Abstract

We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analogue of double-Λ-type atomic medium and vector plasmonic dromions in a metamaterial

Qi Zhang, Zhengyang Bai, and Guoxiang Huang
Opt. Express 25(21) 25447-25466 (2017)

Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials

Hai Lin, Dong Yang, Song Han, Yangjie Liu, and Helin Yang
Opt. Express 24(26) 30068-30078 (2016)

Stable single light bullets and vortices and their active control in cold Rydberg gases

Zhengyang Bai, Weibin Li, and Guoxiang Huang
Optica 6(3) 309-317 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref] [PubMed]
  2. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [Crossref] [PubMed]
  3. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
    [Crossref] [PubMed]
  4. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
    [Crossref]
  5. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  6. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mat. 8, 758 (2009).
    [Crossref]
  7. K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparency and magnetically active metamaterials,” Phys. Rev. B 81, 195128 (2010).
    [Crossref]
  8. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisators, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
    [Crossref] [PubMed]
  9. M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT symmetry breaking in polarization space with Terahertz tetasurfaces,” Phys. Rev. Lett. 113, 093901 (2014).
    [Crossref]
  10. S. Raza and S. I. Bozhevolnyi, “Slow-light plasmonic metamaterial based on dressed-state analog of electromagnetically induced transparency,” Opt. Lett. 40, 4253 (2015).
    [Crossref] [PubMed]
  11. Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
    [Crossref] [PubMed]
  12. Z. Bai and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93, 013818 (2016).
    [Crossref]
  13. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
    [Crossref]
  14. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
    [Crossref]
  15. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
    [Crossref]
  16. F. Bussiéres, N. Sangouarda, M. Afzeliusa, H. de Riedmattenb, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519 (2013).
    [Crossref]
  17. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094 (2000).
    [Crossref] [PubMed]
  18. Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matterwaves,” Phys. Rev. Lett. 93, 193602 (2004).
    [Crossref]
  19. A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
    [Crossref] [PubMed]
  20. O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, A. R. Dutton, and J. Ruostekoski, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A 77, 043830 (2008).
    [Crossref]
  21. J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and D. Jaksch, “Multimode memories in atomic ensembles,” Phys. Rev. Lett. 101, 260502 (2008).
    [Crossref] [PubMed]
  22. E. Zeuthen, A. Grodecka-Grad, and A. S. Sørensen, “Three-dimensional theory of quantum memories based on Λ-type atomic ensembles,” Phys. Rev. A 84, 043838 (2011).
    [Crossref]
  23. N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
    [Crossref]
  24. M. Moos, M. Honing, R. Unanyan, and M. Fleischhauer, “Many-body physics of Rydberg dark-state polaritons in the strongly interacting regime,” Phys. Rev. A 92, 053846 (2015).
    [Crossref]
  25. Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
    [Crossref]
  26. Y. Chen, Z. Chen, and G. Huang, “Storage and retrieval of vector optical solitons via double electromagnetically induced transparency,” Phys. Rev. A 91, 023820 (2015).
    [Crossref]
  27. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
    [Crossref] [PubMed]
  28. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
    [Crossref] [PubMed]
  29. P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100, 123903 (2008).
    [Crossref] [PubMed]
  30. D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
    [Crossref]
  31. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
    [Crossref] [PubMed]
  32. H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
    [Crossref] [PubMed]
  33. Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
    [Crossref]
  34. J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
    [Crossref]
  35. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
    [Crossref] [PubMed]
  36. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
    [Crossref] [PubMed]
  37. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photon. 8, 234 (2014).
    [Crossref]
  38. D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
    [Crossref]
  39. D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
    [Crossref] [PubMed]
  40. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
    [Crossref] [PubMed]
  41. D. L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge University).
  42. T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Applied 4, 024013 (2015).
    [Crossref]
  43. T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced absorption in plasmonics,” Phys. Rev. B 87, 161110 (2013).
    [Crossref]
  44. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University).
  45. With such notations the frequency and wavenumber of the signal field are given by ωp +ω and kp +K, respectively. Thus ω = 0 corresponds to the center frequency of the signal field.
  46. L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev. 109, 603 (1958).
    [Crossref]
  47. T. Jiang, K. Chang, L.-M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Phys. Rev. Lett. 107, 205503 (2011).
    [Crossref] [PubMed]
  48. N. Lazarides and G. P. Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110, 053901 (2013).
    [Crossref] [PubMed]

2016 (1)

Z. Bai and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93, 013818 (2016).
[Crossref]

2015 (6)

S. Raza and S. I. Bozhevolnyi, “Slow-light plasmonic metamaterial based on dressed-state analog of electromagnetically induced transparency,” Opt. Lett. 40, 4253 (2015).
[Crossref] [PubMed]

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref] [PubMed]

M. Moos, M. Honing, R. Unanyan, and M. Fleischhauer, “Many-body physics of Rydberg dark-state polaritons in the strongly interacting regime,” Phys. Rev. A 92, 053846 (2015).
[Crossref]

Y. Chen, Z. Chen, and G. Huang, “Storage and retrieval of vector optical solitons via double electromagnetically induced transparency,” Phys. Rev. A 91, 023820 (2015).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Applied 4, 024013 (2015).
[Crossref]

2014 (4)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photon. 8, 234 (2014).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
[Crossref]

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT symmetry breaking in polarization space with Terahertz tetasurfaces,” Phys. Rev. Lett. 113, 093901 (2014).
[Crossref]

2013 (8)

F. Bussiéres, N. Sangouarda, M. Afzeliusa, H. de Riedmattenb, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519 (2013).
[Crossref]

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
[Crossref]

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref] [PubMed]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced absorption in plasmonics,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

N. Lazarides and G. P. Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110, 053901 (2013).
[Crossref] [PubMed]

2012 (2)

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

2011 (4)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisators, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
[Crossref] [PubMed]

E. Zeuthen, A. Grodecka-Grad, and A. S. Sørensen, “Three-dimensional theory of quantum memories based on Λ-type atomic ensembles,” Phys. Rev. A 84, 043838 (2011).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

T. Jiang, K. Chang, L.-M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Phys. Rev. Lett. 107, 205503 (2011).
[Crossref] [PubMed]

2010 (1)

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparency and magnetically active metamaterials,” Phys. Rev. B 81, 195128 (2010).
[Crossref]

2009 (6)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mat. 8, 758 (2009).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
[Crossref]

D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
[Crossref]

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

2008 (5)

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100, 123903 (2008).
[Crossref] [PubMed]

O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, A. R. Dutton, and J. Ruostekoski, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A 77, 043830 (2008).
[Crossref]

J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and D. Jaksch, “Multimode memories in atomic ensembles,” Phys. Rev. Lett. 101, 260502 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

2007 (2)

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref] [PubMed]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

2004 (1)

Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matterwaves,” Phys. Rev. Lett. 93, 193602 (2004).
[Crossref]

2001 (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094 (2000).
[Crossref] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

1958 (1)

L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev. 109, 603 (1958).
[Crossref]

Afzeliusa, M.

F. Bussiéres, N. Sangouarda, M. Afzeliusa, H. de Riedmattenb, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519 (2013).
[Crossref]

Alivisators, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisators, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

André, A.

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

Andrews, D. L.

D. L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge University).

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Babiker, M.

D. L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge University).

Bai, Z.

Z. Bai and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93, 013818 (2016).
[Crossref]

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref] [PubMed]

Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
[Crossref]

Bao, X.-H.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

Bloch, I.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Bussiéres, F.

F. Bussiéres, N. Sangouarda, M. Afzeliusa, H. de Riedmattenb, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519 (2013).
[Crossref]

Camacho, R. M.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100, 123903 (2008).
[Crossref] [PubMed]

Chang, K.

T. Jiang, K. Chang, L.-M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Phys. Rev. Lett. 107, 205503 (2011).
[Crossref] [PubMed]

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Chen, S.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, Z. Chen, and G. Huang, “Storage and retrieval of vector optical solitons via double electromagnetically induced transparency,” Phys. Rev. A 91, 023820 (2015).
[Crossref]

Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
[Crossref]

Chen, Z.

Y. Chen, Z. Chen, and G. Huang, “Storage and retrieval of vector optical solitons via double electromagnetically induced transparency,” Phys. Rev. A 91, 023820 (2015).
[Crossref]

Cong, L.

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT symmetry breaking in polarization space with Terahertz tetasurfaces,” Phys. Rev. Lett. 113, 093901 (2014).
[Crossref]

Cook, J. J. H.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparency and magnetically active metamaterials,” Phys. Rev. B 81, 195128 (2010).
[Crossref]

Dai, H.-N.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Davidson, N.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, A. R. Dutton, and J. Ruostekoski, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A 77, 043830 (2008).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref] [PubMed]

de Riedmatten, H.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

de Riedmattenb, H.

F. Bussiéres, N. Sangouarda, M. Afzeliusa, H. de Riedmattenb, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519 (2013).
[Crossref]

Deng, Y.-J.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Ding, D.-S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref] [PubMed]

J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Dudin, Y. O.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Dutton, A. R.

O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, A. R. Dutton, and J. Ruostekoski, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A 77, 043830 (2008).
[Crossref]

Dutton, Z.

Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matterwaves,” Phys. Rev. Lett. 93, 193602 (2004).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Esaki, L.

L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev. 109, 603 (1958).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

Felinto, D.

D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
[Crossref]

Firstenberg, O.

O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, A. R. Dutton, and J. Ruostekoski, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A 77, 043830 (2008).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref] [PubMed]

Fleischhauer, M.

M. Moos, M. Honing, R. Unanyan, and M. Fleischhauer, “Many-body physics of Rydberg dark-state polaritons in the strongly interacting regime,” Phys. Rev. A 92, 053846 (2015).
[Crossref]

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mat. 8, 758 (2009).
[Crossref]

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094 (2000).
[Crossref] [PubMed]

Fredkin, D. R.

O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, A. R. Dutton, and J. Ruostekoski, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A 77, 043830 (2008).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photon. 8, 234 (2014).
[Crossref]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisators, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mat. 8, 758 (2009).
[Crossref]

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photon. 8, 234 (2014).
[Crossref]

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

Gorshkov, A. V.

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

Grodecka-Grad, A.

E. Zeuthen, A. Grodecka-Grad, and A. S. Sørensen, “Three-dimensional theory of quantum memories based on Λ-type atomic ensembles,” Phys. Rev. A 84, 043838 (2011).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Guo, G.-C.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref] [PubMed]

J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Hamm, J. M.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparency and magnetically active metamaterials,” Phys. Rev. B 81, 195128 (2010).
[Crossref]

Han, J.

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT symmetry breaking in polarization space with Terahertz tetasurfaces,” Phys. Rev. Lett. 113, 093901 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisators, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
[Crossref] [PubMed]

Hess, O.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparency and magnetically active metamaterials,” Phys. Rev. B 81, 195128 (2010).
[Crossref]

Honing, M.

M. Moos, M. Honing, R. Unanyan, and M. Fleischhauer, “Many-body physics of Rydberg dark-state polaritons in the strongly interacting regime,” Phys. Rev. A 92, 053846 (2015).
[Crossref]

Howell, J. C.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100, 123903 (2008).
[Crossref] [PubMed]

Huang, G.

Z. Bai and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93, 013818 (2016).
[Crossref]

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref] [PubMed]

Y. Chen, Z. Chen, and G. Huang, “Storage and retrieval of vector optical solitons via double electromagnetically induced transparency,” Phys. Rev. A 91, 023820 (2015).
[Crossref]

Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
[Crossref]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

Jaksch, D.

J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and D. Jaksch, “Multimode memories in atomic ensembles,” Phys. Rev. Lett. 101, 260502 (2008).
[Crossref] [PubMed]

Jiang, T.

T. Jiang, K. Chang, L.-M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Phys. Rev. Lett. 107, 205503 (2011).
[Crossref] [PubMed]

Jiang, Y.-K.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

Jin, X.-M.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mat. 8, 758 (2009).
[Crossref]

Kitano, M.

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Applied 4, 024013 (2015).
[Crossref]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced absorption in plasmonics,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Kuhr, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Kuzmich, A.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mat. 8, 758 (2009).
[Crossref]

Lauk, N.

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
[Crossref]

Laurat, J.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photon. 8, 234 (2014).
[Crossref]

Lawrence, M.

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT symmetry breaking in polarization space with Terahertz tetasurfaces,” Phys. Rev. Lett. 113, 093901 (2014).
[Crossref]

Lazarides, N.

N. Lazarides and G. P. Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110, 053901 (2013).
[Crossref] [PubMed]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[Crossref]

Lee, K. C.

J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and D. Jaksch, “Multimode memories in atomic ensembles,” Phys. Rev. Lett. 101, 260502 (2008).
[Crossref] [PubMed]

Li, L.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

Liu, L.

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisators, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mat. 8, 758 (2009).
[Crossref]

Liu, N.-L.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Liu, Y.

J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Lorenz, V. O.

J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and D. Jaksch, “Multimode memories in atomic ensembles,” Phys. Rev. Lett. 101, 260502 (2008).
[Crossref] [PubMed]

Lukin, M. D.

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094 (2000).
[Crossref] [PubMed]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

Maxein, D.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photon. 8, 234 (2014).
[Crossref]

Moos, M.

M. Moos, M. Honing, R. Unanyan, and M. Fleischhauer, “Many-body physics of Rydberg dark-state polaritons in the strongly interacting regime,” Phys. Rev. A 92, 053846 (2015).
[Crossref]

Moretti, D.

D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
[Crossref]

Nakanishi, T.

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Applied 4, 024013 (2015).
[Crossref]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced absorption in plasmonics,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

Nicolas, A.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photon. 8, 234 (2014).
[Crossref]

Nunn, J.

J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and D. Jaksch, “Multimode memories in atomic ensembles,” Phys. Rev. Lett. 101, 260502 (2008).
[Crossref] [PubMed]

O’Brien, C.

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
[Crossref]

Otani, T.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced absorption in plasmonics,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

Pan, J.-S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

Pan, J.-W.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mat. 8, 758 (2009).
[Crossref]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

Pugatch, R.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, A. R. Dutton, and J. Ruostekoski, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A 77, 043830 (2008).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref] [PubMed]

Ran, L.

T. Jiang, K. Chang, L.-M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Phys. Rev. Lett. 107, 205503 (2011).
[Crossref] [PubMed]

Raza, S.

Reim, K.

J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and D. Jaksch, “Multimode memories in atomic ensembles,” Phys. Rev. Lett. 101, 260502 (2008).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[Crossref]

Ron, A.

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref] [PubMed]

Rui, J.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Ruostekoski, J.

O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, A. R. Dutton, and J. Ruostekoski, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A 77, 043830 (2008).
[Crossref]

Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matterwaves,” Phys. Rev. Lett. 93, 193602 (2004).
[Crossref]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
[Crossref]

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

Sangouarda, N.

F. Bussiéres, N. Sangouarda, M. Afzeliusa, H. de Riedmattenb, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519 (2013).
[Crossref]

Schnorrberger, U.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University).

Shi, B.-S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref] [PubMed]

J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Shi, S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

Shuker, M.

O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, A. R. Dutton, and J. Ruostekoski, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A 77, 043830 (2008).
[Crossref]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref] [PubMed]

Si, L.-M.

T. Jiang, K. Chang, L.-M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Phys. Rev. Lett. 107, 205503 (2011).
[Crossref] [PubMed]

Simon, C.

F. Bussiéres, N. Sangouarda, M. Afzeliusa, H. de Riedmattenb, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519 (2013).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[Crossref]

Sørensen, A. S.

E. Zeuthen, A. Grodecka-Grad, and A. S. Sørensen, “Three-dimensional theory of quantum memories based on Λ-type atomic ensembles,” Phys. Rev. A 84, 043838 (2011).
[Crossref]

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

Sussman, B. J.

J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and D. Jaksch, “Multimode memories in atomic ensembles,” Phys. Rev. Lett. 101, 260502 (2008).
[Crossref] [PubMed]

Tabosa, J. W. R.

D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
[Crossref]

Tamayama, Y.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced absorption in plasmonics,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Thompson, J. D.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tittel, W.

F. Bussiéres, N. Sangouarda, M. Afzeliusa, H. de Riedmattenb, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519 (2013).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
[Crossref]

Trotzky, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparency and magnetically active metamaterials,” Phys. Rev. B 81, 195128 (2010).
[Crossref]

Tsironis, G. P.

N. Lazarides and G. P. Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110, 053901 (2013).
[Crossref] [PubMed]

Unanyan, R.

M. Moos, M. Honing, R. Unanyan, and M. Fleischhauer, “Many-body physics of Rydberg dark-state polaritons in the strongly interacting regime,” Phys. Rev. A 92, 053846 (2015).
[Crossref]

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photon. 8, 234 (2014).
[Crossref]

Vudyasetu, P. K.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100, 123903 (2008).
[Crossref] [PubMed]

Walmsley, I. A.

J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and D. Jaksch, “Multimode memories in atomic ensembles,” Phys. Rev. Lett. 101, 260502 (2008).
[Crossref] [PubMed]

Wang, X.-S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Wartak, M. S.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparency and magnetically active metamaterials,” Phys. Rev. B 81, 195128 (2010).
[Crossref]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisators, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mat. 8, 758 (2009).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

Wu, J.

J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Xiang, G.-Y.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

Xin, H.

T. Jiang, K. Chang, L.-M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Phys. Rev. Lett. 107, 205503 (2011).
[Crossref] [PubMed]

Xu, N.

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT symmetry breaking in polarization space with Terahertz tetasurfaces,” Phys. Rev. Lett. 113, 093901 (2014).
[Crossref]

Yang, S.-J.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Zeuthen, E.

E. Zeuthen, A. Grodecka-Grad, and A. S. Sørensen, “Three-dimensional theory of quantum memories based on Λ-type atomic ensembles,” Phys. Rev. A 84, 043838 (2011).
[Crossref]

Zhang, H.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

Zhang, S.

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref] [PubMed]

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT symmetry breaking in polarization space with Terahertz tetasurfaces,” Phys. Rev. Lett. 113, 093901 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT symmetry breaking in polarization space with Terahertz tetasurfaces,” Phys. Rev. Lett. 113, 093901 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[Crossref]

Zhang, X.

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT symmetry breaking in polarization space with Terahertz tetasurfaces,” Phys. Rev. Lett. 113, 093901 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Zhao, B.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Zhao, T.-M.

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

Zhou, Z.-Y.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref] [PubMed]

J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University).

J. Mod. Opt. (1)

F. Bussiéres, N. Sangouarda, M. Afzeliusa, H. de Riedmattenb, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519 (2013).
[Crossref]

Nat. Commun. (2)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4, 2527 (2013).
[Crossref] [PubMed]

Nat. Mat. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mat. 8, 758 (2009).
[Crossref]

Nat. Photon. (2)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photon. 8, 234 (2014).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3, 706 (2009).
[Crossref]

Nature (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev. 109, 603 (1958).
[Crossref]

Phys. Rev. A (12)

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A 87, 013845 (2013).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

Z. Bai and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93, 013818 (2016).
[Crossref]

D. Moretti, D. Felinto, and J. W. R. Tabosa, “Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble,” Phys. Rev. A 79, 023825 (2009).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Toward high-dimensional-state quantum memory in a cold atomic ensemble,” Phys. Rev. A 90, 042301 (2014).
[Crossref]

O. Firstenberg, M. Shuker, R. Pugatch, D. R. Fredkin, N. Davidson, A. R. Dutton, and J. Ruostekoski, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A 77, 043830 (2008).
[Crossref]

E. Zeuthen, A. Grodecka-Grad, and A. S. Sørensen, “Three-dimensional theory of quantum memories based on Λ-type atomic ensembles,” Phys. Rev. A 84, 043838 (2011).
[Crossref]

N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Phys. Rev. A 88, 013823 (2013).
[Crossref]

M. Moos, M. Honing, R. Unanyan, and M. Fleischhauer, “Many-body physics of Rydberg dark-state polaritons in the strongly interacting regime,” Phys. Rev. A 92, 053846 (2015).
[Crossref]

Y. Chen, Z. Bai, and G. Huang, “Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system,” Phys. Rev. A 89, 023835 (2014).
[Crossref]

Y. Chen, Z. Chen, and G. Huang, “Storage and retrieval of vector optical solitons via double electromagnetically induced transparency,” Phys. Rev. A 91, 023820 (2015).
[Crossref]

Phys. Rev. Applied (1)

T. Nakanishi and M. Kitano, “Implementation of electromagnetically induced transparency in a metamaterial controlled with auxiliary waves,” Phys. Rev. Applied 4, 024013 (2015).
[Crossref]

Phys. Rev. B (3)

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced absorption in plasmonics,” Phys. Rev. B 87, 161110 (2013).
[Crossref]

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparency and magnetically active metamaterials,” Phys. Rev. B 81, 195128 (2010).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[Crossref]

Phys. Rev. Lett. (16)

M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, “Manifestation of PT symmetry breaking in polarization space with Terahertz tetasurfaces,” Phys. Rev. Lett. 113, 093901 (2014).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[Crossref] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094 (2000).
[Crossref] [PubMed]

Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matterwaves,” Phys. Rev. Lett. 93, 193602 (2004).
[Crossref]

A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal approach to optimal photon storage in atomic media,” Phys. Rev. Lett. 98, 123601 (2007).
[Crossref] [PubMed]

J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. J. Sussman, I. A. Walmsley, and D. Jaksch, “Multimode memories in atomic ensembles,” Phys. Rev. Lett. 101, 260502 (2008).
[Crossref] [PubMed]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref] [PubMed]

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref] [PubMed]

H.-N. Dai, H. Zhang, S.-J. Yang, T.-M. Zhao, J. Rui, Y.-J. Deng, L. Li, N.-L. Liu, S. Chen, X.-H. Bao, X.-M. Jin, B. Zhao, and J.-W. Pan, “Holographic storage of biphoton entanglement,” Phys. Rev. Lett. 108, 210501 (2012).
[Crossref] [PubMed]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007).
[Crossref] [PubMed]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett. 100, 123903 (2008).
[Crossref] [PubMed]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

T. Jiang, K. Chang, L.-M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Phys. Rev. Lett. 107, 205503 (2011).
[Crossref] [PubMed]

N. Lazarides and G. P. Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110, 053901 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33 (2011).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

Sci. Rep. (1)

Z. Bai, G. Huang, L. Liu, and S. Zhang, “Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency,” Sci. Rep. 5, 13780 (2015).
[Crossref] [PubMed]

Science (1)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisators, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
[Crossref] [PubMed]

Other (3)

D. L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge University).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University).

With such notations the frequency and wavenumber of the signal field are given by ωp +ω and kp +K, respectively. Thus ω = 0 corresponds to the center frequency of the signal field.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The meta-atom consisting of a metallic structure loaded with two varactors with capacitance CL = C0C1(t) [CR = C0 + C1(t)] on its left (right) arm. (b) Equivalent RLC circuit model of the meta-atom. The electromotive voltage V is induced by the incident signal field that is parallel to the arm. R and rt are radiation resistances, C is the capacitance between neighboring meta-atoms in the vertical direction, and L is the inductance of each metallic arm. (c) Possible experimental arrangement for measuring the propagation of the signal field and multi-mode polarition memory in the PIT metamaterial. The signal (control) field is incident along z (x) direction.
Fig. 2
Fig. 2 Linear dispersion relation and PIT in the metamaterial. (a) Im(K), and (b) Re(K) as functions of ω. The dashed and solid lines correspond to the absence (Ωc = 0) and the presence (Ωc = 0.05ωr) of the control field, respectively.
Fig. 3
Fig. 3 Storage and retrieval of the signal pulse. Evolutions of the signal field | m p | / 0 (a) and the dark-mode oscillation | q ˜ m p | / q 0 (b) as functions of z and t/τ0 for γ t = 10 3 ω r. (c) and (d) show, respectively, the evolutions of | m p | / 0 and | q ˜ m p | / q 0 as functions of z and t/τ0 for γ t = 10 4 ω r The red solid, green dashed, and blue dashed-dotted lines are for z = 1 cm, 8 cm, and 15 cm, respectively. The control field Ωcτ0 is switched off at t = Toff = 0 and switched on at t = Ton = 25τ0 with τ0 = 10 ns, shown by blue solid line in each panel.
Fig. 4
Fig. 4 Dark-mode oscillation | q ˜ m p | / q 0 as a function of (dimensionless) storage time ts/τ0 for z = 15 cm. The blue solid and red dashed lines are obtained by numerical and analytical results, respectively.
Fig. 5
Fig. 5 The PIT-based memory efficiency η as functions of propagation distance z and γt for storage time ts = 25τ0. Red solid, blue dashed, green dotted and purple dashed-dotted curves are for γt taking 4.2 × 104ωr, 1 × 104ωr, 0, and 1 × 104ωr, respectively.
Fig. 6
Fig. 6 The storage and retrieval of the three-diemnsional signal field. (a) The intensity patterns for the superposed LG modes [ ( LG ) 0 2 + ( LG ) 0 2 ] in the x-y plane respectively at the time t = 0, 3τ0, 15τ0, and 27τ0. (b) The same as (a) but for the superposed LG modes [ ( LG ) 0 4 + ( LG ) 0 4 + ( LG ) 0 0 + ( LG ) 2 0 ]. (c) The same as (a) but for the superposed LG modes [ ( LG ) 0 6 + ( LG ) 0 6 + p = 0 5 ( LG ) p 0 ]. The first column is the patterns before the storage, the second and third columns are the patterns during the storage, and the fourth column is the patterns after the storage. The fifth column shows the phase distribution of the input LG modes.
Fig. 7
Fig. 7 PIT-based memory efficiency η as a function of the beam-waist ratio n between the control and the signal fields for different transverse (azimuthal) mode index m. Panel (a) [(b)] is for the signal field propagating to the distance z = 12 cm (z = 24 cm). The dashed black lines denote the case for n → ∞.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

L d 2 q L d t 2 + R d ( q R + q L ) d t + r t d q L d t + q R + q L C + q L C L = V ,
L d 2 q R d t 2 + R d ( q R + q L ) d t + r t d q R d t + q R + q L C + q R C R = V ,
L d 2 q + d t 2 + r d q + d t + q + C C M C 0 2 cos ( ω c t + ϕ ) q = 2 E l ,
L d 2 q d t 2 + r t d q d t + q C 0 C M C 0 2 cos ( ω c t + ϕ ) q + = 0 ,
2 E 1 c 2 2 E t 2 = 1 ε 0 c 2 2 P t 2 ,
d q ˜ + d t = ( γ + i Δ ) q ˜ + + i g + i Ω c e i ϕ q ˜ ,
d q ˜ d t = [ γ t + i ( Δ δ ) ] q ˜ + i Ω c e i ϕ q ˜ + ,
i ( z + n D c t ) + 1 2 k p 2 + κ 0 q ˜ + = 0 ,
( r , t ) = m , p u m p ( r , φ , z ) m p ( z , t ) ,
q ˜ + ( r , t ) = m , p q ˜ + m p ( z , t ) u m p ( r , φ ) ,
q ˜ ( r , t ) = m , p q ˜ m p ( z , t ) u m p ( r , φ ) ,
d q ˜ + m p d t = ( γ + i Δ ) q ˜ + m p + i g m p + i Ω c e i ϕ q ˜ m p ,
d q ˜ m p d t = [ γ t + i ( Δ δ ) ] q ˜ m p + i Ω c e i ϕ q ˜ + m p ,
i ( z + n D c t ) m p ( z , t ) + κ 0 q ˜ + m p ( z , t ) = 0 .
K ( ω ) = n D c ω + κ 0 g ( ω Δ + δ + i γ t ) Ω c 2 ( ω Δ + i γ ) ( ω Δ + δ + i γ t ) ,
( t + c n D cos 2 θ ( t ) z ) P m p ( z , t ) = 0 ,
Ω c ( t ) = Ω c 0 [ 1 1 2 tanh ( t T off ) T s + 1 2 tanh ( t T on ) T s ] ,
d q ˜ + m p d t = ( γ + i Δ ) q ˜ + m p + i g m p + i Ω c ( t ) e i ϕ m p A m p , m p q ˜ m p ,
d q ˜ m p d t = [ γ t + i ( Δ δ ) ] q ˜ m p + i Ω c ( t ) e i ϕ m p A m p , m p q ˜ + m p ,
u m p = C m p w ( z ) ( 2 r w ( z ) ) | m | exp [ r 2 w 2 ( z ) ] L p | m | ( 2 r 2 w 2 ( z ) ) exp ( i m φ ) exp [ i Φ ( z ) ] ,
u m p = C m p w 0 ( 2 r w 0 ) | m | exp ( r 2 w 0 2 ) L p | m | ( 2 r 2 w 0 2 ) exp ( i m φ ) .

Metrics