids in a pressurized gas pipelines,” Opt. Express 23(3), 3027–3034 (2015).
    [Crossref] [PubMed]
  13. N. R. Gomer, C. M. Gordon, P. Lucey, S. K. Sharma, J. C. Carter, and S. M. Angel, “Raman spectroscopy using a spatial heterodyne spectrometer: proof of concept,” Appl. Spectrosc. 65(8), 849–857 (2011).
    [Crossref] [PubMed]
  14. K. A. Strange, K. C. Paul, and S. M. Angel, “Transmission Raman measurements using a spatial heterodyne Raman Spectrometer (SHRS),” Appl. Spectrosc. epub ahead of print (2016).
  15. F. C. Thorley, K. J. Baldwin, D. C. Lee, and D. N. Batchelder, “Dependence of the Raman spectra of drug substances upon laser excitation,” J. Raman Spectrosc. 37(1-3), 335–341 (2006).
    [Crossref]

2015 (1)

2014 (1)

Y. S. Li and J. S. Church, “Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials,” J. Food Drug Anal. 22(1), 29–48 (2014).
[Crossref] [PubMed]

2013 (1)

T. Vigh, T. Horváthová, A. Balogh, P. L. Sóti, G. Drávavölgyi, Z. K. Nagy, and G. Marosi, “Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement,” Eur. J. Pharm. Sci. 49(4), 595–602 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

2007 (1)

2006 (2)

F. C. Thorley, K. J. Baldwin, D. C. Lee, and D. N. Batchelder, “Dependence of the Raman spectra of drug substances upon laser excitation,” J. Raman Spectrosc. 37(1-3), 335–341 (2006).
[Crossref]

P. Matousek and A. W. Parker, “Bulk Raman analysis of pharmaceutical tablets,” Appl. Spectrosc. 60(12), 1353–1357 (2006).
[Crossref] [PubMed]

2005 (1)

J. Johansson, S. Pettersson, and S. Folestad, “Characterization of different laser irradiation methods for quantitative Raman tablet assessment,” J. Pharm. Biomed. Anal. 39(3-4), 510–516 (2005).
[Crossref] [PubMed]

2001 (1)

Angel, S. M.

Baldwin, K. J.

F. C. Thorley, K. J. Baldwin, D. C. Lee, and D. N. Batchelder, “Dependence of the Raman spectra of drug substances upon laser excitation,” J. Raman Spectrosc. 37(1-3), 335–341 (2006).
[Crossref]

Balogh, A.

T. Vigh, T. Horváthová, A. Balogh, P. L. Sóti, G. Drávavölgyi, Z. K. Nagy, and G. Marosi, “Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement,” Eur. J. Pharm. Sci. 49(4), 595–602 (2013).
[Crossref] [PubMed]

Batchelder, D. N.

F. C. Thorley, K. J. Baldwin, D. C. Lee, and D. N. Batchelder, “Dependence of the Raman spectra of drug substances upon laser excitation,” J. Raman Spectrosc. 37(1-3), 335–341 (2006).
[Crossref]

Bloomfield, M.

Boiret, M.

M. Boiret and Y. M. Ginot, “Counterfeit detection of pharmaceutical tablets with transmission Raman spectroscopy,” Spectrosc. Eur. 23(6), 6–9 (2011).

Carter, J. C.

Church, J. S.

Y. S. Li and J. S. Church, “Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials,” J. Food Drug Anal. 22(1), 29–48 (2014).
[Crossref] [PubMed]

Claybourn, M.

Clegg, I. M.

Drávavölgyi, G.

T. Vigh, T. Horváthová, A. Balogh, P. L. Sóti, G. Drávavölgyi, Z. K. Nagy, and G. Marosi, “Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement,” Eur. J. Pharm. Sci. 49(4), 595–602 (2013).
[Crossref] [PubMed]

Everall, N.

Everall, N. J.

Folestad, S.

J. Johansson, A. Sparén, O. Svensson, S. Folestad, and M. Claybourn, “Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules,” Appl. Spectrosc. 61(11), 1211–1218 (2007).
[Crossref] [PubMed]

J. Johansson, S. Pettersson, and S. Folestad, “Characterization of different laser irradiation methods for quantitative Raman tablet assessment,” J. Pharm. Biomed. Anal. 39(3-4), 510–516 (2005).
[Crossref] [PubMed]

Foster, M.

Ginot, Y. M.

M. Boiret and Y. M. Ginot, “Counterfeit detection of pharmaceutical tablets with transmission Raman spectroscopy,” Spectrosc. Eur. 23(6), 6–9 (2011).

Gomer, N. R.

Gordon, C. M.

Horváthová, T.

T. Vigh, T. Horváthová, A. Balogh, P. L. Sóti, G. Drávavölgyi, Z. K. Nagy, and G. Marosi, “Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement,” Eur. J. Pharm. Sci. 49(4), 595–602 (2013).
[Crossref] [PubMed]

Johansson, J.

J. Johansson, A. Sparén, O. Svensson, S. Folestad, and M. Claybourn, “Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules,” Appl. Spectrosc. 61(11), 1211–1218 (2007).
[Crossref] [PubMed]

J. Johansson, S. Pettersson, and S. Folestad, “Characterization of different laser irradiation methods for quantitative Raman tablet assessment,” J. Pharm. Biomed. Anal. 39(3-4), 510–516 (2005).
[Crossref] [PubMed]

King, B.

Larkin, P.

Lee, D. C.

F. C. Thorley, K. J. Baldwin, D. C. Lee, and D. N. Batchelder, “Dependence of the Raman spectra of drug substances upon laser excitation,” J. Raman Spectrosc. 37(1-3), 335–341 (2006).
[Crossref]

Li, Y. S.

Y. S. Li and J. S. Church, “Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials,” J. Food Drug Anal. 22(1), 29–48 (2014).
[Crossref] [PubMed]

Littlejohn, D.

Lucey, P.

Marosi, G.

T. Vigh, T. Horváthová, A. Balogh, P. L. Sóti, G. Drávavölgyi, Z. K. Nagy, and G. Marosi, “Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement,” Eur. J. Pharm. Sci. 49(4), 595–602 (2013).
[Crossref] [PubMed]

Matousek, P.

Melvin, H.

Nagy, Z. K.

T. Vigh, T. Horváthová, A. Balogh, P. L. Sóti, G. Drávavölgyi, Z. K. Nagy, and G. Marosi, “Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement,” Eur. J. Pharm. Sci. 49(4), 595–602 (2013).
[Crossref] [PubMed]

Nordon, A.

Norton, C.

Parker, A. W.

Pelletier, M. J.

Pettersson, S.

J. Johansson, S. Pettersson, and S. Folestad, “Characterization of different laser irradiation methods for quantitative Raman tablet assessment,” J. Pharm. Biomed. Anal. 39(3-4), 510–516 (2005).
[Crossref] [PubMed]

Santangelo, M.

Sharma, S. K.

Sóti, P. L.

T. Vigh, T. Horváthová, A. Balogh, P. L. Sóti, G. Drávavölgyi, Z. K. Nagy, and G. Marosi, “Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement,” Eur. J. Pharm. Sci. 49(4), 595–602 (2013).
[Crossref] [PubMed]

Sparén, A.

Stockwell, P.

Storey, J.

Svensson, O.

Thorley, F. C.

F. C. Thorley, K. J. Baldwin, D. C. Lee, and D. N. Batchelder, “Dependence of the Raman spectra of drug substances upon laser excitation,” J. Raman Spectrosc. 37(1-3), 335–341 (2006).
[Crossref]

Vigh, T.

T. Vigh, T. Horváthová, A. Balogh, P. L. Sóti, G. Drávavölgyi, Z. K. Nagy, and G. Marosi, “Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement,” Eur. J. Pharm. Sci. 49(4), 595–602 (2013).
[Crossref] [PubMed]

Widdup, D.

Appl. Spectrosc. (6)

Eur. J. Pharm. Sci. (1)

T. Vigh, T. Horváthová, A. Balogh, P. L. Sóti, G. Drávavölgyi, Z. K. Nagy, and G. Marosi, “Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement,” Eur. J. Pharm. Sci. 49(4), 595–602 (2013).
[Crossref] [PubMed]

J. Food Drug Anal. (1)

Y. S. Li and J. S. Church, “Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials,” J. Food Drug Anal. 22(1), 29–48 (2014).
[Crossref] [PubMed]

J. Pharm. Biomed. Anal. (1)

J. Johansson, S. Pettersson, and S. Folestad, “Characterization of different laser irradiation methods for quantitative Raman tablet assessment,” J. Pharm. Biomed. Anal. 39(3-4), 510–516 (2005).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

F. C. Thorley, K. J. Baldwin, D. C. Lee, and D. N. Batchelder, “Dependence of the Raman spectra of drug substances upon laser excitation,” J. Raman Spectrosc. 37(1-3), 335–341 (2006).
[Crossref]

Opt. Express (1)

Spectrosc. Eur. (1)

M. Boiret and Y. M. Ginot, “Counterfeit detection of pharmaceutical tablets with transmission Raman spectroscopy,” Spectrosc. Eur. 23(6), 6–9 (2011).

Other (3)

M. J. Pelletier, K. L. Davis, and R. A. Carpio, “Diagnostics and modeling in semiconductor manufacturing,” Proceedings symposium on process control, I, Electrochemical Society, Reno, NV (1995).

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial Heterodyne Spectrometer for the exploration of diffuse emission line a far ultraviolet wavelengths,” Astro. Phys. J. 396, 730–740 (1992). J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Thesis (Ph.D.) University of Wisconsin Madison (1991).

K. A. Strange, K. C. Paul, and S. M. Angel, “Transmission Raman measurements using a spatial heterodyne Raman Spectrometer (SHRS),” Appl. Spectrosc. epub ahead of print (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Raman observational arrangements, impinging laser is shown by the red arrow, the scattering volume through the tablet is shown by the coloured area on the sample, the purple arrow shows the Raman photons being collected by the spectrometer, the two arrangements are: A = Transmission measurement setup; B = Backscatter measurement setup.
Fig. 2
Fig. 2 A spatial heterodyne spectrometer arrangement.
Fig. 3
Fig. 3 The assembled spectrometer.
Fig. 4
Fig. 4 Transmission Raman collection setup.
Fig. 5
Fig. 5 Paracetamol Raman spectra when observed by the 50 µm core diameter fiber (dashed blue) as well as the 2 mm (solid dark blue) and 3 mm (solid orange) diameter fiber bundles. Plotted underneath is the residual or deviation between the 2 mm spectrum and the other two spectra: 3 mm (orange) and 50 µm (blue). The spectra taken with the 2 mm fiber bundle was taken as a standard, with the other spectra showing a normalized RMS deviation of 7.2 and 6.7% for the 3 mm and 50 µm fiber spectra. We can see from the spectra that the deviation is due to increased noise in the case of the 50 µm fiber spectra, while the deviation in the 3 mm case was due to a change in calibration when changing fiber adapters.
Fig. 6
Fig. 6 Required integration time as a function of fiber area to observe 3970 photons per pixel with instrument in a Transmission (black) and standoff (red) configuration. Simulated (open circles) and observed data (filled circles).

Tables (1)

Tables Icon

Table 1 Optical fibres used in the experiment

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δλ= RFΔλ W s n W p
Ω= 2π R

Metrics