Abstract

Fiber figure of merit (FOM), derived from the GN-model theory and validated by several experiments, can predict improvement in OSNR or transmission distance using advanced fibers. We review the FOM theory and present design results of optimal fiber for large capacity long haul transmission, showing variation in design results according to system configuration.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-Area Low-Loss Fibers and Advanced Amplifiers for High-Capacity Long-Haul Optical Networks [Invited]

B. Zhu, D. Peckham, A. H. McCurdy, R. Lingle, B. Palsdottir, M. F. Yan, P. W. Wisk, and D. J. DiGiovanni
J. Opt. Commun. Netw. 8(7) A55-A63 (2016)

Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission

Jindong Wu, Liuhua Chen, Qingguo Li, Wenwen Wu, Keyuan Sun, and Xingkun Wu
Appl. Opt. 50(20) 3538-3546 (2011)

Long-haul quasi-single-mode transmissions using few-mode fiber in presence of multi-path interference

Qi Sui, HongYu Zhang, John D. Downie, William A. Wood, Jason Hurley, Snigdharaj Mishra, Alan Pak Tao Lau, Chao Lu, Hwa-Yaw Tam, and P. K. A. Wai
Opt. Express 23(3) 3156-3169 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  2. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [Crossref]
  3. E. Ip and J. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  4. R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
    [Crossref]
  5. A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Z. Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
    [Crossref]
  6. T. Umeki, T. Kazama, A. Sano, K. Shibahara, K. Suzuki, M. Abe, H. Takenouchi, and Y. Miyamoto, “Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation,” Opt. Express 24(15), 16945–16951 (2016).
    [Crossref] [PubMed]
  7. M. Hirano, T. Haruna, Y. Tamura, T. Kawano, S. Ohnuki, Y. Yamamoto, Y. Koyano, and T. Sasaki, “Record low loss, record high FOM optical fiber with manufacturable process,” OFC 2013, paper PDP5A.7.
  8. Y. Yamamoto, Y. Kawaguchi, and M. Hirano, “Low-loss and low-nonlinearity pure-silica-core fiber for C- and L-band broadband transmission,” J. Lightwave Technol. 34(2), 321–326 (2016).
    [Crossref]
  9. S. Makovejs, C. C. Roberts, F. Palacios, H. B. Matthews, D. A. Lewis, D. T. Smith, P. G. Diehl, J. J. Johnson, J. D. Patterson, C. R. Towery and S. Y. Ten, “Record-low (0.1460 dB/km) attenuation ultra-large Aeff optical fiber for submarine applications,” OFC 2015, paper Th5A.2.
  10. S. Makovejs, J. D. Downie, J. E. Hurley, J. S. Clark, I. Roudas, C. C. Roberts, H. B. Matthews, F. Palacios, D. A. Lewis, D. T. Smith, P. G. Diehl, J. J. Johnson, C. R. Towery, and S. Y. Ten, “Towards superior transmission performance in submarine systems: leveraging ultralow attenuation and large effective area,” J. Lightwave Technol. 34(1), 114–120 (2016).
    [Crossref]
  11. D. Peckham, A. Klein, P. I. Borel, R. Jensen, O. Levring, K. Carlson, M. Yan, P. Wisk, D. Trevor, R. Lingle, Jr., A. McCurdy, B. Zhu, Y. Zou, R. Norris, B. Palsdottir and D. Vaidya, “Optimization of large area, low loss fiber designs for C+L band transmission,” OFC 2016, paper Tu3G.1.
  12. P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightwave Technol. 30(24), 3857–3879 (2012).
    [Crossref]
  13. M. Hirano, Y. Yamamoto, V.A.J.M. Sleiffer and T. Sasaki, “Analytical OSNR formulation validated with 100G-WDM experiments and optimal subsea fiber proposal,” OFC2013, paper OTu2B.6.
  14. Y. Yamamoto, M. Hirano, V.A.J.M. Sleiffer, and T. Sasaki, “Analytical OSNR formulation considering nonlinear compensation,” OECC 2013, paper WR4–3.
  15. V. Curri, A. Carena, G. Bosco, P. Poggiolini, M. Hirano, Y. Yamamoto and F. Forghieri, “Fiber figure of merit based on maximum reach,” OFC2013, paper OTh3G.2.
  16. H. Yamaguchi, Y. Yamamoto, T. Hasegawa, T. Kawano, M. Hirano and Y. Koyano, “Ultra-low loss and large Aeff Pure-silica core fiber advances,” SubOptic 2016, paper EC07.
  17. Sumitomo Electric Industries, Ltd., “Sumitomo Submarine Optical Fibers–Field-proven over 3 decades–“, http://global-sei.com/fttx/images_n/TR-16042SumitomoSumarineFibers-1.pdf .
  18. Corning Incorporated, “Corning® Vascade® optical fiber”, https://www.corning.com/media/worldwide/coc/documents/Fiber/PI1445_07_14_English.pdf
  19. O. F. S. Fitel, LLC, “TeraWave™ ocean optical fiber - SCUBA”, http://fiber-optic-catalog.ofsoptics.com/Asset/TeraWave-Scuba-Ocean-Fibers-fiber-150-web.pdf
  20. Y. Yamamoto, M. Hirano, K. Kuwahara, and T. Sasaki, “OSNR-enhancing pure-silica-core fiber with large effective area and low attenuation,” OFC 2010, paper OTuI2.
  21. M. Hirano, Y. Yamamoto, Y. Tamura, T. Haruna, and T. Sasaki, “Aeff enlarged pure-silica-core fiber having ring-core profile,” OFC 2012, paper OTh4I.2.

2016 (5)

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

S. Makovejs, J. D. Downie, J. E. Hurley, J. S. Clark, I. Roudas, C. C. Roberts, H. B. Matthews, F. Palacios, D. A. Lewis, D. T. Smith, P. G. Diehl, J. J. Johnson, C. R. Towery, and S. Y. Ten, “Towards superior transmission performance in submarine systems: leveraging ultralow attenuation and large effective area,” J. Lightwave Technol. 34(1), 114–120 (2016).
[Crossref]

Y. Yamamoto, Y. Kawaguchi, and M. Hirano, “Low-loss and low-nonlinearity pure-silica-core fiber for C- and L-band broadband transmission,” J. Lightwave Technol. 34(2), 321–326 (2016).
[Crossref]

A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Z. Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

T. Umeki, T. Kazama, A. Sano, K. Shibahara, K. Suzuki, M. Abe, H. Takenouchi, and Y. Miyamoto, “Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation,” Opt. Express 24(15), 16945–16951 (2016).
[Crossref] [PubMed]

2012 (1)

2010 (2)

2008 (1)

Abe, M.

Al-Khateeb, M. A. Z.

Bayvel, P.

Clark, J. S.

Cotter, D.

Dar, R.

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

Diehl, P. G.

Doran, N.

Downie, J. D.

Ellis, A. D.

Essiambre, R. J.

Fabbri, S.

Foschini, G. J.

Goebel, B.

Gordienko, V.

Harper, P.

Hirano, M.

Hurley, J. E.

Ip, E.

Iqbal, M. A.

Johnson, J. J.

Kahn, J.

Kawaguchi, Y.

Kazama, T.

Kramer, G.

Lavery, D.

Lewis, D. A.

Liga, G.

Maher, R.

Makovejs, S.

Matthews, H. B.

McCarthy, M. E.

Miyamoto, Y.

Mondaca, G. S.

Palacios, F.

Perentos, A.

Phillips, I. D.

Poggiolini, P.

Roberts, C. C.

Roudas, I.

Sano, A.

Shibahara, K.

Smith, D. T.

Stephens, M. F. C.

Suzuki, K.

Sygletos, S.

Takenouchi, H.

Tan, M.

Ten, S. Y.

Towery, C. R.

Turitsyn, S. K.

Umeki, T.

Winzer, P. J.

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

Yamamoto, Y.

Zhao, J.

IEEE Photonics Technol. Lett. (1)

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

J. Lightwave Technol. (7)

E. Ip and J. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
[Crossref]

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightwave Technol. 30(24), 3857–3879 (2012).
[Crossref]

S. Makovejs, J. D. Downie, J. E. Hurley, J. S. Clark, I. Roudas, C. C. Roberts, H. B. Matthews, F. Palacios, D. A. Lewis, D. T. Smith, P. G. Diehl, J. J. Johnson, C. R. Towery, and S. Y. Ten, “Towards superior transmission performance in submarine systems: leveraging ultralow attenuation and large effective area,” J. Lightwave Technol. 34(1), 114–120 (2016).
[Crossref]

Y. Yamamoto, Y. Kawaguchi, and M. Hirano, “Low-loss and low-nonlinearity pure-silica-core fiber for C- and L-band broadband transmission,” J. Lightwave Technol. 34(2), 321–326 (2016).
[Crossref]

A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Z. Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s transmission reach enhancement using 10 × 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

Opt. Express (1)

Other (12)

M. Hirano, T. Haruna, Y. Tamura, T. Kawano, S. Ohnuki, Y. Yamamoto, Y. Koyano, and T. Sasaki, “Record low loss, record high FOM optical fiber with manufacturable process,” OFC 2013, paper PDP5A.7.

S. Makovejs, C. C. Roberts, F. Palacios, H. B. Matthews, D. A. Lewis, D. T. Smith, P. G. Diehl, J. J. Johnson, J. D. Patterson, C. R. Towery and S. Y. Ten, “Record-low (0.1460 dB/km) attenuation ultra-large Aeff optical fiber for submarine applications,” OFC 2015, paper Th5A.2.

M. Hirano, Y. Yamamoto, V.A.J.M. Sleiffer and T. Sasaki, “Analytical OSNR formulation validated with 100G-WDM experiments and optimal subsea fiber proposal,” OFC2013, paper OTu2B.6.

Y. Yamamoto, M. Hirano, V.A.J.M. Sleiffer, and T. Sasaki, “Analytical OSNR formulation considering nonlinear compensation,” OECC 2013, paper WR4–3.

V. Curri, A. Carena, G. Bosco, P. Poggiolini, M. Hirano, Y. Yamamoto and F. Forghieri, “Fiber figure of merit based on maximum reach,” OFC2013, paper OTh3G.2.

H. Yamaguchi, Y. Yamamoto, T. Hasegawa, T. Kawano, M. Hirano and Y. Koyano, “Ultra-low loss and large Aeff Pure-silica core fiber advances,” SubOptic 2016, paper EC07.

Sumitomo Electric Industries, Ltd., “Sumitomo Submarine Optical Fibers–Field-proven over 3 decades–“, http://global-sei.com/fttx/images_n/TR-16042SumitomoSumarineFibers-1.pdf .

Corning Incorporated, “Corning® Vascade® optical fiber”, https://www.corning.com/media/worldwide/coc/documents/Fiber/PI1445_07_14_English.pdf

O. F. S. Fitel, LLC, “TeraWave™ ocean optical fiber - SCUBA”, http://fiber-optic-catalog.ofsoptics.com/Asset/TeraWave-Scuba-Ocean-Fibers-fiber-150-web.pdf

Y. Yamamoto, M. Hirano, K. Kuwahara, and T. Sasaki, “OSNR-enhancing pure-silica-core fiber with large effective area and low attenuation,” OFC 2010, paper OTuI2.

M. Hirano, Y. Yamamoto, Y. Tamura, T. Haruna, and T. Sasaki, “Aeff enlarged pure-silica-core fiber having ring-core profile,” OFC 2012, paper OTh4I.2.

D. Peckham, A. Klein, P. I. Borel, R. Jensen, O. Levring, K. Carlson, M. Yan, P. Wisk, D. Trevor, R. Lingle, Jr., A. McCurdy, B. Zhu, Y. Zou, R. Norris, B. Palsdottir and D. Vaidya, “Optimization of large area, low loss fiber designs for C+L band transmission,” OFC 2016, paper Tu3G.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic model of a transmission link and definitions of the symbols.
Fig. 2
Fig. 2 (a): Contour lines of FOMR with values shown in the parentheses. The calculation conditions are: DT = 10000km, L = 80km, Pch ≤ −2dBm/ch and the relationship between αsp and Aeff shown in (b), where a base splice loss αsp0 = 0.02dB and an Aeff factor k = 1.1 are assumed to fit experimental results. The points corresponds to the experimental values in the literature.
Fig. 3
Fig. 3 (a): Four example structures to illustrate the effects of Aeff and loss on FOMR contour map same as Fig. 2(a). (b): Q value vs Pch for the 4 structures shown in (a). The plots shows the maximum Q value at the optimal or the upper limit of signal power. The solid lines show valid Q values with Pch below the upper limit of −2dBm/ch. The crosses show the conditions corresponding to Popt.
Fig. 4
Fig. 4 Increase in micro-bending loss with larger Aeff for PSCF-110 with a conventional coating and PSCF-130 with an improved coating with a lower Young’s modulus primary layer. The typical schematic index profile of the PSCFs are also shown.
Fig. 5
Fig. 5 (a): The influence of the upper limit of Pch on FOM. The solid lines show FOMR at Pch ≤ −2dBm/ch shown in Fig. 2 (a) and the dashed line shows FOM with unlimited Pch. (b): The influence of the span length L on FOM. Note that the absolute FOMR values are not always same between 80km and 90km at the crossing points of the contours.
Fig. 6
Fig. 6 (a): The effect of reduction in dissimilar fiber splice loss. The solid lines show FOMR for the reference case with the splice loss shown in Fig. 2(a) and the dashed lines show that for the splice loss reduced to 50% of the reference case in dB scale. (b): The effect of application of NLI mitigation. The solid lines show FOMR without NLI mitigation shown in Fig. 2(a) and the dashed lines show that with NLI mitigation of a 0.5dB SNR gain.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P ASE N s exp[ ( 0.1ln10 )( αL+2 α sp ) ]F,
P NLI k NLC η N s γ 2 L eff | D | 1 exp[ ( 0.1ln10 )2 α sp ] P ch 3 ,
P opt(dB) = 10 3 log 10 { γ 2 L eff | D | 1 }+ 1 3 αL+ 4 3 α sp + C 1
OSNR max(dB) = 10 3 log 10 { γ 2 L eff | D | 1 } 2 3 αL 2 3 α sp 10 log 10 N s + C 2 ,
10 log 10 N s,max = 10 3 log 10 { γ 2 L eff | D | 1 } 2 3 αL 2 3 α sp OSNR max(dB) + C 2 ,
FOM= 10 3 log 10 { γ 2 L eff | D | 1 } 2 3 αL 2 3 α sp +10 log 10 L,
OSNR max(dB) =FOM10 log 10 D T + C 2 ,
FOM R = 10 3 log 10 { γ 2 L eff | D | 1 } 2 3 αL 2 3 α sp +10 log 10 L10 log 10 { ( R 3 +2 ) / ( 3R ) },
OSNR R(dB) = FOM R 10 log 10 D T + C 2 .

Metrics