Abstract

A novel liquid crystal spherical microlens array with high optical power and almost 100% of fill-factor is proposed and experimentally demonstrated. The combination of a specific structure and electrical waveforms applied to the electrodes generates an array of spherical microlenses with square aperture. The manufacturing process is simple (patterned electrodes) and the microlenses are reconfigurable by low voltage signals (the electrodes are in contact with the LC layer). This device could be a key for the next generation of autostereoscopic devices based on Integral Imaging technique.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ommatidia structure based on double layers of liquid crystal microlens array

Shengwu Kang, Tong Qing, Hongshi Sang, Xinyu Zhang, and Changsheng Xie
Appl. Opt. 52(33) 7912-7918 (2013)

Compound liquid crystal microlens array with convergent and divergent functions

Shengwu Kang and Xinyu Zhang
Appl. Opt. 55(12) 3333-3338 (2016)

Liquid crystal microlens with dual apertures and electrically controlling focus shift

Shengwu Kang and Xinyu Zhang
Appl. Opt. 53(2) 244-248 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Tech. 75(9), 563–573 (2008).
    [Crossref]
  2. J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
    [Crossref]
  3. J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
    [Crossref] [PubMed]
  4. J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
    [Crossref] [PubMed]
  5. J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
    [Crossref]
  6. D. W. Berreman, “Variable-focus LC-lens system,” Bell Telephone Laboratories, United States patent US 4190330 (February 26, 1980).
  7. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  8. D. Cleverly, “Creation of a lens by field controlled variation of the index of refraction in a liquid crystal,” Syracuse University (1982).
  9. T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
    [Crossref]
  10. T. Nose and S. Sato, “Optical properties of a liquid crystal microlens,” in Intl Conf on Optoelectronic Science and Engineering (1990), paper 1230.
  11. G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” Proc. SPIE 1168, 352–359 (1989).
    [Crossref]
  12. G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
    [Crossref]
  13. M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
    [Crossref]
  14. H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
    [Crossref]
  15. H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
    [Crossref]
  16. R. Rajasekharan, Q. Dai, H. Butt, K. Won, T. D. Wilkinson, and G. A. J. Amaratunga, “Optimization of nanotube electrode geometry in a liquid crystal media from wavefront aberrations,” Appl. Opt. 51(4), 422–428 (2012).
    [Crossref] [PubMed]
  17. S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  18. T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
    [Crossref]
  19. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
    [Crossref]
  20. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [Crossref] [PubMed]
  21. X. Zhao, C. Liu, D. Zhang, and Y. Luo, “Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab,” Appl. Opt. 51(15), 3024–3030 (2012).
    [Crossref] [PubMed]
  22. M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
    [Crossref] [PubMed]
  23. J.-H. Lee, J.-H. Beak, Y. Kim, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “Switchable reflective lens based on cholesteric liquid crystal,” Opt. Express 22(8), 9081–9086 (2014).
    [Crossref] [PubMed]
  24. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
    [Crossref] [PubMed]
  25. Y.-H. Lin and M.-S. Chen, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
    [Crossref]
  26. H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [Crossref] [PubMed]
  27. Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
    [Crossref]
  28. A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
    [Crossref] [PubMed]
  29. Pixeloptics, “Adjustable electro-active optical system and uses thereof,” United States patent 20140204333 A1 (2014).
  30. Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [Crossref] [PubMed]
  31. L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
    [Crossref] [PubMed]
  32. J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
    [Crossref]
  33. L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
    [Crossref]
  34. J. F. Algorri, V. Urruchi, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 46, 327–336 (2014).
  35. J. F. Algorri, V. Urruchi, B. García-Cámara, and J. M. Sánchez-Pena, “Liquid crystal microlenses for autostereoscopic displays,” Materials (Basel) 9(1), 1–17 (2016).
    [Crossref]
  36. R. A. M. Hikmet, T. V. Bommel, T. C. Kraan, L. H. C. Kusters, S. T. Zwart, O. H. Willemsen, and M. Petrus, “Beam-shaping device,” Koninklijke Philips Electronics N.V., United States patent US 20100149444 A1 (June 17, 2010).
  37. Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
    [Crossref] [PubMed]
  38. J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
    [Crossref]
  39. A. K. Kirby, P. J. W. Hands, and G. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15(21), 13496–13501 (2007).
    [Crossref] [PubMed]
  40. J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
    [Crossref] [PubMed]
  41. H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
    [Crossref]
  42. X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
    [Crossref] [PubMed]
  43. J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
    [Crossref]
  44. M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
    [Crossref]
  45. J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
    [Crossref] [PubMed]

2016 (2)

J. F. Algorri, V. Urruchi, B. García-Cámara, and J. M. Sánchez-Pena, “Liquid crystal microlenses for autostereoscopic displays,” Materials (Basel) 9(1), 1–17 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

2015 (5)

H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
[Crossref]

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
[Crossref] [PubMed]

2014 (7)

J.-H. Lee, J.-H. Beak, Y. Kim, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “Switchable reflective lens based on cholesteric liquid crystal,” Opt. Express 22(8), 9081–9086 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 46, 327–336 (2014).

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

2013 (6)

2012 (5)

2010 (1)

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

2009 (1)

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

2008 (1)

G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Tech. 75(9), 563–573 (2008).
[Crossref]

2007 (1)

2006 (1)

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

2004 (1)

2003 (1)

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

2000 (2)

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[Crossref]

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

1999 (1)

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

1992 (1)

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
[Crossref]

1989 (3)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” Proc. SPIE 1168, 352–359 (1989).
[Crossref]

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Algorri, J. F.

J. F. Algorri, V. Urruchi, B. García-Cámara, and J. M. Sánchez-Pena, “Liquid crystal microlenses for autostereoscopic displays,” Materials (Basel) 9(1), 1–17 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 46, 327–336 (2014).

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
[Crossref] [PubMed]

Amaratunga, G. A. J.

Beak, J.-H.

Belopukhov, V. N.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Bennis, N.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

Bhowmik, A.

Bos, P. J.

Butt, H.

Cao, Z.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Chang, K.-H.

Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
[Crossref]

Chang, Y.-C.

Chen, H. S.

Chen, H.-S.

Chen, M.-S.

H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Y.-H. Lin and M.-S. Chen, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
[Crossref]

Clark, M. G.

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” Proc. SPIE 1168, 352–359 (1989).
[Crossref]

Collings, N.

Dai, Q.

Duston, D.

Funaki, H.

H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
[Crossref]

Garcia-Camara, B.

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

Garcia-Cámara, B.

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

García-Cámara, B.

J. F. Algorri, V. Urruchi, B. García-Cámara, and J. M. Sánchez-Pena, “Liquid crystal microlenses for autostereoscopic displays,” Materials (Basel) 9(1), 1–17 (2016).
[Crossref]

Hands, P. J. W.

Hassanfiroozi, A.

Honma, M.

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

Hu, L.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Huang, L.-S.

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Huang, Y.-P.

Ito, M.

H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
[Crossref]

Javidi, B.

Jen, T.-H.

Kawamura, M.

Kim, J.-H.

Kim, Y.

Kirby, A. K.

Kizaki, Y.

H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
[Crossref]

Kizu, Y.

H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
[Crossref]

Kobayashi, M.

H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
[Crossref]

Kuo, C.-T.

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Kwon, H.

H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
[Crossref]

Lee, J.-H.

Lee, Y.-J.

Li, D.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Lin, C.-H.

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, H.-C.

Lin, S.-H.

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, Y. H.

Lin, Y.-H.

Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
[Crossref]

Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Y.-H. Lin and M.-S. Chen, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
[Crossref]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

Liu, C.

Liu, Y.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Loktev, M. Y.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Love, G. D.

J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
[Crossref] [PubMed]

A. K. Kirby, P. J. W. Hands, and G. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15(21), 13496–13501 (2007).
[Crossref] [PubMed]

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[Crossref]

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Lu, L.

Lu, X.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Luo, Y.

Masuda, S.

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
[Crossref]

Morawiak, P.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

Mu, Q.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Nakamura, K.

Naumov, A. F.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[Crossref]

Nevskaya, G. E.

G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Tech. 75(9), 563–573 (2008).
[Crossref]

Nose, T.

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
[Crossref]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

Otón, J. M.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 46, 327–336 (2014).

Peng, Z.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Powell, N.

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” Proc. SPIE 1168, 352–359 (1989).
[Crossref]

Purvis, A.

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” Proc. SPIE 1168, 352–359 (1989).
[Crossref]

Rajasekharan, R.

Ren, H.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Sánchez-Pena, J. M.

J. F. Algorri, V. Urruchi, B. García-Cámara, and J. M. Sánchez-Pena, “Liquid crystal microlenses for autostereoscopic displays,” Materials (Basel) 9(1), 1–17 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 46, 327–336 (2014).

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

Sato, S.

M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
[Crossref]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Sergan, V.

Shen, X.

Shieh, H.-P. D.

Sun, J.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Suzuki, K.

H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
[Crossref]

Takahashi, S.

Ting, C.-H.

Tomilin, M. G.

G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Tech. 75(9), 563–573 (2008).
[Crossref]

Tsou, Y.-S.

Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
[Crossref]

Uchida, M.

Ueno, R.

H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
[Crossref]

Urruchi, V.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, B. García-Cámara, and J. M. Sánchez-Pena, “Liquid crystal microlenses for autostereoscopic displays,” Materials (Basel) 9(1), 1–17 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 46, 327–336 (2014).

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
[Crossref] [PubMed]

J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
[Crossref] [PubMed]

Van Heugten, T.

Vdovin, G. V.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Vladimirov, F. L.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Wang, B.

Wang, Y. J.

Wilkinson, T. D.

Williams, G.

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” Proc. SPIE 1168, 352–359 (1989).
[Crossref]

Won, K.

Wu, S.-T.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Xiao, X.

Xu, S.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Xuan, L.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

Yanase, S.

Ye, M.

Yu, C.-J.

Zhang, D.

Zhao, X.

Appl. Opt. (4)

Appl. Phys. Lett. (4)

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

S.-H. Lin, L.-S. Huang, C.-H. Lin, and C.-T. Kuo, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

IEEE Electron Device Lett. (2)

J. F. Algorri, V. Urruchi, B. Garcia-Camara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical Liquid Crystal Microlens Array with Rotary Optical Power and Tunable Focal Length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Kwon, Y. Kizu, Y. Kizaki, M. Ito, M. Kobayashi, R. Ueno, K. Suzuki, and H. Funaki, “A gradient index liquid crystal microlens array for light-field camera applications,” IEEE Photonics Technol. Lett. 27(8), 836–839 (2015).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. Appl. Phys. (1)

Y.-S. Tsou, K.-H. Chang, and Y.-H. Lin, “A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system,” J. Appl. Phys. 113(24), 244504 (2013).
[Crossref]

J. Disp. Technol. (2)

Y.-H. Lin and M.-S. Chen, “A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses,” J. Disp. Technol. 8(7), 401–404 (2012).
[Crossref]

J. F. Algorri, V. Urruchi, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 46, 327–336 (2014).

J. Opt. A, Pure Appl. Opt. (1)

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Wavefront correction based on a reflective liquid crystal wavefront sensor,” J. Opt. A, Pure Appl. Opt. 11(1), 015511 (2009).
[Crossref]

J. Opt. Tech. (1)

G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Tech. 75(9), 563–573 (2008).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(Part 1, No. 5B), 1643–1646 (1992).
[Crossref]

Liq. Cryst. (2)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[Crossref]

Liq. Cryst. Today (1)

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[Crossref]

Materials (Basel) (2)

J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Liquid crystal lensacons, logarithmic and linear axicons,” Materials (Basel) 7(4), 2593–2604 (2014).
[Crossref]

J. F. Algorri, V. Urruchi, B. García-Cámara, and J. M. Sánchez-Pena, “Liquid crystal microlenses for autostereoscopic displays,” Materials (Basel) 9(1), 1–17 (2016).
[Crossref]

Opt. Express (10)

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
[Crossref] [PubMed]

H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
[Crossref] [PubMed]

M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
[Crossref] [PubMed]

J.-H. Lee, J.-H. Beak, Y. Kim, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “Switchable reflective lens based on cholesteric liquid crystal,” Opt. Express 22(8), 9081–9086 (2014).
[Crossref] [PubMed]

J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
[Crossref] [PubMed]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref] [PubMed]

A. K. Kirby, P. J. W. Hands, and G. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15(21), 13496–13501 (2007).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Rev. (1)

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

Proc. SPIE (1)

G. Williams, N. Powell, A. Purvis, and M. G. Clark, “Electrically controllable liquid crystal fresnel lens,” Proc. SPIE 1168, 352–359 (1989).
[Crossref]

Rev. Sci. Instrum. (1)

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[Crossref]

Other (5)

D. W. Berreman, “Variable-focus LC-lens system,” Bell Telephone Laboratories, United States patent US 4190330 (February 26, 1980).

T. Nose and S. Sato, “Optical properties of a liquid crystal microlens,” in Intl Conf on Optoelectronic Science and Engineering (1990), paper 1230.

D. Cleverly, “Creation of a lens by field controlled variation of the index of refraction in a liquid crystal,” Syracuse University (1982).

Pixeloptics, “Adjustable electro-active optical system and uses thereof,” United States patent 20140204333 A1 (2014).

R. A. M. Hikmet, T. V. Bommel, T. C. Kraan, L. H. C. Kusters, S. T. Zwart, O. H. Willemsen, and M. Petrus, “Beam-shaping device,” Koninklijke Philips Electronics N.V., United States patent US 20100149444 A1 (June 17, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Tunable LC microlens array. (a) One interdigitated comb-type finger electrode, (b) arrangement of the device, (c) top view of the electrodes.
Fig. 2
Fig. 2 Experimental set-up for characterizing tunable LC spherical microlens arrays.
Fig. 3
Fig. 3 Phase shifted electrical signals for each electrode when the LC parameters are optimized.
Fig. 4
Fig. 4 Designed phase shifted electrical signals for compensating adverse effects of the LC material.
Fig. 5
Fig. 5 Experimental interference fringes after compensating the adverse effects. (a) Only of the elastic anisotropy, (b) Of both, the elastic anisotropy and the threshold voltage, Vth.
Fig. 6
Fig. 6 Tuning of optical power for Voff = 2Vp, amplitudes: (a) A1 = A2 = 0.5Vp and A3 = A4 = 1Vp, (b) A1 = A2 = 1Vp and A3 = A4 = 1.6Vp, (c) A1 = A2 = 1.5Vp and A3 = A4 = 1.9Vp.
Fig. 7
Fig. 7 (Left) example of phase shift profiles extracted from interference patterns of Fig. 6. (Right) resulting focal distances considering the voltage of the upper electrode (V1 and V2) in the x axis.

Metrics