Abstract

High-spectral-resolution lidar (HSRL) is a powerful tool for atmospheric aerosol remote sensing. The current HSRL technique often requires a single longitudinal mode laser as the transmitter to accomplish the spectral discrimination of the aerosol and molecular scattering conveniently. However, single-mode laser is cumbersome and has very strict requirements for ambient stability, making the HSRL instrument not so robust in many cases. In this paper, a new HSRL concept, called generalized HSRL technique with a multimode laser (MML-gHSRL), is proposed, which can work using a multimode laser. The MML-gHSRL takes advantage of the period characteristic of the spectral function of the interferometric spectral discrimination filter (ISDF) thoroughly. By matching the free spectral range of the ISDF with the mode interval of the multimode laser, fine spectral discrimination for the lidar return from each longitudinal mode can be realized. Two common ISDFs, i.e., the Fabry-Perot interferometer (FPI) and field-widened Michelson interferometer (FWMI), are introduced to develop the MML-gHSRL, and their performance is quantitatively analyzed and compared. The MML-gHSRL is a natural but significant generalization for the current HSRL technique based on the IDSF. It is potential that this technique would be a good entrance to future HSRL developments, especially in airborne and satellite-borne aerosol remote sensing applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development

Zhongtao Cheng, Dong Liu, Yupeng Zhang, Yongying Yang, Yudi Zhou, Jing Luo, Jian Bai, Yibing Shen, Kaiwei Wang, Chong Liu, Lin Su, and Liming Yang
Opt. Express 24(7) 7232-7245 (2016)

Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework

Zhongtao Cheng, Dong Liu, Jing Luo, Yongying Yang, Yudi Zhou, Yupeng Zhang, Lulin Duan, Lin Su, Liming Yang, Yibing Shen, Kaiwei Wang, and Jian Bai
Opt. Express 23(9) 12117-12134 (2015)

Measurement method of high spectral resolution lidar with a multimode laser and a scanning Mach–Zehnder interferometer

Yoshitaka Jin, Nobuo Sugimoto, Pablo Ristori, Tomoaki Nishizawa, Lidia Otero, and Eduardo Quel
Appl. Opt. 56(21) 5990-5995 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
    [Crossref]
  2. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
    [Crossref] [PubMed]
  3. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
    [Crossref] [PubMed]
  4. C. Y. She, R. J. Alvarez, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17(7), 541–543 (1992).
    [Crossref] [PubMed]
  5. D. S. Hoffman, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters,” Appl. Opt. 51(25), 6233–6244 (2012).
    [Crossref] [PubMed]
  6. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
    [Crossref] [PubMed]
  7. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysis,” Appl. Opt. 22(23), 3725–3732 (1983).
    [Crossref] [PubMed]
  8. M. J. Foster, R. Bond, J. Storey, C. Thwaite, J. Y. Labandibar, I. Bakalski, A. Hélière, A. Delev, D. Rees, and M. Slimm, “Fabry-Pérot optical filter assembly: a candidate for the Mie/ Rayleigh separator in EarthCARE,” Opt. Express 17(5), 3476–3489 (2009).
    [Crossref] [PubMed]
  9. D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
    [Crossref] [PubMed]
  10. Z. Cheng, D. Liu, Y. Zhang, Y. Yang, Y. Zhou, J. Luo, J. Bai, Y. Shen, K. Wang, C. Liu, L. Su, and L. Yang, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development,” Opt. Express 24(7), 7232–7245 (2016).
    [Crossref] [PubMed]
  11. Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23(9), 12117–12134 (2015).
    [Crossref] [PubMed]
  12. D. Liu, Z. Cheng, J. Luo, Y. Yang, Y. Zhang, Y. Zhou, J. Bai, C. Liu, and Y. Shen, “Polarized high-spectral-resolution lidar based on field-widened Michelson interferometer,” Proc. SPIE 9832, 98320Z (2016).
    [Crossref]
  13. J. Luo, D. Liu, Y. Zhang, Z. Cheng, C. Liu, J. Bai, Y. Shen, Y. Yang, Y. Zhou, P. Tang, Q. Liu, P. Xu, L. Su, X. Zhang, and L. Yang, “Design of the interferometric spectral discrimination filters for a three-wavelength high-spectral-resolution lidar,” Opt. Express 24(24), 27622–27636 (2016).
    [Crossref] [PubMed]
  14. D. Bruneau, F. Blouzon, J. Spatazza, F. Montmessin, J. Pelon, and B. Faure, “Direct-detection wind lidar operating with a multimode laser,” Appl. Opt. 52(20), 4941–4949 (2013).
    [Crossref] [PubMed]
  15. G. Hernandez, “Analytical Description of a Fabry-Perot Photoelectric Spectrometer,” Appl. Opt. 5(11), 1745–1748 (1966).
    [Crossref] [PubMed]
  16. Z. Cheng, D. Liu, Y. Zhou, Y. Yang, J. Luo, Y. Zhang, Y. Shen, C. Liu, J. Bai, K. Wang, L. Su, and L. Yang, “Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning,” Opt. Lett. 41(17), 3916–3919 (2016).
    [Crossref] [PubMed]

2016 (4)

2015 (1)

2013 (1)

2012 (2)

2009 (1)

2008 (2)

2004 (1)

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

1992 (1)

1983 (2)

1966 (1)

Alvarez, R. J.

Bai, J.

Bakalski, I.

Blouzon, F.

Bond, R.

Bruneau, D.

Burnham, R. L.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

Caldwell, L. M.

Carlsten, J. L.

Chen, H.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

Cheng, Z.

Cook, A.

Cook, A. L.

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[Crossref] [PubMed]

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

Delev, A.

Duan, L.

Ehret, G.

Eloranta, E. W.

Esselborn, M.

Faure, B.

Ferrare, R. A.

Fix, A.

Force, J. D.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

Foster, M. J.

Gentry, B. M.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

Hair, J.

Hair, J. W.

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[Crossref] [PubMed]

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

Harper, D. B.

Hélière, A.

Hernandez, G.

Hoffman, D. S.

Hostetler, C.

D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
[Crossref] [PubMed]

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

Hostetler, C. A.

Hovis, F. E.

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[Crossref] [PubMed]

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

Izquierdo, L. R.

Krueger, D. A.

Labandibar, J. Y.

Li, S. X.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

Liu, C.

Liu, D.

J. Luo, D. Liu, Y. Zhang, Z. Cheng, C. Liu, J. Bai, Y. Shen, Y. Yang, Y. Zhou, P. Tang, Q. Liu, P. Xu, L. Su, X. Zhang, and L. Yang, “Design of the interferometric spectral discrimination filters for a three-wavelength high-spectral-resolution lidar,” Opt. Express 24(24), 27622–27636 (2016).
[Crossref] [PubMed]

Z. Cheng, D. Liu, Y. Zhou, Y. Yang, J. Luo, Y. Zhang, Y. Shen, C. Liu, J. Bai, K. Wang, L. Su, and L. Yang, “Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning,” Opt. Lett. 41(17), 3916–3919 (2016).
[Crossref] [PubMed]

Z. Cheng, D. Liu, Y. Zhang, Y. Yang, Y. Zhou, J. Luo, J. Bai, Y. Shen, K. Wang, C. Liu, L. Su, and L. Yang, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development,” Opt. Express 24(7), 7232–7245 (2016).
[Crossref] [PubMed]

D. Liu, Z. Cheng, J. Luo, Y. Yang, Y. Zhang, Y. Zhou, J. Bai, C. Liu, and Y. Shen, “Polarized high-spectral-resolution lidar based on field-widened Michelson interferometer,” Proc. SPIE 9832, 98320Z (2016).
[Crossref]

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23(9), 12117–12134 (2015).
[Crossref] [PubMed]

D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
[Crossref] [PubMed]

Liu, Q.

Luo, J.

Mack, T. L.

Miller, I.

Montmessin, F.

Pelon, J.

Reagan, J. A.

Rees, D.

Repasky, K. S.

Rhoades, M.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

Roesler, F. L.

Schum, T.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

She, C. Y.

Shen, Y.

Shipley, S. T.

Slimm, M.

Spatazza, J.

Sroga, J. T.

Storey, J.

Su, L.

Tang, P.

Tesche, M.

Thwaite, C.

Tracy, D. H.

Trauger, J. T.

Tryon, P. J.

Wang, K.

Weinman, J. A.

Welch, W.

Wirth, M.

Xu, P.

Yang, L.

Yang, Y.

Zhang, X.

Zhang, Y.

Zhou, Y.

Appl. Opt. (7)

D. S. Hoffman, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters,” Appl. Opt. 51(25), 6233–6244 (2012).
[Crossref] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
[Crossref] [PubMed]

J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysis,” Appl. Opt. 22(23), 3725–3732 (1983).
[Crossref] [PubMed]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[Crossref] [PubMed]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
[Crossref] [PubMed]

D. Bruneau, F. Blouzon, J. Spatazza, F. Montmessin, J. Pelon, and B. Faure, “Direct-detection wind lidar operating with a multimode laser,” Appl. Opt. 52(20), 4941–4949 (2013).
[Crossref] [PubMed]

G. Hernandez, “Analytical Description of a Fabry-Perot Photoelectric Spectrometer,” Appl. Opt. 5(11), 1745–1748 (1966).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (2)

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[Crossref]

D. Liu, Z. Cheng, J. Luo, Y. Yang, Y. Zhang, Y. Zhou, J. Bai, C. Liu, and Y. Shen, “Polarized high-spectral-resolution lidar based on field-widened Michelson interferometer,” Proc. SPIE 9832, 98320Z (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Conceptual schematic of the proposed MML-gHSRL technique.
Fig. 2
Fig. 2 Illustration of the spectral discrimination of the FPI in MML-gHSRL.
Fig. 3
Fig. 3 Illustration of the spectral discrimination of the FWMI in MML-gHSRL.
Fig. 4
Fig. 4 (a) Molecular transmittance and (b) SDR of the FPI with respect to its design parameters F S R and R .
Fig. 5
Fig. 5 Performance sensitivity of the FPI with respect to the spectral match in MML-gHSRL application. (a), (b) and (c) are the aerosol transmittance, molecular transmittance and SDR respectively
Fig. 6
Fig. 6 Same as Fig. 5 but for the FWMI. (a), (b) and (c) are the aerosol transmittance, molecular transmittance and SDR respectively
Fig. 7
Fig. 7 Performance sensitivity of the FPI and FWMI with respect to the divergent angle of the incident beam in MML-gHSRL application. Note that the unit of the horizontal axis is degree while that of the inset figure is mrad.
Fig. 8
Fig. 8 Performance sensitivity of the FPI and FWMI with respect to the wavefront distortion of the interferometers in MML-gHSRL application.

Tables (1)

Tables Icon

Table 1 Design parameters of the FPI and FWMI intended for MML-gHSRL applications at 532 nm.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

M S i ( υ υ 0 ) = q A q exp [ ( υ υ 0 q Δ υ ) 2 γ i 2 ] / q A q γ i π ,
B A = ( T a A β a + T m A β m ) exp ( 2 τ ) , B M = ( T a M β a + T m M β m ) exp ( 2 τ ) .
T a A + T a M = T m A + T m M = C ,
β = R a β m = ( T m A T a A ) K ( T m M T a M ) K T a M T a A β m ,
ε = σ β β = β β K σ K = 1 S N R [ 1 + R a T a M T m M T a M ] [ 1 T m M + ( R a 1 ) T a M C R a ] ,
S D R = T m M / T a M ,
ε = 1 S N R [ 1 + R a S D R 1 ] [ 1 ( 1 + S D R 1 R a ) T a M / C ] .
T i M = M S i ( υ υ 0 ) F ( υ υ 0 ) d υ / M S i ( υ υ 0 ) d υ ,
F ( θ , υ ) = 1 T p 1 R 1 + R { 1 + 2 k = 1 R k cos ( k δ ) } ,
δ ( θ , υ ) = 4 π n d c cos ( θ ) υ ,
δ ( θ , υ ) δ ( 0 , υ 0 ) + 4 π n d c ( υ υ 0 ) 2 π n d υ θ 2 c = δ ( 0 , υ 0 ) + 4 π n d c ( 1 θ 2 2 ) ( υ υ 0 ) 2 π n d υ 0 θ 2 c .
δ ( θ , υ ) = 2 m π + 4 π n Δ d c υ 0 + 4 π n ( 1 θ 2 / 2 ) ( d + Δ d ) c ( υ υ 0 + Δ υ L ) 2 π n ( d + Δ d ) υ 0 θ 2 c 2 π F S R ( 1 θ 2 2 ) ( 1 + Δ d d ) ( υ υ 0 ) + Δ ϕ ,
Δ ϕ = 2 m π + 2 π F S R Δ υ L + 4 π n υ 0 c Δ d ( 2 π n υ 0 Δ d c + π υ 0 F S R ) θ 2 ,
T i M , F P I = < 1 T p 1 R 1 + R { 1 + 2 k = 1 q R k A q exp [ ( k π γ i F S R ) 2 ( 1 + Δ d d ) 2 ( 1 θ 2 2 ) 2 ] × cos [ k Δ ϕ + k 2 π F S R q Δ υ ] / q A q } > = < 1 T p 1 R 1 + R { 1 + 2 k = 1 q R k A q exp [ ( k π γ i F S R ) 2 ( 1 + Δ d d ) 2 ( 1 θ 2 2 ) 2 ] × cos [ k ( M θ θ 2 + Δ ϕ o t h e r , q ) ] / q A q } > ,
M θ = ( 2 π n υ 0 Δ d c + π υ 0 F S R ) ,
Δ ϕ o t h e r , q = 2 π F S R Δ υ L + 4 π n υ 0 c Δ d + 2 π F S R q Δ υ .
F ( υ υ 0 ) = I 1 + I 2 2 I 1 I 2 cos [ 2 π ( υ υ 0 ) / F S R + Δ ϕ ] ,
T i M , F W M I = I 1 + I 2 2 I 1 I 2 q A q exp [ ( π γ i F S R ) 2 ] cos [ Δ ϕ + 2 π F S R q Δ υ ] / q A q .

Metrics