Abstract

We demonstrate a three cascaded micro-ring resonators based refractive index optical sensor with a high sensitivity of 5866 nm/RIU, the measurement range of which is significantly improved 24.7 times comparing with the traditional two cascaded micro-ring resonators.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-sensitivity optical sensors based on cascaded reflective MZIs and microring resonators

H. H. Zhu, Y. H. Yue, Y. J. Wang, M. Zhang, L. Y. Shao, J. J. He, and M. Y. Li
Opt. Express 25(23) 28612-28618 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Jin, M. Li, and J. J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011).
    [Crossref] [PubMed]
  2. H.-T. Kim and M. Yu, “Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range,” Opt. Express 24(9), 9501–9510 (2016).
    [Crossref] [PubMed]
  3. N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40(17), 3934–3936 (2015).
    [Crossref] [PubMed]
  4. Z. Zou, L. Zhou, M. Wang, K. Wu, and J. Chen, “Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides,” Opt. Express 24(12), 12831–12839 (2016).
    [Crossref] [PubMed]
  5. X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J. J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39(22), 6363–6366 (2014).
    [Crossref] [PubMed]
  6. T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
    [Crossref] [PubMed]
  7. X. Jiang, J. Ye, J. Zou, M. Li, and J. J. He, “Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode,” Opt. Lett. 38(8), 1349–1351 (2013).
    [Crossref] [PubMed]
  8. L. Jin, M. Li, and J. J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
    [Crossref]
  9. R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-Eliminated Vernier Racetrack Resonators Using Grating-Assisted Couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
    [Crossref]
  10. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
    [Crossref] [PubMed]
  11. A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photon. Res. 4(2), 84–92 (2016).
    [Crossref]
  12. J. Wang and D. Dai, “Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring,” Opt. Lett. 35(24), 4229–4231 (2010).
    [Crossref] [PubMed]
  13. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
    [Crossref] [PubMed]
  14. M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” PhD thesis, Massachusetts Institute of Technology (2008).
  15. L. Jin, M. Li, and J. J. He, “Analysis of wavelength and intensity interrogation methods in cascaded double-ring sensors,” J. Lightwave Technol. 30(12), 1994–2002 (2012).
    [Crossref]
  16. Y. Chen, F. Yu, C. Yang, M. Li, L. Tang, J. Song, and J. J. He, “Microfluidics-integrated cascaded double-microring resonators for label-free biosensing,” Proc. SPIE 9268, 926829 (2014).
    [Crossref]
  17. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]

2016 (4)

2015 (2)

2014 (2)

X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J. J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39(22), 6363–6366 (2014).
[Crossref] [PubMed]

Y. Chen, F. Yu, C. Yang, M. Li, L. Tang, J. Song, and J. J. He, “Microfluidics-integrated cascaded double-microring resonators for label-free biosensing,” Proc. SPIE 9268, 926829 (2014).
[Crossref]

2013 (2)

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-Eliminated Vernier Racetrack Resonators Using Grating-Assisted Couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

X. Jiang, J. Ye, J. Zou, M. Li, and J. J. He, “Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode,” Opt. Lett. 38(8), 1349–1351 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

L. Jin, M. Li, and J. J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

L. Jin, M. Li, and J. J. He, “Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source,” Opt. Lett. 36(7), 1128–1130 (2011).
[Crossref] [PubMed]

2010 (1)

2006 (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

2004 (1)

Ahmed, Z.

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Berger, M.

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Boeck, R.

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-Eliminated Vernier Racetrack Resonators Using Grating-Assisted Couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

Bogaerts, W.

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photon. Res. 4(2), 84–92 (2016).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Caverley, M.

Chalyan, T.

T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
[Crossref] [PubMed]

Chen, J.

Chen, Y.

X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J. J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39(22), 6363–6366 (2014).
[Crossref] [PubMed]

Y. Chen, F. Yu, C. Yang, M. Li, L. Tang, J. Song, and J. J. He, “Microfluidics-integrated cascaded double-microring resonators for label-free biosensing,” Proc. SPIE 9268, 926829 (2014).
[Crossref]

Chrostowski, L.

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-Eliminated Vernier Racetrack Resonators Using Grating-Assisted Couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

Dai, D.

Falke, F.

T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
[Crossref] [PubMed]

Guider, R.

T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
[Crossref] [PubMed]

He, J. J.

Heideman, R. G.

T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
[Crossref] [PubMed]

Huang, Q.

Huang, Y.

Jaeger, N. A. F.

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-Eliminated Vernier Racetrack Resonators Using Grating-Assisted Couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

Jiang, X.

Jin, L.

Kim, H.-T.

Klimov, N. N.

Li, A.

Li, M.

Mittal, S.

Mookherjea, S.

Paloczi, G.

Pasquardini, L.

T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
[Crossref] [PubMed]

Pavesi, L.

T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
[Crossref] [PubMed]

Pederzolli, C.

T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
[Crossref] [PubMed]

Poon, J.

Scheuer, J.

Schreuder, E.

T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
[Crossref] [PubMed]

Shi, W.

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-Eliminated Vernier Racetrack Resonators Using Grating-Assisted Couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

Song, J.

Y. Chen, F. Yu, C. Yang, M. Li, L. Tang, J. Song, and J. J. He, “Microfluidics-integrated cascaded double-microring resonators for label-free biosensing,” Proc. SPIE 9268, 926829 (2014).
[Crossref]

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Tang, L.

Y. Chen, F. Yu, C. Yang, M. Li, L. Tang, J. Song, and J. J. He, “Microfluidics-integrated cascaded double-microring resonators for label-free biosensing,” Proc. SPIE 9268, 926829 (2014).
[Crossref]

X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J. J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39(22), 6363–6366 (2014).
[Crossref] [PubMed]

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Wang, J.

Wang, M.

Wu, K.

Yang, C.

Y. Chen, F. Yu, C. Yang, M. Li, L. Tang, J. Song, and J. J. He, “Microfluidics-integrated cascaded double-microring resonators for label-free biosensing,” Proc. SPIE 9268, 926829 (2014).
[Crossref]

Yariv, A.

Ye, J.

Yu, F.

Y. Chen, F. Yu, C. Yang, M. Li, L. Tang, J. Song, and J. J. He, “Microfluidics-integrated cascaded double-microring resonators for label-free biosensing,” Proc. SPIE 9268, 926829 (2014).
[Crossref]

X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li, and J. J. He, “High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect,” Opt. Lett. 39(22), 6363–6366 (2014).
[Crossref] [PubMed]

Yu, M.

Zanetti, M.

T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
[Crossref] [PubMed]

Zhou, L.

Zou, J.

Zou, Z.

Biosensors (Basel) (1)

T. Chalyan, R. Guider, L. Pasquardini, M. Zanetti, F. Falke, E. Schreuder, R. G. Heideman, C. Pederzolli, and L. Pavesi, “Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection,” Biosensors (Basel) 6(1), 1 (2016).
[Crossref] [PubMed]

IEEE Photonics J. (1)

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-Eliminated Vernier Racetrack Resonators Using Grating-Assisted Couplers,” IEEE Photonics J. 5(5), 2202511 (2013).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Opt. Commun. (1)

L. Jin, M. Li, and J. J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Photon. Res. (1)

Proc. SPIE (1)

Y. Chen, F. Yu, C. Yang, M. Li, L. Tang, J. Song, and J. J. He, “Microfluidics-integrated cascaded double-microring resonators for label-free biosensing,” Proc. SPIE 9268, 926829 (2014).
[Crossref]

Other (1)

M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” PhD thesis, Massachusetts Institute of Technology (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic image of the three cascaded ring resonators.
Fig. 2
Fig. 2 A typical transmission spectrum of two cascaded ring resonators.
Fig. 3
Fig. 3 The transmission spectra of T1 (a) and T2 (b) with the effective index changing from 1.700 to 1.701. (c) The magnified spectrum of T2 in the dashed box.
Fig. 4
Fig. 4 The transmission spectra of T1 (a) and T2 (b) with the effective index changing from 1.700 to 1.7019. (c) The magnified spectrum of T2 in the dashed box.
Fig. 5
Fig. 5 The transmission spectra of T1 (a) and T2 (b) with an effective index of 1.700 and 1.7029. (c) The magnified spectrum of T2 in the dashed box.
Fig. 6
Fig. 6 (a) Optical microscope image of the cascaded ring resonators sensor. (b) Optical microscope image of the input grating coupler. (c) SEM image of the direction coupler.
Fig. 7
Fig. 7 (a) Measured transmission spectra of T1 and T2 when the concentration of aqueous solutions of NaCl changes from 0.5% to 1%. (b) Measured transmission spectra of T1 and T2 when the concentration of aqueous solutions of NaCl changes from 0.5% to 2.5%.
Fig. 8
Fig. 8 Measured wavelength shift versus refractive index change of aqueous solutions of NaCl with different concentrations in T1 and T2.

Tables (1)

Tables Icon

Table 1 Performance of our proposed sensor

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A 1 = F S R r 1 | F S R r 1 F S R r 2 | .
d λ λ = d n e f f n g .
A 2 = F S R r 3 | F S R r 2 F S R r 3 | .

Metrics