Abstract

We have demonstrated an electrically tunable less polarization sensitive and fast response nanostructured polymer dispersed liquid crystal (nano-PDLC) diffraction grating. Fabricated nano-PDLC is optically transparent in visible wavelength regime. The optical isotropic nature was increased by minimizing the liquid crystal droplet size below visible wavelength thereby eliminated scattering. Diffraction properties of in-plane switching (IPS) and fringe-field switching (FFS) cells were measured and compared with one another up to four orders. We have obtained a pore-type polymer network constructed by highly interlinked polymer beads at which the response time is improved by strong interaction of liquid crystal molecules with polymer beads at interface. The diffraction pattern obtained by transparent nano-PDLC film has several interesting properties such as less polarization dependence and fast response. This device can be used as transparent tunable diffractor along with other photonic application.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix

Ji Hoon Yu, Hung-Shan Chen, Po-Ju Chen, Ki Hoon Song, Seong Cheol Noh, Jae Myeong Lee, Hongwen Ren, Yi-Hsin Lin, and Seung Hee Lee
Opt. Express 23(13) 17337-17344 (2015)

Fast switchable field-induced optical birefringence in highly transparent polymer-liquid crystal composite

Young Jin Lim, Jeong Hwan Yoon, Hyesun Yoo, Seong Min Song, Ramesh Manda, Srinivas Pagidi, Myong-Hoon Lee, Jae-Min Myoung, and Seung Hee Lee
Opt. Mater. Express 8(12) 3698-3707 (2018)

A fast response variable optical attenuator based on blue phase liquid crystal

Ge Zhu, Bing-yan Wei, Liang-yu Shi, Xiao-wen Lin, Wei Hu, Zhang-di Huang, and Yan-qing Lu
Opt. Express 21(5) 5332-5337 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Chen, P.J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [Crossref]
  2. C. V. Brown, E. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
    [Crossref]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  4. I. Drevenšek-Olenik, M. Čopič, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
    [Crossref]
  5. K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273(2), 367–369 (2007).
    [Crossref]
  6. J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
    [Crossref] [PubMed]
  7. R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
    [Crossref]
  8. H. C. Lin, M. R. Yang, S. F. Tsai, and S. C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
    [Crossref]
  9. N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).
  10. A. S. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
    [Crossref]
  11. W.-C. Hung, W.-H. Cheng, Y.-S. Lin, D.-J. Jang, I.-M. Jiang, and M.-S. Tsai, “Surface plasmons induced extra diffraction band of cholesteric liquid crystal grating,” J. Appl. Phys. 104(6), 063106 (2008).
    [Crossref]
  12. H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. G. Fuh, “Optically-tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18(16), 17498–17503 (2010).
    [Crossref] [PubMed]
  13. D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
    [Crossref] [PubMed]
  14. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [Crossref] [PubMed]
  15. G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
    [Crossref]
  16. B. Y. Huang, S. H. Lin, K. C. Lin, and C. T. Kuo, “Switchable Two-Dimensional Liquid Crystal Grating in Blue Phase,” Cryst. 7(6), 182 (2017).
    [Crossref]
  17. G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
    [Crossref] [PubMed]
  18. S. J. Shin, N. H. Cho, Y. J. Lim, P. Nayek, S. H. Lee, S. H. Hong, H. J. Lee, and S. T. Shin, “Optically isotropic liquid crystal mixture showing high contrast ratio and fast response time,” IMID Digest. 139, (2011).
  19. S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
    [Crossref]
  20. N. Kim, D. Y. Kim, M. Park, Y. J. Choi, S. Kim, S. H. Lee, and K. U. Jeong, “Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals,” Soft Matter 11(19), 3772–3779 (2015).
    [Crossref] [PubMed]
  21. S. I. Yamamoto, T. Iwata, Y. Haseba, D. U. Cho, S. W. Choi, H. Higuchi, and H. Kikuchi, “Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 39(4), 487–491 (2012).
    [Crossref]
  22. Z. G. Zheng, C. Wang, and D. Shen, “Dichroic-dye-doped polymer stabilized optically isotropic chiral liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6471–6478 (2013).
    [Crossref]
  23. J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
    [Crossref] [PubMed]
  24. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
    [Crossref]
  25. Y. Tanabe, H. Furue, and J. Hatano, “Optically isotropic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1), 41–44 (2005).
    [Crossref]
  26. H. Khoshsima, H. Tajalli, A. G. Gilani, and R. Dabrowski, “Electro-optical Kerr effect of two high birefringence nematic liquid crystals,” J. Phys. D Appl. Phys. 39(8), 1495–1499 (2006).
    [Crossref]
  27. S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
    [Crossref]
  28. N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
    [Crossref]
  29. Y. C. Yang and D. K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
    [Crossref]
  30. S. Matsumoto, Y. Sugiyama, S. Sakata, and T. Hayashi, “Electro-optic effect, propagation loss, and switching speed in polymers containing nano-sized droplets of liquid crystal,” Liq. Cryst. 27(5), 649–655 (2000).
    [Crossref]
  31. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
    [Crossref]
  32. J. Kerr, “XL. A new relation between electricity and light: Dielectrified media birefringent,” London, Edinburgh, and Dublin Philos. Mag. J. Sci. 50(332), 337–348 (1875).
  33. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
    [Crossref]
  34. J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010).
    [Crossref] [PubMed]
  35. L. Weng, A. Varanytsia, S. H. Lee, and L. C. Chien, “High-efficiency and fast-switching field-induced tunable phase grating using polymer-stabilized in-plane switching liquid crystals with vertical alignment,” J. Phys. D Appl. Phys. 49(12), 125504 (2016).
    [Crossref]
  36. K. S. Ha, C. W. Woo, S. S. Bhattacharyya, H. J. Yun, H. S. Jin, Y. K. Jang, and S. H. Lee, “Analysis of optical bounce associated with two-step molecular reorientation in the fringe-field switching mode,” Liq. Cryst. 39(1), 39–45 (2012).
    [Crossref]
  37. J. Yan, Y. Xing, and Q. Li, “Dual-period tunable phase grating using polymer stabilized blue phase liquid crystal,” Opt. Lett. 40(19), 4520–4523 (2015).
    [Crossref] [PubMed]

2017 (1)

B. Y. Huang, S. H. Lin, K. C. Lin, and C. T. Kuo, “Switchable Two-Dimensional Liquid Crystal Grating in Blue Phase,” Cryst. 7(6), 182 (2017).
[Crossref]

2016 (1)

L. Weng, A. Varanytsia, S. H. Lee, and L. C. Chien, “High-efficiency and fast-switching field-induced tunable phase grating using polymer-stabilized in-plane switching liquid crystals with vertical alignment,” J. Phys. D Appl. Phys. 49(12), 125504 (2016).
[Crossref]

2015 (5)

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

N. Kim, D. Y. Kim, M. Park, Y. J. Choi, S. Kim, S. H. Lee, and K. U. Jeong, “Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals,” Soft Matter 11(19), 3772–3779 (2015).
[Crossref] [PubMed]

J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
[Crossref] [PubMed]

D. Xu, G. Tan, and S. T. Wu, “Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal,” Opt. Express 23(9), 12274–12285 (2015).
[Crossref] [PubMed]

J. Yan, Y. Xing, and Q. Li, “Dual-period tunable phase grating using polymer stabilized blue phase liquid crystal,” Opt. Lett. 40(19), 4520–4523 (2015).
[Crossref] [PubMed]

2014 (1)

H. C. Lin, M. R. Yang, S. F. Tsai, and S. C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

2013 (2)

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38(13), 2342–2344 (2013).
[Crossref] [PubMed]

Z. G. Zheng, C. Wang, and D. Shen, “Dichroic-dye-doped polymer stabilized optically isotropic chiral liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6471–6478 (2013).
[Crossref]

2012 (3)

S. I. Yamamoto, T. Iwata, Y. Haseba, D. U. Cho, S. W. Choi, H. Higuchi, and H. Kikuchi, “Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 39(4), 487–491 (2012).
[Crossref]

K. S. Ha, C. W. Woo, S. S. Bhattacharyya, H. J. Yun, H. S. Jin, Y. K. Jang, and S. H. Lee, “Analysis of optical bounce associated with two-step molecular reorientation in the fringe-field switching mode,” Liq. Cryst. 39(1), 39–45 (2012).
[Crossref]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

2011 (3)

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

Y. C. Yang and D. K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
[Crossref]

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

2010 (3)

2009 (2)

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

2008 (2)

R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
[Crossref]

W.-C. Hung, W.-H. Cheng, Y.-S. Lin, D.-J. Jang, I.-M. Jiang, and M.-S. Tsai, “Surface plasmons induced extra diffraction band of cholesteric liquid crystal grating,” J. Appl. Phys. 104(6), 063106 (2008).
[Crossref]

2007 (2)

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273(2), 367–369 (2007).
[Crossref]

A. S. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

2006 (3)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

I. Drevenšek-Olenik, M. Čopič, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

H. Khoshsima, H. Tajalli, A. G. Gilani, and R. Dabrowski, “Electro-optical Kerr effect of two high birefringence nematic liquid crystals,” J. Phys. D Appl. Phys. 39(8), 1495–1499 (2006).
[Crossref]

2005 (3)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Y. Tanabe, H. Furue, and J. Hatano, “Optically isotropic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1), 41–44 (2005).
[Crossref]

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

2002 (1)

C. V. Brown, E. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[Crossref]

2000 (1)

S. Matsumoto, Y. Sugiyama, S. Sakata, and T. Hayashi, “Electro-optic effect, propagation loss, and switching speed in polymers containing nano-sized droplets of liquid crystal,” Liq. Cryst. 27(5), 649–655 (2000).
[Crossref]

1995 (1)

J. Chen, P.J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

1994 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

1875 (1)

J. Kerr, “XL. A new relation between electricity and light: Dielectrified media birefringent,” London, Edinburgh, and Dublin Philos. Mag. J. Sci. 50(332), 337–348 (1875).

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Araoka, F.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Aya, S.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Bennis, N.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).

Bhattacharyya, S. S.

K. S. Ha, C. W. Woo, S. S. Bhattacharyya, H. J. Yun, H. S. Jin, Y. K. Jang, and S. H. Lee, “Analysis of optical bounce associated with two-step molecular reorientation in the fringe-field switching mode,” Liq. Cryst. 39(1), 39–45 (2012).
[Crossref]

Bos, P.J.

J. Chen, P.J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Brown, C. V.

C. V. Brown, E. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[Crossref]

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Cerrolaza, B.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).

Chang, A. S.

A. S. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Chen, H. S.

Chen, J.

J. Chen, P.J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Chen, P. J.

Cheng, H. C.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Cheng, W.-H.

W.-C. Hung, W.-H. Cheng, Y.-S. Lin, D.-J. Jang, I.-M. Jiang, and M.-S. Tsai, “Surface plasmons induced extra diffraction band of cholesteric liquid crystal grating,” J. Appl. Phys. 104(6), 063106 (2008).
[Crossref]

Chien, L. C.

L. Weng, A. Varanytsia, S. H. Lee, and L. C. Chien, “High-efficiency and fast-switching field-induced tunable phase grating using polymer-stabilized in-plane switching liquid crystals with vertical alignment,” J. Phys. D Appl. Phys. 49(12), 125504 (2016).
[Crossref]

Chigrinov, V. G.

Cho, D. U.

S. I. Yamamoto, T. Iwata, Y. Haseba, D. U. Cho, S. W. Choi, H. Higuchi, and H. Kikuchi, “Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 39(4), 487–491 (2012).
[Crossref]

Cho, N. H.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Choi, S. W.

S. I. Yamamoto, T. Iwata, Y. Haseba, D. U. Cho, S. W. Choi, H. Higuchi, and H. Kikuchi, “Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 39(4), 487–491 (2012).
[Crossref]

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

Choi, Y. J.

N. Kim, D. Y. Kim, M. Park, Y. J. Choi, S. Kim, S. H. Lee, and K. U. Jeong, “Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals,” Soft Matter 11(19), 3772–3779 (2015).
[Crossref] [PubMed]

Chou, S. Y.

A. S. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Copic, M.

I. Drevenšek-Olenik, M. Čopič, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Crawford, G. P.

I. Drevenšek-Olenik, M. Čopič, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Cui, H. Q.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

Dabrowski, R.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).

H. Khoshsima, H. Tajalli, A. G. Gilani, and R. Dabrowski, “Electro-optical Kerr effect of two high birefringence nematic liquid crystals,” J. Phys. D Appl. Phys. 39(8), 1495–1499 (2006).
[Crossref]

Drevenšek-Olenik, I.

I. Drevenšek-Olenik, M. Čopič, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Elston, S. J.

C. V. Brown, E. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[Crossref]

Escuti, M. J.

R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
[Crossref]

Fuh, A. Y. G.

Fung, R. X.

Furue, H.

Y. Tanabe, H. Furue, and J. Hatano, “Optically isotropic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1), 41–44 (2005).
[Crossref]

Gauza, S.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Geday, M. A.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).

Gilani, A. G.

H. Khoshsima, H. Tajalli, A. G. Gilani, and R. Dabrowski, “Electro-optical Kerr effect of two high birefringence nematic liquid crystals,” J. Phys. D Appl. Phys. 39(8), 1495–1499 (2006).
[Crossref]

Ha, K. S.

K. S. Ha, C. W. Woo, S. S. Bhattacharyya, H. J. Yun, H. S. Jin, Y. K. Jang, and S. H. Lee, “Analysis of optical bounce associated with two-step molecular reorientation in the fringe-field switching mode,” Liq. Cryst. 39(1), 39–45 (2012).
[Crossref]

Haseba, Y.

S. I. Yamamoto, T. Iwata, Y. Haseba, D. U. Cho, S. W. Choi, H. Higuchi, and H. Kikuchi, “Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 39(4), 487–491 (2012).
[Crossref]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Hatano, J.

Y. Tanabe, H. Furue, and J. Hatano, “Optically isotropic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1), 41–44 (2005).
[Crossref]

Hayashi, T.

S. Matsumoto, Y. Sugiyama, S. Sakata, and T. Hayashi, “Electro-optic effect, propagation loss, and switching speed in polymers containing nano-sized droplets of liquid crystal,” Liq. Cryst. 27(5), 649–655 (2000).
[Crossref]

Higuchi, H.

S. I. Yamamoto, T. Iwata, Y. Haseba, D. U. Cho, S. W. Choi, H. Higuchi, and H. Kikuchi, “Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 39(4), 487–491 (2012).
[Crossref]

Howard, R.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273(2), 367–369 (2007).
[Crossref]

Hu, W.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

Huang, B. Y.

B. Y. Huang, S. H. Lin, K. C. Lin, and C. T. Kuo, “Switchable Two-Dimensional Liquid Crystal Grating in Blue Phase,” Cryst. 7(6), 182 (2017).
[Crossref]

Huang, S. Y.

Hung, W.-C.

W.-C. Hung, W.-H. Cheng, Y.-S. Lin, D.-J. Jang, I.-M. Jiang, and M.-S. Tsai, “Surface plasmons induced extra diffraction band of cholesteric liquid crystal grating,” J. Appl. Phys. 104(6), 063106 (2008).
[Crossref]

Ishikawa, K.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Iwata, T.

S. I. Yamamoto, T. Iwata, Y. Haseba, D. U. Cho, S. W. Choi, H. Higuchi, and H. Kikuchi, “Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 39(4), 487–491 (2012).
[Crossref]

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

Jákli, A.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Jang, D.-J.

W.-C. Hung, W.-H. Cheng, Y.-S. Lin, D.-J. Jang, I.-M. Jiang, and M.-S. Tsai, “Surface plasmons induced extra diffraction band of cholesteric liquid crystal grating,” J. Appl. Phys. 104(6), 063106 (2008).
[Crossref]

Jang, Y. K.

K. S. Ha, C. W. Woo, S. S. Bhattacharyya, H. J. Yun, H. S. Jin, Y. K. Jang, and S. H. Lee, “Analysis of optical bounce associated with two-step molecular reorientation in the fringe-field switching mode,” Liq. Cryst. 39(1), 39–45 (2012).
[Crossref]

Jau, H. C.

Jeong, K. U.

N. Kim, D. Y. Kim, M. Park, Y. J. Choi, S. Kim, S. H. Lee, and K. U. Jeong, “Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals,” Soft Matter 11(19), 3772–3779 (2015).
[Crossref] [PubMed]

Jiang, I.-M.

W.-C. Hung, W.-H. Cheng, Y.-S. Lin, D.-J. Jang, I.-M. Jiang, and M.-S. Tsai, “Surface plasmons induced extra diffraction band of cholesteric liquid crystal grating,” J. Appl. Phys. 104(6), 063106 (2008).
[Crossref]

Jiao, M.

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010).
[Crossref] [PubMed]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Jin, H. S.

K. S. Ha, C. W. Woo, S. S. Bhattacharyya, H. J. Yun, H. S. Jin, Y. K. Jang, and S. H. Lee, “Analysis of optical bounce associated with two-step molecular reorientation in the fringe-field switching mode,” Liq. Cryst. 39(1), 39–45 (2012).
[Crossref]

Johnson, D. L.

J. Chen, P.J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Kajiyama, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Kerr, J.

J. Kerr, “XL. A new relation between electricity and light: Dielectrified media birefringent,” London, Edinburgh, and Dublin Philos. Mag. J. Sci. 50(332), 337–348 (1875).

Khoshsima, H.

H. Khoshsima, H. Tajalli, A. G. Gilani, and R. Dabrowski, “Electro-optical Kerr effect of two high birefringence nematic liquid crystals,” J. Phys. D Appl. Phys. 39(8), 1495–1499 (2006).
[Crossref]

Kikuchi, H.

S. I. Yamamoto, T. Iwata, Y. Haseba, D. U. Cho, S. W. Choi, H. Higuchi, and H. Kikuchi, “Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 39(4), 487–491 (2012).
[Crossref]

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Kim, D. Y.

N. Kim, D. Y. Kim, M. Park, Y. J. Choi, S. Kim, S. H. Lee, and K. U. Jeong, “Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals,” Soft Matter 11(19), 3772–3779 (2015).
[Crossref] [PubMed]

Kim, H. S.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Kim, N.

N. Kim, D. Y. Kim, M. Park, Y. J. Choi, S. Kim, S. H. Lee, and K. U. Jeong, “Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals,” Soft Matter 11(19), 3772–3779 (2015).
[Crossref] [PubMed]

Kim, S.

N. Kim, D. Y. Kim, M. Park, Y. J. Choi, S. Kim, S. H. Lee, and K. U. Jeong, “Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals,” Soft Matter 11(19), 3772–3779 (2015).
[Crossref] [PubMed]

Komanduri, R. K.

R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
[Crossref]

Kriezis, E. E.

C. V. Brown, E. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[Crossref]

Kuo, C. T.

B. Y. Huang, S. H. Lin, K. C. Lin, and C. T. Kuo, “Switchable Two-Dimensional Liquid Crystal Grating in Blue Phase,” Cryst. 7(6), 182 (2017).
[Crossref]

Kwok, H. S.

Le, K. V.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Lee, H. J.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Lee, J. H.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Lee, J. J.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Lee, J. M.

Lee, S. H.

L. Weng, A. Varanytsia, S. H. Lee, and L. C. Chien, “High-efficiency and fast-switching field-induced tunable phase grating using polymer-stabilized in-plane switching liquid crystals with vertical alignment,” J. Phys. D Appl. Phys. 49(12), 125504 (2016).
[Crossref]

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

N. Kim, D. Y. Kim, M. Park, Y. J. Choi, S. Kim, S. H. Lee, and K. U. Jeong, “Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals,” Soft Matter 11(19), 3772–3779 (2015).
[Crossref] [PubMed]

J. H. Yu, H. S. Chen, P. J. Chen, K. H. Song, S. C. Noh, J. M. Lee, H. Ren, Y. H. Lin, and S. H. Lee, “Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix,” Opt. Express 23(13), 17337–17344 (2015).
[Crossref] [PubMed]

K. S. Ha, C. W. Woo, S. S. Bhattacharyya, H. J. Yun, H. S. Jin, Y. K. Jang, and S. H. Lee, “Analysis of optical bounce associated with two-step molecular reorientation in the fringe-field switching mode,” Liq. Cryst. 39(1), 39–45 (2012).
[Crossref]

Li, J. N.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

Li, Q.

Li, Y.

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Liao, G.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Lim, Y. J.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Lin, H. C.

H. C. Lin, M. R. Yang, S. F. Tsai, and S. C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

Lin, K. C.

B. Y. Huang, S. H. Lin, K. C. Lin, and C. T. Kuo, “Switchable Two-Dimensional Liquid Crystal Grating in Blue Phase,” Cryst. 7(6), 182 (2017).
[Crossref]

Lin, S. H.

B. Y. Huang, S. H. Lin, K. C. Lin, and C. T. Kuo, “Switchable Two-Dimensional Liquid Crystal Grating in Blue Phase,” Cryst. 7(6), 182 (2017).
[Crossref]

Lin, T. H.

Lin, X. W.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

Lin, Y. H.

Lin, Y.-S.

W.-C. Hung, W.-H. Cheng, Y.-S. Lin, D.-J. Jang, I.-M. Jiang, and M.-S. Tsai, “Surface plasmons induced extra diffraction band of cholesteric liquid crystal grating,” J. Appl. Phys. 104(6), 063106 (2008).
[Crossref]

Liu, J. H.

Lu, Y. Q.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

Martin, S.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273(2), 367–369 (2007).
[Crossref]

Matsumoto, S.

S. Matsumoto, Y. Sugiyama, S. Sakata, and T. Hayashi, “Electro-optic effect, propagation loss, and switching speed in polymers containing nano-sized droplets of liquid crystal,” Liq. Cryst. 27(5), 649–655 (2000).
[Crossref]

Medialdea, D. P.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).

Morton, K. J.

A. S. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Murphy, P. F.

A. S. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Naydenova, I.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273(2), 367–369 (2007).
[Crossref]

Nayek, P.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Noh, S. C.

Oh, C.

R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
[Crossref]

Oton, J. M.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).

Park, H. S.

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Park, M.

N. Kim, D. Y. Kim, M. Park, Y. J. Choi, S. Kim, S. H. Lee, and K. U. Jeong, “Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals,” Soft Matter 11(19), 3772–3779 (2015).
[Crossref] [PubMed]

Pavani, K.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273(2), 367–369 (2007).
[Crossref]

Pelzl, G.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Quintana, X.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).

Raghavendra, J.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273(2), 367–369 (2007).
[Crossref]

Rao, L.

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18(11), 11450–11455 (2010).
[Crossref] [PubMed]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Ren, H.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Sakata, S.

S. Matsumoto, Y. Sugiyama, S. Sakata, and T. Hayashi, “Electro-optic effect, propagation loss, and switching speed in polymers containing nano-sized droplets of liquid crystal,” Liq. Cryst. 27(5), 649–655 (2000).
[Crossref]

Shen, D.

Z. G. Zheng, C. Wang, and D. Shen, “Dichroic-dye-doped polymer stabilized optically isotropic chiral liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6471–6478 (2013).
[Crossref]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

Song, K. H.

Sousa, M. E.

I. Drevenšek-Olenik, M. Čopič, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

Spadlo, A.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).

Sprunt, S.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Srivastava, A. K.

Stojadinovic, S.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Sugiyama, Y.

S. Matsumoto, Y. Sugiyama, S. Sakata, and T. Hayashi, “Electro-optic effect, propagation loss, and switching speed in polymers containing nano-sized droplets of liquid crystal,” Liq. Cryst. 27(5), 649–655 (2000).
[Crossref]

Sun, J.

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Tajalli, H.

H. Khoshsima, H. Tajalli, A. G. Gilani, and R. Dabrowski, “Electro-optical Kerr effect of two high birefringence nematic liquid crystals,” J. Phys. D Appl. Phys. 39(8), 1495–1499 (2006).
[Crossref]

Takezoe, H.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Tan, G.

Tan, H.

A. S. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Tanabe, Y.

Y. Tanabe, H. Furue, and J. Hatano, “Optically isotropic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1), 41–44 (2005).
[Crossref]

Toal, V.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273(2), 367–369 (2007).
[Crossref]

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

Tsai, M.-S.

W.-C. Hung, W.-H. Cheng, Y.-S. Lin, D.-J. Jang, I.-M. Jiang, and M.-S. Tsai, “Surface plasmons induced extra diffraction band of cholesteric liquid crystal grating,” J. Appl. Phys. 104(6), 063106 (2008).
[Crossref]

Tsai, S. F.

H. C. Lin, M. R. Yang, S. F. Tsai, and S. C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

Varanytsia, A.

L. Weng, A. Varanytsia, S. H. Lee, and L. C. Chien, “High-efficiency and fast-switching field-induced tunable phase grating using polymer-stabilized in-plane switching liquid crystals with vertical alignment,” J. Phys. D Appl. Phys. 49(12), 125504 (2016).
[Crossref]

Vithana, H.

J. Chen, P.J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Wang, C.

Z. G. Zheng, C. Wang, and D. Shen, “Dichroic-dye-doped polymer stabilized optically isotropic chiral liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6471–6478 (2013).
[Crossref]

Wang, H. F.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

Wang, L.

Weissflog, W.

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Weng, L.

L. Weng, A. Varanytsia, S. H. Lee, and L. C. Chien, “High-efficiency and fast-switching field-induced tunable phase grating using polymer-stabilized in-plane switching liquid crystals with vertical alignment,” J. Phys. D Appl. Phys. 49(12), 125504 (2016).
[Crossref]

Woo, C. W.

K. S. Ha, C. W. Woo, S. S. Bhattacharyya, H. J. Yun, H. S. Jin, Y. K. Jang, and S. H. Lee, “Analysis of optical bounce associated with two-step molecular reorientation in the fringe-field switching mode,” Liq. Cryst. 39(1), 39–45 (2012).
[Crossref]

Wu, S. T.

Wu, W.

A. S. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Xing, Y.

Xu, D.

Yamamoto, S. I.

S. I. Yamamoto, T. Iwata, Y. Haseba, D. U. Cho, S. W. Choi, H. Higuchi, and H. Kikuchi, “Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 39(4), 487–491 (2012).
[Crossref]

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

Yan, J.

Yan, S. C.

H. C. Lin, M. R. Yang, S. F. Tsai, and S. C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

Yang, D. K.

Y. C. Yang and D. K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
[Crossref]

Yang, M. R.

H. C. Lin, M. R. Yang, S. F. Tsai, and S. C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

Yang, Y. C.

Y. C. Yang and D. K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
[Crossref]

Yu, J. H.

Yun, H. J.

K. S. Ha, C. W. Woo, S. S. Bhattacharyya, H. J. Yun, H. S. Jin, Y. K. Jang, and S. H. Lee, “Analysis of optical bounce associated with two-step molecular reorientation in the fringe-field switching mode,” Liq. Cryst. 39(1), 39–45 (2012).
[Crossref]

Zheng, Z. G.

Z. G. Zheng, C. Wang, and D. Shen, “Dichroic-dye-doped polymer stabilized optically isotropic chiral liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6471–6478 (2013).
[Crossref]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

Zhu, G.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range,” Adv. Mater. 17(19), 2311–2315 (2005).
[Crossref]

Appl. Phys. Lett. (5)

Y. C. Yang and D. K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett. 98(2), 023502 (2011).
[Crossref]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer‐dispersed liquid crystals,” Appl. Phys. Lett. 64(9), 1074–1076 (1994).
[Crossref]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

J. Chen, P.J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

H. C. Lin, M. R. Yang, S. F. Tsai, and S. C. Yan, “Gelator-doped liquid-crystal phase grating with multistable and dynamic modes,” Appl. Phys. Lett. 104(1), 011907 (2014).
[Crossref]

Cryst. (1)

B. Y. Huang, S. H. Lin, K. C. Lin, and C. T. Kuo, “Switchable Two-Dimensional Liquid Crystal Grating in Blue Phase,” Cryst. 7(6), 182 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. S. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

J. Appl. Phys. (3)

W.-C. Hung, W.-H. Cheng, Y.-S. Lin, D.-J. Jang, I.-M. Jiang, and M.-S. Tsai, “Surface plasmons induced extra diffraction band of cholesteric liquid crystal grating,” J. Appl. Phys. 104(6), 063106 (2008).
[Crossref]

C. V. Brown, E. E. Kriezis, and S. J. Elston, “Optical diffraction from a liquid crystal phase grating,” J. Appl. Phys. 91(6), 3495–3500 (2002).
[Crossref]

I. Drevenšek-Olenik, M. Čopič, M. E. Sousa, and G. P. Crawford, “Optical retardation of in-plane switched polymer dispersed liquid crystals,” J. Appl. Phys. 100(3), 033515 (2006).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Z. G. Zheng, C. Wang, and D. Shen, “Dichroic-dye-doped polymer stabilized optically isotropic chiral liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(39), 6471–6478 (2013).
[Crossref]

J. Phys. D Appl. Phys. (3)

H. Khoshsima, H. Tajalli, A. G. Gilani, and R. Dabrowski, “Electro-optical Kerr effect of two high birefringence nematic liquid crystals,” J. Phys. D Appl. Phys. 39(8), 1495–1499 (2006).
[Crossref]

S. W. Choi, S. I. Yamamoto, T. Iwata, and H. Kikuchi, “Optically isotropic liquid crystal composite incorporating in-plane electric field geometry,” J. Phys. D Appl. Phys. 42(11), 112002 (2009).
[Crossref]

L. Weng, A. Varanytsia, S. H. Lee, and L. C. Chien, “High-efficiency and fast-switching field-induced tunable phase grating using polymer-stabilized in-plane switching liquid crystals with vertical alignment,” J. Phys. D Appl. Phys. 49(12), 125504 (2016).
[Crossref]

J. Soc. Inf. Disp. (1)

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys. 50(5R), 051703 (2011).
[Crossref]

Liq. Cryst. (3)

S. I. Yamamoto, T. Iwata, Y. Haseba, D. U. Cho, S. W. Choi, H. Higuchi, and H. Kikuchi, “Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals,” Liq. Cryst. 39(4), 487–491 (2012).
[Crossref]

K. S. Ha, C. W. Woo, S. S. Bhattacharyya, H. J. Yun, H. S. Jin, Y. K. Jang, and S. H. Lee, “Analysis of optical bounce associated with two-step molecular reorientation in the fringe-field switching mode,” Liq. Cryst. 39(1), 39–45 (2012).
[Crossref]

S. Matsumoto, Y. Sugiyama, S. Sakata, and T. Hayashi, “Electro-optic effect, propagation loss, and switching speed in polymers containing nano-sized droplets of liquid crystal,” Liq. Cryst. 27(5), 649–655 (2000).
[Crossref]

London, Edinburgh, and Dublin Philos. Mag. J. Sci. (1)

J. Kerr, “XL. A new relation between electricity and light: Dielectrified media birefringent,” London, Edinburgh, and Dublin Philos. Mag. J. Sci. 50(332), 337–348 (1875).

Mater. Lett. (1)

N. H. Cho, P. Nayek, J. J. Lee, Y. J. Lim, J. H. Lee, S. H. Lee, H. S. Park, H. J. Lee, and H. S. Kim, “High-performance, in-plane switching liquid crystal device utilizing an optically isotropic liquid crystal blend of nanostructured liquid crystal droplets in a polymer matrix,” Mater. Lett. 153, 136–139 (2015).
[Crossref]

Mater. Sci. Eng. B (1)

Y. Tanabe, H. Furue, and J. Hatano, “Optically isotropic liquid crystals with microsized domains,” Mater. Sci. Eng. B 120(1), 41–44 (2005).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273(2), 367–369 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opto-Elect. Rev. (1)

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadło, R. Dąbrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Elect. Rev. 17(2), 112–115 (2009).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

G. Liao, S. Stojadinovic, G. Pelzl, W. Weissflog, S. Sprunt, and A. Jákli, “Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 021710 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
[Crossref]

Soft Matter (1)

N. Kim, D. Y. Kim, M. Park, Y. J. Choi, S. Kim, S. H. Lee, and K. U. Jeong, “Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals,” Soft Matter 11(19), 3772–3779 (2015).
[Crossref] [PubMed]

Other (1)

S. J. Shin, N. H. Cho, Y. J. Lim, P. Nayek, S. H. Lee, S. H. Hong, H. J. Lee, and S. T. Shin, “Optically isotropic liquid crystal mixture showing high contrast ratio and fast response time,” IMID Digest. 139, (2011).

Supplementary Material (2)

NameDescription
» Visualization 1       Dynamic switching of the IPS diffraction grating filled with optically isotropic liquid crystal
» Visualization 2       Dynamic switching of the FFS diffraction grating filled with optically isotropic liquid crystal

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Switching mechanism of OILC phase in IPS cell at (a) V = 0 & (b) V≠0, and FFS cell at (c) V = 0 & (d) V≠0. Pitch (Λ) of each cell is schematically represented.
Fig. 2
Fig. 2 Pictorial representation of experimental set up for electro-optic measurements of diffraction grating. ND is neutral density filter. The polarizer sets polarization direction perpendicular to the long ITO electrode strip to select the TM polarization.
Fig. 3
Fig. 3 The diffraction pattern recorded for OILC phase switching with, (a) IPS, and (b) FFS cells. The incident polarization direction is perpendicular to the long electrode to select the TM polarized light. Corresponding dynamic responses of the IPS (see Visualization 1) and FFS (see Visualization 2) are also recorded.
Fig. 4
Fig. 4 The relative transmittance change and diffraction efficiency as a function of applied voltage, (a) IPS, and (b) FFS cells. The diffraction efficiency is defined by Eq. (6).
Fig. 5
Fig. 5 Response times of the zeroth orders of (a) IPS, and (b) FFS cells.
Fig. 6
Fig. 6 Polarization dependency of the diffracted beam in (a) IPS cell’s 1st order, and (b) FFS cell’s 2nd order. Polarizations states of the various diffraction orders of (c) IPS cell and (d) FFS cell.
Fig. 7
Fig. 7 POM images of (a) IPS and (b) FFS cells filled with nano-PDLC. Top row represents images with single polarizer used in which polarization direction of an incident light is perpendicular to the long ITO electrode. Bottom images represent texture under crossed polarisers in which polarization direction of an incident light is 45° with respect to long ITO electrode. Here, the pitch (Λ) is clearly shorter in FFS than IPS cell. Represented scale bar is 40 μm.
Fig. 8
Fig. 8 (a) Wavelength dependent transmittance curves for IPS and FFS cells. The photograph images of the cells as shown in inset. Obtained polymer structure of nano-PDLC film prepared in (b) IPS and (c) FFS cell. The represented scale bar is equal to 500 nm.

Tables (1)

Tables Icon

Table 1 Measured diffraction angle (θm) and diffraction efficiencies (ηm) of IPS and FFS based OILC phase grating. He-Ne laser (λ = 632.8 nm) was used as light source.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n ind ( E )=Δ n s { 1exp[ ( E E s ) 2 ] },
n o ( E )= n i Δ n ind ( E ) 3 , n e ( E )= n i + 2Δ n ind (E) 3 ,
Δφ= 2π λ | 0 d n o ( E )dz n i d |,
sin θ m = mλ n avg Λ ,
tan θ m = D m L ,
η m ( % )= I m ( V ) I o ×100,

Metrics