Abstract

In this work, dynamics of carrier tunneling and recombination in InGaN-based asymmetric coupled multiple quantum wells (AC-MQWs) are systematically studied by excitation power-dependent and temperature-dependent photoluminescence (PL) measurements. With different pumping wavelengths of 405 and 325 nm, distinctly different PL spectral evolutions are observed, which could be well explained by the proposed anomalous carrier “reverse tunneling” based on the forbidden 1h→2e transitions in the AC-MQWs. The forbidden transitions are identified through the well agreement between the measured photo-modulated reflectance (PR) spectrum and the calculated interband transition energies. Our results indicate that, by ingeniously designing the MQW structure of the InGaN-based optoelectronic devices, it is possible to realize a specific interband optical transition which is even not allowed by the selection rule, and thereby effectively improve the carrier distribution across the QWs through the conventional and/or anomalous “reverse” carrier tunneling.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample

Hsiang-Chen Wang, Xuan-Yu Yu, Yu-Lun Chueh, Tadas Malinauskas, Kestutis Jarasiunas, and Shih-Wei Feng
Opt. Express 19(20) 18893-18902 (2011)

Temperature dependence of photoluminescence spectra for green light emission from InGaN/GaN multiple wells

W. Liu, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, J. J. Zhu, M. Shi, D. M. Zhao, X. Li, J. P. Liu, S. M. Zhang, H. Wang, H. Yang, Y. T. Zhang, and G. T. Du
Opt. Express 23(12) 15935-15943 (2015)

Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells

Huining Wang, Ziwu Ji, Shuang Qu, Gang Wang, Yongzhi Jiang, Baoli Liu, Xiangang Xu, and Hirofumi Mino
Opt. Express 20(4) 3932-3940 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Nanishi, “Nobel Prize in Physics: The birth of the blue LED,” Nat. Photonics 8(12), 884–886 (2014).
    [Crossref]
  2. X. L. Hu, J. Zhang, H. Wang, and X. C. Zhang, “High-luminous efficacy white light-emitting diodes with thin-film flip-chip technology and surface roughening scheme,” J. Phys. D Appl. Phys. 49(44), 445102 (2016).
    [Crossref]
  3. Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).
  4. T. Kamikawa, Y. Kawaguchi, P. O. Vaccaro, S. Ito, and H. Kawanishi, “Highly reliable 500 mW laser diodes with epitaxially grown AlON coating for high-density optical storage,” Appl. Phys. Lett. 95(3), 031106 (2009).
    [Crossref]
  5. Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
    [Crossref]
  6. Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
    [Crossref]
  7. M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
    [Crossref]
  8. M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, “Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations,” Phys. Rev. Lett. 116(2), 027401 (2016).
    [Crossref] [PubMed]
  9. J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Stat. Sol. A, Appl. Mater. Sci. 207(10), 2217–2225 (2010).
  10. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
    [Crossref]
  11. H. P. Zhao, G. Y. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes,” J. Disp. Technol. 9(4), 212–225 (2013).
    [Crossref]
  12. F. Römer and B. Witzigmann, “Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs,” Opt. Express 22(S6Suppl 6), A1440–A1452 (2014).
    [Crossref] [PubMed]
  13. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
    [Crossref]
  14. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
    [Crossref]
  15. J. X. Wang, L. Wang, W. Zhao, Z. B. Hao, and Y. Luo, “Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization,” Appl. Phys. Lett. 97(20), 201112 (2010).
    [Crossref]
  16. J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
    [Crossref]
  17. P. Prajoon, D. Nirmal, M. A. Menokey, and J. C. Pravin, “Efficiency Enhancement of InGaN MQW LED Using Compositionally Step Graded InGaN Barrier on SiC Substrate,” J. Disp. Technol. 12(10), 1117–1121 (2016).
    [Crossref]
  18. L. W. Cheng, S. D. Wu, C. Q. Xia, and H. T. Chen, “Efficiency droop improvement in InGaN light-emitting diodes with graded InGaN barriers of increasing indium composition,” J. Appl. Phys. 118(10), 103103 (2015).
    [Crossref]
  19. L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Wells,” IEEE Photonics J. 5(2), 8200208 (2013).
    [Crossref]
  20. Y. A. Chang, J. Y. Chang, Y. T. Kuo, and Y. K. Kuo, “Investigation of green InGaN light-emitting diodes with asymmetric AlGaN composition-graded barriers and without an electron blocking layer,” Appl. Phys. Lett. 100(25), 251102 (2012).
    [Crossref]
  21. C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).
  22. H. Karan, A. Biswas, and M. Saha, “Improved performance of InGaN/GaN MQW LEDs with trapezoidal wells and gradually thinned barrier layers towards anode,” Opt. Commun. 400, 89–95 (2017).
    [Crossref]
  23. B. Cao, R. Hu, Z. Y. Gan, and S. Liu, “Enhancing Light Output of GaN-Based LEDs With Graded-Thickness Quantum Wells and Barriers,” IEEE Photonics Technol. Lett. 25(18), 1762–1765 (2013).
    [Crossref]
  24. M. C. Tsai, S. H. Yen, and Y. K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
    [Crossref]
  25. J. Y. Zhang, L. E. Cai, B. P. Zhang, X. L. Hu, F. Jiang, J. Z. Yu, and Q. M. Wang, “Efficient hole transport in asymmetric coupled InGaN multiple quantum wells,” Appl. Phys. Lett. 95(16), 161110 (2009).
    [Crossref]
  26. C. L. Tsai and W. C. Wu, “Effects of Asymmetric Quantum Wells on the Structural and Optical Properties of InGaN-Based Light-Emitting Diodes,” Materials (Basel) 7(5), 3758–3771 (2014).
    [Crossref] [PubMed]
  27. A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
    [Crossref]
  28. J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells,” J. Phys. Condens. Matter 16(31), S3071–S3094 (2004).
    [Crossref]
  29. X. Zhou, Y. Chen, and B. Xu, “Optical identification of electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure,” Nanoscale Res. Lett. 6(1), 317 (2011).
    [Crossref] [PubMed]
  30. F. Bernardini and V. Fiorentini, “Polarization fields in nitride nanostructures: 10 points to think about,” Appl. Surf. Sci. 166(1-4), 23–29 (2000).
    [Crossref]
  31. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
    [Crossref]
  32. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
    [Crossref]
  33. G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Appl. Phys. Lett. 68(18), 2541–2543 (1996).
    [Crossref]
  34. C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91(1), 531–533 (2002).
    [Crossref]
  35. I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
    [Crossref]
  36. Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN/GaN quantum wells,” Appl. Phys. Lett. 91(6), 061902 (2007).
    [Crossref]
  37. D. P. Han, D. G. Zheng, C. H. Oh, H. Kim, J. I. Shim, D. S. Shin, and K. S. Kim, “Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements,” Appl. Phys. Lett. 104(15), 151108 (2014).
    [Crossref]
  38. M. E. Christmas, A. D. Andreev, and D. A. Faux, “Calculation of electric field and optical transitions in InGaN/GaN quantum wells,” J. Appl. Phys. 98(7), 073522 (2005).
    [Crossref]
  39. H. Wang, Z. Ji, S. Qu, G. Wang, Y. Jiang, B. Liu, X. Xu, and H. Mino, “Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells,” Opt. Express 20(4), 3932–3940 (2012).
    [Crossref] [PubMed]
  40. Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
    [Crossref]

2017 (1)

H. Karan, A. Biswas, and M. Saha, “Improved performance of InGaN/GaN MQW LEDs with trapezoidal wells and gradually thinned barrier layers towards anode,” Opt. Commun. 400, 89–95 (2017).
[Crossref]

2016 (4)

P. Prajoon, D. Nirmal, M. A. Menokey, and J. C. Pravin, “Efficiency Enhancement of InGaN MQW LED Using Compositionally Step Graded InGaN Barrier on SiC Substrate,” J. Disp. Technol. 12(10), 1117–1121 (2016).
[Crossref]

X. L. Hu, J. Zhang, H. Wang, and X. C. Zhang, “High-luminous efficacy white light-emitting diodes with thin-film flip-chip technology and surface roughening scheme,” J. Phys. D Appl. Phys. 49(44), 445102 (2016).
[Crossref]

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, “Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations,” Phys. Rev. Lett. 116(2), 027401 (2016).
[Crossref] [PubMed]

2015 (2)

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

L. W. Cheng, S. D. Wu, C. Q. Xia, and H. T. Chen, “Efficiency droop improvement in InGaN light-emitting diodes with graded InGaN barriers of increasing indium composition,” J. Appl. Phys. 118(10), 103103 (2015).
[Crossref]

2014 (4)

C. L. Tsai and W. C. Wu, “Effects of Asymmetric Quantum Wells on the Structural and Optical Properties of InGaN-Based Light-Emitting Diodes,” Materials (Basel) 7(5), 3758–3771 (2014).
[Crossref] [PubMed]

D. P. Han, D. G. Zheng, C. H. Oh, H. Kim, J. I. Shim, D. S. Shin, and K. S. Kim, “Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements,” Appl. Phys. Lett. 104(15), 151108 (2014).
[Crossref]

Y. Nanishi, “Nobel Prize in Physics: The birth of the blue LED,” Nat. Photonics 8(12), 884–886 (2014).
[Crossref]

F. Römer and B. Witzigmann, “Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs,” Opt. Express 22(S6Suppl 6), A1440–A1452 (2014).
[Crossref] [PubMed]

2013 (4)

H. P. Zhao, G. Y. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes,” J. Disp. Technol. 9(4), 212–225 (2013).
[Crossref]

A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
[Crossref]

B. Cao, R. Hu, Z. Y. Gan, and S. Liu, “Enhancing Light Output of GaN-Based LEDs With Graded-Thickness Quantum Wells and Barriers,” IEEE Photonics Technol. Lett. 25(18), 1762–1765 (2013).
[Crossref]

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

2012 (2)

Y. A. Chang, J. Y. Chang, Y. T. Kuo, and Y. K. Kuo, “Investigation of green InGaN light-emitting diodes with asymmetric AlGaN composition-graded barriers and without an electron blocking layer,” Appl. Phys. Lett. 100(25), 251102 (2012).
[Crossref]

H. Wang, Z. Ji, S. Qu, G. Wang, Y. Jiang, B. Liu, X. Xu, and H. Mino, “Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells,” Opt. Express 20(4), 3932–3940 (2012).
[Crossref] [PubMed]

2011 (5)

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
[Crossref]

M. C. Tsai, S. H. Yen, and Y. K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
[Crossref]

X. Zhou, Y. Chen, and B. Xu, “Optical identification of electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure,” Nanoscale Res. Lett. 6(1), 317 (2011).
[Crossref] [PubMed]

2010 (2)

J. X. Wang, L. Wang, W. Zhao, Z. B. Hao, and Y. Luo, “Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization,” Appl. Phys. Lett. 97(20), 201112 (2010).
[Crossref]

J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Stat. Sol. A, Appl. Mater. Sci. 207(10), 2217–2225 (2010).

2009 (4)

M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[Crossref]

T. Kamikawa, Y. Kawaguchi, P. O. Vaccaro, S. Ito, and H. Kawanishi, “Highly reliable 500 mW laser diodes with epitaxially grown AlON coating for high-density optical storage,” Appl. Phys. Lett. 95(3), 031106 (2009).
[Crossref]

J. Y. Zhang, L. E. Cai, B. P. Zhang, X. L. Hu, F. Jiang, J. Z. Yu, and Q. M. Wang, “Efficient hole transport in asymmetric coupled InGaN multiple quantum wells,” Appl. Phys. Lett. 95(16), 161110 (2009).
[Crossref]

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

2008 (1)

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

2007 (2)

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN/GaN quantum wells,” Appl. Phys. Lett. 91(6), 061902 (2007).
[Crossref]

2005 (2)

I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
[Crossref]

M. E. Christmas, A. D. Andreev, and D. A. Faux, “Calculation of electric field and optical transitions in InGaN/GaN quantum wells,” J. Appl. Phys. 98(7), 073522 (2005).
[Crossref]

2004 (1)

J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells,” J. Phys. Condens. Matter 16(31), S3071–S3094 (2004).
[Crossref]

2003 (1)

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

2002 (2)

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91(1), 531–533 (2002).
[Crossref]

2000 (2)

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

F. Bernardini and V. Fiorentini, “Polarization fields in nitride nanostructures: 10 points to think about,” Appl. Surf. Sci. 166(1-4), 23–29 (2000).
[Crossref]

1996 (1)

G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Appl. Phys. Lett. 68(18), 2541–2543 (1996).
[Crossref]

Ambacher, O.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Andreev, A. D.

M. E. Christmas, A. D. Andreev, and D. A. Faux, “Calculation of electric field and optical transitions in InGaN/GaN quantum wells,” J. Appl. Phys. 98(7), 073522 (2005).
[Crossref]

Arif, R. A.

H. P. Zhao, G. Y. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes,” J. Disp. Technol. 9(4), 212–225 (2013).
[Crossref]

Auf der Maur, M.

M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, “Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations,” Phys. Rev. Lett. 116(2), 027401 (2016).
[Crossref] [PubMed]

Bedair, S. M.

A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
[Crossref]

Bernardini, F.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

F. Bernardini and V. Fiorentini, “Polarization fields in nitride nanostructures: 10 points to think about,” Appl. Surf. Sci. 166(1-4), 23–29 (2000).
[Crossref]

Biswas, A.

H. Karan, A. Biswas, and M. Saha, “Improved performance of InGaN/GaN MQW LEDs with trapezoidal wells and gradually thinned barrier layers towards anode,” Opt. Commun. 400, 89–95 (2017).
[Crossref]

Blood, P.

I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
[Crossref]

Botchkarev, A.

G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Appl. Phys. Lett. 68(18), 2541–2543 (1996).
[Crossref]

Bour, D. P.

I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
[Crossref]

Brown, I. H.

I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
[Crossref]

Cai, L. E.

J. Y. Zhang, L. E. Cai, B. P. Zhang, X. L. Hu, F. Jiang, J. Z. Yu, and Q. M. Wang, “Efficient hole transport in asymmetric coupled InGaN multiple quantum wells,” Appl. Phys. Lett. 95(16), 161110 (2009).
[Crossref]

Cao, B.

B. Cao, R. Hu, Z. Y. Gan, and S. Liu, “Enhancing Light Output of GaN-Based LEDs With Graded-Thickness Quantum Wells and Barriers,” IEEE Photonics Technol. Lett. 25(18), 1762–1765 (2013).
[Crossref]

Cao, W. R.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

Chang, C. Y.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Chang, J. Y.

Y. A. Chang, J. Y. Chang, Y. T. Kuo, and Y. K. Kuo, “Investigation of green InGaN light-emitting diodes with asymmetric AlGaN composition-graded barriers and without an electron blocking layer,” Appl. Phys. Lett. 100(25), 251102 (2012).
[Crossref]

Chang, S. P.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Chang, W. H.

C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91(1), 531–533 (2002).
[Crossref]

Chang, Y. A.

Y. A. Chang, J. Y. Chang, Y. T. Kuo, and Y. K. Kuo, “Investigation of green InGaN light-emitting diodes with asymmetric AlGaN composition-graded barriers and without an electron blocking layer,” Appl. Phys. Lett. 100(25), 251102 (2012).
[Crossref]

Chen, H.

Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN/GaN quantum wells,” Appl. Phys. Lett. 91(6), 061902 (2007).
[Crossref]

Chen, H. T.

L. W. Cheng, S. D. Wu, C. Q. Xia, and H. T. Chen, “Efficiency droop improvement in InGaN light-emitting diodes with graded InGaN barriers of increasing indium composition,” J. Appl. Phys. 118(10), 103103 (2015).
[Crossref]

Chen, Y.

X. Zhou, Y. Chen, and B. Xu, “Optical identification of electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure,” Nanoscale Res. Lett. 6(1), 317 (2011).
[Crossref] [PubMed]

Chen, Z.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Cheng, L. W.

L. W. Cheng, S. D. Wu, C. Q. Xia, and H. T. Chen, “Efficiency droop improvement in InGaN light-emitting diodes with graded InGaN barriers of increasing indium composition,” J. Appl. Phys. 118(10), 103103 (2015).
[Crossref]

Cheng, Y. C.

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Chiu, C. H.

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Chou, C. C.

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Chow, W. W.

I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
[Crossref]

Christmas, M. E.

M. E. Christmas, A. D. Andreev, and D. A. Faux, “Calculation of electric field and optical transitions in InGaN/GaN quantum wells,” J. Appl. Phys. 98(7), 073522 (2005).
[Crossref]

Chuo, C. C.

C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91(1), 531–533 (2002).
[Crossref]

Chyi, J. I.

C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91(1), 531–533 (2002).
[Crossref]

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Crawford, M. H.

M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[Crossref]

Dai, Q.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

David, A.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Delaney, K. T.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

Di Carlo, A.

M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, “Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations,” Phys. Rev. Lett. 116(2), 027401 (2016).
[Crossref] [PubMed]

Eastman, L. F.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Eickhoff, M.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Everitt, H. O.

A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
[Crossref]

Faux, D. A.

M. E. Christmas, A. D. Andreev, and D. A. Faux, “Calculation of electric field and optical transitions in InGaN/GaN quantum wells,” J. Appl. Phys. 98(7), 073522 (2005).
[Crossref]

Feng, S. W.

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Fiorentini, V.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

F. Bernardini and V. Fiorentini, “Polarization fields in nitride nanostructures: 10 points to think about,” Appl. Surf. Sci. 166(1-4), 23–29 (2000).
[Crossref]

Forchel, A.

J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells,” J. Phys. Condens. Matter 16(31), S3071–S3094 (2004).
[Crossref]

Gan, Z. Y.

B. Cao, R. Hu, Z. Y. Gan, and S. Liu, “Enhancing Light Output of GaN-Based LEDs With Graded-Thickness Quantum Wells and Barriers,” IEEE Photonics Technol. Lett. 25(18), 1762–1765 (2013).
[Crossref]

Gao, Y. L.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Gardner, N. F.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Grundmann, M. J.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Guo, L. W.

Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN/GaN quantum wells,” Appl. Phys. Lett. 91(6), 061902 (2007).
[Crossref]

Hader, J.

J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
[Crossref]

Hammar, M.

J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells,” J. Phys. Condens. Matter 16(31), S3071–S3094 (2004).
[Crossref]

Han, D. P.

D. P. Han, D. G. Zheng, C. H. Oh, H. Kim, J. I. Shim, D. S. Shin, and K. S. Kim, “Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements,” Appl. Phys. Lett. 104(15), 151108 (2014).
[Crossref]

Hao, Z. B.

J. X. Wang, L. Wang, W. Zhao, Z. B. Hao, and Y. Luo, “Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization,” Appl. Phys. Lett. 97(20), 201112 (2010).
[Crossref]

Harmand, J. C.

J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells,” J. Phys. Condens. Matter 16(31), S3071–S3094 (2004).
[Crossref]

Hermann, M.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Hofmann, W.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

Holloway, P. H.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

Hosalli, A. M.

A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
[Crossref]

Hsu, C.

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Hsu, T. M.

C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91(1), 531–533 (2002).
[Crossref]

Hu, R.

B. Cao, R. Hu, Z. Y. Gan, and S. Liu, “Enhancing Light Output of GaN-Based LEDs With Graded-Thickness Quantum Wells and Barriers,” IEEE Photonics Technol. Lett. 25(18), 1762–1765 (2013).
[Crossref]

Hu, X. L.

X. L. Hu, J. Zhang, H. Wang, and X. C. Zhang, “High-luminous efficacy white light-emitting diodes with thin-film flip-chip technology and surface roughening scheme,” J. Phys. D Appl. Phys. 49(44), 445102 (2016).
[Crossref]

J. Y. Zhang, L. E. Cai, B. P. Zhang, X. L. Hu, F. Jiang, J. Z. Yu, and Q. M. Wang, “Efficient hole transport in asymmetric coupled InGaN multiple quantum wells,” Appl. Phys. Lett. 95(16), 161110 (2009).
[Crossref]

Hyvonen, J.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

Ito, S.

T. Kamikawa, Y. Kawaguchi, P. O. Vaccaro, S. Ito, and H. Kawanishi, “Highly reliable 500 mW laser diodes with epitaxially grown AlON coating for high-density optical storage,” Appl. Phys. Lett. 95(3), 031106 (2009).
[Crossref]

Ji, Z.

Jia, H. Q.

Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN/GaN quantum wells,” Appl. Phys. Lett. 91(6), 061902 (2007).
[Crossref]

Jiang, F.

J. Y. Zhang, L. E. Cai, B. P. Zhang, X. L. Hu, F. Jiang, J. Z. Yu, and Q. M. Wang, “Efficient hole transport in asymmetric coupled InGaN multiple quantum wells,” Appl. Phys. Lett. 95(16), 161110 (2009).
[Crossref]

Jiang, Y.

Kaeding, J. F.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Kamikawa, T.

T. Kamikawa, Y. Kawaguchi, P. O. Vaccaro, S. Ito, and H. Kawanishi, “Highly reliable 500 mW laser diodes with epitaxially grown AlON coating for high-density optical storage,” Appl. Phys. Lett. 95(3), 031106 (2009).
[Crossref]

Karan, H.

H. Karan, A. Biswas, and M. Saha, “Improved performance of InGaN/GaN MQW LEDs with trapezoidal wells and gradually thinned barrier layers towards anode,” Opt. Commun. 400, 89–95 (2017).
[Crossref]

Kawaguchi, Y.

T. Kamikawa, Y. Kawaguchi, P. O. Vaccaro, S. Ito, and H. Kawanishi, “Highly reliable 500 mW laser diodes with epitaxially grown AlON coating for high-density optical storage,” Appl. Phys. Lett. 95(3), 031106 (2009).
[Crossref]

Kawanishi, H.

T. Kamikawa, Y. Kawaguchi, P. O. Vaccaro, S. Ito, and H. Kawanishi, “Highly reliable 500 mW laser diodes with epitaxially grown AlON coating for high-density optical storage,” Appl. Phys. Lett. 95(3), 031106 (2009).
[Crossref]

Ke, C. C.

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Kim, H.

D. P. Han, D. G. Zheng, C. H. Oh, H. Kim, J. I. Shim, D. S. Shin, and K. S. Kim, “Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements,” Appl. Phys. Lett. 104(15), 151108 (2014).
[Crossref]

Kim, J. K.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Kim, K. S.

D. P. Han, D. G. Zheng, C. H. Oh, H. Kim, J. I. Shim, D. S. Shin, and K. S. Kim, “Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements,” Appl. Phys. Lett. 104(15), 151108 (2014).
[Crossref]

Kim, M. H.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Kioupakis, E.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

Kneissl, M.

I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
[Crossref]

Koch, S. W.

J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
[Crossref]

Krames, M. R.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Ku, P. H.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Kudrawiec, R.

J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells,” J. Phys. Condens. Matter 16(31), S3071–S3094 (2004).
[Crossref]

Kuo, H. C.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Kuo, Y. K.

Y. A. Chang, J. Y. Chang, Y. T. Kuo, and Y. K. Kuo, “Investigation of green InGaN light-emitting diodes with asymmetric AlGaN composition-graded barriers and without an electron blocking layer,” Appl. Phys. Lett. 100(25), 251102 (2012).
[Crossref]

M. C. Tsai, S. H. Yen, and Y. K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
[Crossref]

Kuo, Y. T.

Y. A. Chang, J. Y. Chang, Y. T. Kuo, and Y. K. Kuo, “Investigation of green InGaN light-emitting diodes with asymmetric AlGaN composition-graded barriers and without an electron blocking layer,” Appl. Phys. Lett. 100(25), 251102 (2012).
[Crossref]

Lai, C. Y.

C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91(1), 531–533 (2002).
[Crossref]

Lan, Y. P.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Leach, J. H.

A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
[Crossref]

Lee, C. M.

C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91(1), 531–533 (2002).
[Crossref]

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Lee, Y. J.

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Li, J. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Li, Z. C.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

Liao, C. C.

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Lin, C. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Lin, P. C.

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Lin, Y. S.

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Link, A.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Liu, B.

Liu, B. L.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Liu, G. Y.

H. P. Zhao, G. Y. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes,” J. Disp. Technol. 9(4), 212–225 (2013).
[Crossref]

Liu, J. P.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

Liu, S.

B. Cao, R. Hu, Z. Y. Gan, and S. Liu, “Enhancing Light Output of GaN-Based LEDs With Graded-Thickness Quantum Wells and Barriers,” IEEE Photonics Technol. Lett. 25(18), 1762–1765 (2013).
[Crossref]

Liu, W.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Lu, T. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Lu, Y. J.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Luo, Y.

J. X. Wang, L. Wang, W. Zhao, Z. B. Hao, and Y. Luo, “Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization,” Appl. Phys. Lett. 97(20), 201112 (2010).
[Crossref]

Ma, K. J.

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Majewski, J.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Manders, J. R.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

Martin, G.

G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Appl. Phys. Lett. 68(18), 2541–2543 (1996).
[Crossref]

Mei, Y.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

Menokey, M. A.

P. Prajoon, D. Nirmal, M. A. Menokey, and J. C. Pravin, “Efficiency Enhancement of InGaN MQW LED Using Compositionally Step Graded InGaN Barrier on SiC Substrate,” J. Disp. Technol. 12(10), 1117–1121 (2016).
[Crossref]

Meyer, J. R.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

Mihopoulos, T. G.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

Mino, H.

Misiewicz, J.

J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells,” J. Phys. Condens. Matter 16(31), S3071–S3094 (2004).
[Crossref]

Miskys, C.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Mohanta, A.

A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
[Crossref]

Moloney, J. V.

J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
[Crossref]

Morkoç, H.

G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Appl. Phys. Lett. 68(18), 2541–2543 (1996).
[Crossref]

Nanishi, Y.

Y. Nanishi, “Nobel Prize in Physics: The birth of the blue LED,” Nat. Photonics 8(12), 884–886 (2014).
[Crossref]

Nirmal, D.

P. Prajoon, D. Nirmal, M. A. Menokey, and J. C. Pravin, “Efficiency Enhancement of InGaN MQW LED Using Compositionally Step Graded InGaN Barrier on SiC Substrate,” J. Disp. Technol. 12(10), 1117–1121 (2016).
[Crossref]

Oh, C. H.

D. P. Han, D. G. Zheng, C. H. Oh, H. Kim, J. I. Shim, D. S. Shin, and K. S. Kim, “Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements,” Appl. Phys. Lett. 104(15), 151108 (2014).
[Crossref]

Park, Y.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Paskova, T.

A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
[Crossref]

Pecchia, A.

M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, “Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations,” Phys. Rev. Lett. 116(2), 027401 (2016).
[Crossref] [PubMed]

Pei, X. J.

Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN/GaN quantum wells,” Appl. Phys. Lett. 91(6), 061902 (2007).
[Crossref]

Penazzi, G.

M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, “Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations,” Phys. Rev. Lett. 116(2), 027401 (2016).
[Crossref] [PubMed]

Piprek, J.

J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Stat. Sol. A, Appl. Mater. Sci. 207(10), 2217–2225 (2010).

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Pope, I. A.

I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
[Crossref]

Prajoon, P.

P. Prajoon, D. Nirmal, M. A. Menokey, and J. C. Pravin, “Efficiency Enhancement of InGaN MQW LED Using Compositionally Step Graded InGaN Barrier on SiC Substrate,” J. Disp. Technol. 12(10), 1117–1121 (2016).
[Crossref]

Pravin, J. C.

P. Prajoon, D. Nirmal, M. A. Menokey, and J. C. Pravin, “Efficiency Enhancement of InGaN MQW LED Using Compositionally Step Graded InGaN Barrier on SiC Substrate,” J. Disp. Technol. 12(10), 1117–1121 (2016).
[Crossref]

Qian, L.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

Qu, S.

Rinke, P.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

Roberts, A. T.

A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
[Crossref]

Rockett, A.

G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Appl. Phys. Lett. 68(18), 2541–2543 (1996).
[Crossref]

Rodrigues, W.

M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, “Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations,” Phys. Rev. Lett. 116(2), 027401 (2016).
[Crossref] [PubMed]

Römer, F.

Ryczko, K.

J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells,” J. Phys. Condens. Matter 16(31), S3071–S3094 (2004).
[Crossref]

Saha, M.

H. Karan, A. Biswas, and M. Saha, “Improved performance of InGaN/GaN MQW LEDs with trapezoidal wells and gradually thinned barrier layers towards anode,” Opt. Commun. 400, 89–95 (2017).
[Crossref]

Schaff, B.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Schubert, E. F.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Schubert, M. F.

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

Sek, G.

J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells,” J. Phys. Condens. Matter 16(31), S3071–S3094 (2004).
[Crossref]

Shim, J. I.

D. P. Han, D. G. Zheng, C. H. Oh, H. Kim, J. I. Shim, D. S. Shin, and K. S. Kim, “Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements,” Appl. Phys. Lett. 104(15), 151108 (2014).
[Crossref]

Shin, D. S.

D. P. Han, D. G. Zheng, C. H. Oh, H. Kim, J. I. Shim, D. S. Shin, and K. S. Kim, “Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements,” Appl. Phys. Lett. 104(15), 151108 (2014).
[Crossref]

Smowton, P. M.

I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
[Crossref]

Stutzmann, M.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Tansu, N.

H. P. Zhao, G. Y. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes,” J. Disp. Technol. 9(4), 212–225 (2013).
[Crossref]

Thomson, J. D.

I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
[Crossref]

Tilak, V.

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

Titov, A.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

Tsai, C. L.

C. L. Tsai and W. C. Wu, “Effects of Asymmetric Quantum Wells on the Structural and Optical Properties of InGaN-Based Light-Emitting Diodes,” Materials (Basel) 7(5), 3758–3771 (2014).
[Crossref] [PubMed]

Tsai, M. C.

M. C. Tsai, S. H. Yen, and Y. K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
[Crossref]

Tseng, K. U.

C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91(1), 531–533 (2002).
[Crossref]

Vaccaro, P. O.

T. Kamikawa, Y. Kawaguchi, P. O. Vaccaro, S. Ito, and H. Kawanishi, “Highly reliable 500 mW laser diodes with epitaxially grown AlON coating for high-density optical storage,” Appl. Phys. Lett. 95(3), 031106 (2009).
[Crossref]

Van de Walle, C. G.

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

Van Den Broeck, D.

A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
[Crossref]

Vurgaftman, I.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

Wang, C. H.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Wang, G.

Wang, H.

X. L. Hu, J. Zhang, H. Wang, and X. C. Zhang, “High-luminous efficacy white light-emitting diodes with thin-film flip-chip technology and surface roughening scheme,” J. Phys. D Appl. Phys. 49(44), 445102 (2016).
[Crossref]

H. Wang, Z. Ji, S. Qu, G. Wang, Y. Jiang, B. Liu, X. Xu, and H. Mino, “Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells,” Opt. Express 20(4), 3932–3940 (2012).
[Crossref] [PubMed]

Wang, J. X.

J. X. Wang, L. Wang, W. Zhao, Z. B. Hao, and Y. Luo, “Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization,” Appl. Phys. Lett. 97(20), 201112 (2010).
[Crossref]

Wang, L.

J. X. Wang, L. Wang, W. Zhao, Z. B. Hao, and Y. Luo, “Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization,” Appl. Phys. Lett. 97(20), 201112 (2010).
[Crossref]

Wang, Q. M.

J. Y. Zhang, L. E. Cai, B. P. Zhang, X. L. Hu, F. Jiang, J. Z. Yu, and Q. M. Wang, “Efficient hole transport in asymmetric coupled InGaN multiple quantum wells,” Appl. Phys. Lett. 95(16), 161110 (2009).
[Crossref]

Wang, S. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Wang, Y.

Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN/GaN quantum wells,” Appl. Phys. Lett. 91(6), 061902 (2007).
[Crossref]

Weng, G. E.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

Witzigmann, B.

Wu, S. D.

L. W. Cheng, S. D. Wu, C. Q. Xia, and H. T. Chen, “Efficiency droop improvement in InGaN light-emitting diodes with graded InGaN barriers of increasing indium composition,” J. Appl. Phys. 118(10), 103103 (2015).
[Crossref]

Wu, W. C.

C. L. Tsai and W. C. Wu, “Effects of Asymmetric Quantum Wells on the Structural and Optical Properties of InGaN-Based Light-Emitting Diodes,” Materials (Basel) 7(5), 3758–3771 (2014).
[Crossref] [PubMed]

Xia, C. Q.

L. W. Cheng, S. D. Wu, C. Q. Xia, and H. T. Chen, “Efficiency droop improvement in InGaN light-emitting diodes with graded InGaN barriers of increasing indium composition,” J. Appl. Phys. 118(10), 103103 (2015).
[Crossref]

Xing, Z. G.

Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN/GaN quantum wells,” Appl. Phys. Lett. 91(6), 061902 (2007).
[Crossref]

Xu, B.

X. Zhou, Y. Chen, and B. Xu, “Optical identification of electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure,” Nanoscale Res. Lett. 6(1), 317 (2011).
[Crossref] [PubMed]

Xu, X.

Xue, J. G.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

Yang, C. C.

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

Yang, H.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

Yang, H. C.

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

Yang, Y. X.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

Yen, S. H.

M. C. Tsai, S. H. Yen, and Y. K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
[Crossref]

Ying, L. Y.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

Yu, J. Z.

J. Y. Zhang, L. E. Cai, B. P. Zhang, X. L. Hu, F. Jiang, J. Z. Yu, and Q. M. Wang, “Efficient hole transport in asymmetric coupled InGaN multiple quantum wells,” Appl. Phys. Lett. 95(16), 161110 (2009).
[Crossref]

Zeng, F. M.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Zhang, B. P.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

J. Y. Zhang, L. E. Cai, B. P. Zhang, X. L. Hu, F. Jiang, J. Z. Yu, and Q. M. Wang, “Efficient hole transport in asymmetric coupled InGaN multiple quantum wells,” Appl. Phys. Lett. 95(16), 161110 (2009).
[Crossref]

Zhang, J.

X. L. Hu, J. Zhang, H. Wang, and X. C. Zhang, “High-luminous efficacy white light-emitting diodes with thin-film flip-chip technology and surface roughening scheme,” J. Phys. D Appl. Phys. 49(44), 445102 (2016).
[Crossref]

H. P. Zhao, G. Y. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes,” J. Disp. Technol. 9(4), 212–225 (2013).
[Crossref]

Zhang, J. Y.

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

J. Y. Zhang, L. E. Cai, B. P. Zhang, X. L. Hu, F. Jiang, J. Z. Yu, and Q. M. Wang, “Efficient hole transport in asymmetric coupled InGaN multiple quantum wells,” Appl. Phys. Lett. 95(16), 161110 (2009).
[Crossref]

Zhang, X. C.

X. L. Hu, J. Zhang, H. Wang, and X. C. Zhang, “High-luminous efficacy white light-emitting diodes with thin-film flip-chip technology and surface roughening scheme,” J. Phys. D Appl. Phys. 49(44), 445102 (2016).
[Crossref]

Zhao, H. P.

H. P. Zhao, G. Y. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes,” J. Disp. Technol. 9(4), 212–225 (2013).
[Crossref]

Zhao, W.

J. X. Wang, L. Wang, W. Zhao, Z. B. Hao, and Y. Luo, “Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization,” Appl. Phys. Lett. 97(20), 201112 (2010).
[Crossref]

Zheng, D. G.

D. P. Han, D. G. Zheng, C. H. Oh, H. Kim, J. I. Shim, D. S. Shin, and K. S. Kim, “Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements,” Appl. Phys. Lett. 104(15), 151108 (2014).
[Crossref]

Zheng, Y.

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

Zhou, J. M.

Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN/GaN quantum wells,” Appl. Phys. Lett. 91(6), 061902 (2007).
[Crossref]

Zhou, X.

X. Zhou, Y. Chen, and B. Xu, “Optical identification of electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure,” Nanoscale Res. Lett. 6(1), 317 (2011).
[Crossref] [PubMed]

Zhu, L. H.

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

Appl. Phys. Lett. (16)

T. Kamikawa, Y. Kawaguchi, P. O. Vaccaro, S. Ito, and H. Kawanishi, “Highly reliable 500 mW laser diodes with epitaxially grown AlON coating for high-density optical storage,” Appl. Phys. Lett. 95(3), 031106 (2009).
[Crossref]

Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000).
[Crossref]

M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007).
[Crossref]

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008).
[Crossref]

E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98(16), 161107 (2011).
[Crossref]

J. X. Wang, L. Wang, W. Zhao, Z. B. Hao, and Y. Luo, “Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization,” Appl. Phys. Lett. 97(20), 201112 (2010).
[Crossref]

J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99(18), 181127 (2011).
[Crossref]

Y. A. Chang, J. Y. Chang, Y. T. Kuo, and Y. K. Kuo, “Investigation of green InGaN light-emitting diodes with asymmetric AlGaN composition-graded barriers and without an electron blocking layer,” Appl. Phys. Lett. 100(25), 251102 (2012).
[Crossref]

C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17), 171106 (2011).

M. C. Tsai, S. H. Yen, and Y. K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
[Crossref]

J. Y. Zhang, L. E. Cai, B. P. Zhang, X. L. Hu, F. Jiang, J. Z. Yu, and Q. M. Wang, “Efficient hole transport in asymmetric coupled InGaN multiple quantum wells,” Appl. Phys. Lett. 95(16), 161110 (2009).
[Crossref]

A. T. Roberts, A. Mohanta, H. O. Everitt, J. H. Leach, D. Van Den Broeck, A. M. Hosalli, T. Paskova, and S. M. Bedair, “Spectroscopic investigation of coupling among asymmetric InGaN/GaN multiple quantum wells grown on non-polar a-plane GaN substrates,” Appl. Phys. Lett. 103(18), 181106 (2013).
[Crossref]

I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells,” Appl. Phys. Lett. 86(13), 131108 (2005).
[Crossref]

Y. Wang, X. J. Pei, Z. G. Xing, L. W. Guo, H. Q. Jia, H. Chen, and J. M. Zhou, “Anomalous tunneling effect on photoluminescence of asymmetric coupled double InGaN/GaN quantum wells,” Appl. Phys. Lett. 91(6), 061902 (2007).
[Crossref]

D. P. Han, D. G. Zheng, C. H. Oh, H. Kim, J. I. Shim, D. S. Shin, and K. S. Kim, “Nonradiative recombination mechanisms in InGaN/GaN-based light-emitting diodes investigated by temperature-dependent measurements,” Appl. Phys. Lett. 104(15), 151108 (2014).
[Crossref]

G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Appl. Phys. Lett. 68(18), 2541–2543 (1996).
[Crossref]

Appl. Surf. Sci. (1)

F. Bernardini and V. Fiorentini, “Polarization fields in nitride nanostructures: 10 points to think about,” Appl. Surf. Sci. 166(1-4), 23–29 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[Crossref]

IEEE Photonics J. (1)

L. H. Zhu, W. Liu, F. M. Zeng, Y. L. Gao, B. L. Liu, Y. J. Lu, and Z. Chen, “Efficiency Droop Improvement in InGaN/GaN Light-Emitting Diodes by Graded-Composition Multiple Quantum Wells,” IEEE Photonics J. 5(2), 8200208 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Cao, R. Hu, Z. Y. Gan, and S. Liu, “Enhancing Light Output of GaN-Based LEDs With Graded-Thickness Quantum Wells and Barriers,” IEEE Photonics Technol. Lett. 25(18), 1762–1765 (2013).
[Crossref]

J. Appl. Phys. (4)

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy,” J. Appl. Phys. 91(1), 531–533 (2002).
[Crossref]

M. E. Christmas, A. D. Andreev, and D. A. Faux, “Calculation of electric field and optical transitions in InGaN/GaN quantum wells,” J. Appl. Phys. 98(7), 073522 (2005).
[Crossref]

L. W. Cheng, S. D. Wu, C. Q. Xia, and H. T. Chen, “Efficiency droop improvement in InGaN light-emitting diodes with graded InGaN barriers of increasing indium composition,” J. Appl. Phys. 118(10), 103103 (2015).
[Crossref]

J. Disp. Technol. (2)

P. Prajoon, D. Nirmal, M. A. Menokey, and J. C. Pravin, “Efficiency Enhancement of InGaN MQW LED Using Compositionally Step Graded InGaN Barrier on SiC Substrate,” J. Disp. Technol. 12(10), 1117–1121 (2016).
[Crossref]

H. P. Zhao, G. Y. Liu, J. Zhang, R. A. Arif, and N. Tansu, “Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes,” J. Disp. Technol. 9(4), 212–225 (2013).
[Crossref]

J. Phys. Condens. Matter (2)

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys. Condens. Matter 14(13), 3399–3434 (2002).
[Crossref]

J. Misiewicz, R. Kudrawiec, K. Ryczko, G. Sek, A. Forchel, J. C. Harmand, and M. Hammar, “Photoreflectance investigations of the energy level structure in GaInNAs-based quantum wells,” J. Phys. Condens. Matter 16(31), S3071–S3094 (2004).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. L. Hu, J. Zhang, H. Wang, and X. C. Zhang, “High-luminous efficacy white light-emitting diodes with thin-film flip-chip technology and surface roughening scheme,” J. Phys. D Appl. Phys. 49(44), 445102 (2016).
[Crossref]

Light Sci. Appl. (1)

Y. Mei, G. E. Weng, B. P. Zhang, J. P. Liu, W. Hofmann, L. Y. Ying, J. Y. Zhang, Z. C. Li, H. Yang, and H. C. Kuo, “Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’,” Light Sci. Appl. 6(1), e16199 (2016).
[Crossref]

Materials (Basel) (1)

C. L. Tsai and W. C. Wu, “Effects of Asymmetric Quantum Wells on the Structural and Optical Properties of InGaN-Based Light-Emitting Diodes,” Materials (Basel) 7(5), 3758–3771 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

X. Zhou, Y. Chen, and B. Xu, “Optical identification of electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure,” Nanoscale Res. Lett. 6(1), 317 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

Y. X. Yang, Y. Zheng, W. R. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. G. Xue, P. H. Holloway, and L. Qian, “High-efficiency light-emitting devices based on quantum dots with tailored nanostructures,” Nat. Photonics 9, 259 (2015).

Y. Nanishi, “Nobel Prize in Physics: The birth of the blue LED,” Nat. Photonics 8(12), 884–886 (2014).
[Crossref]

Opt. Commun. (1)

H. Karan, A. Biswas, and M. Saha, “Improved performance of InGaN/GaN MQW LEDs with trapezoidal wells and gradually thinned barrier layers towards anode,” Opt. Commun. 400, 89–95 (2017).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, “Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations,” Phys. Rev. Lett. 116(2), 027401 (2016).
[Crossref] [PubMed]

Phys. Stat. Sol. A, Appl. Mater. Sci. (1)

J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Stat. Sol. A, Appl. Mater. Sci. 207(10), 2217–2225 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the epitaxial structure investigated (a) and detailed parameters of active region for InGaN/GaN AC-MQWs (b).
Fig. 2
Fig. 2 Normalized PL spectra at varied excitation powers for the In0.2Ga0.8N AC-MQWs at a low temperature of 16 K with pumping wavelengths of 405 nm (a) and 325 nm (b). Room temperature PL evolution with increasing excitation power under the 405 nm pumping condition (c). Schematic energy band diagram and the carrier tunneling processes among the AC-MQWs at low excitation power (d).
Fig. 3
Fig. 3 Measured and fitted PR spectra of the In0.2Ga0.8N AC-MQWs at a cryogenic temperature of 80 K (a). The insets show the schematic diagram of interband transitions between the quantized electron and hole energy levels. Calculated conduction and valence band, electron and hole energy levels, and associated wave functions of the AC-MQWs (b). The green arrows show the conventional tunneling from narrow to wide well, and the orange arrow shows the anomalous reverse tunneling from the 2e excited state of the 3.0 nm well to the 1e ground state of the 2.5 nm well. The shadow shows the overlap of electron and hole wave functions.
Fig. 4
Fig. 4 Excitation power dependences of the PL intensity of each QW in the AC-MQWs structure.
Fig. 5
Fig. 5 Temperature-dependent PL spectra with pumping wavelengths of 405 nm (a) and 325 nm (b). The emission intensity of each QW as a function of temperature under the different pumping wavelengths of 405 nm (c) and 325 nm (d).

Tables (2)

Tables Icon

Table 1 Parameters of GaN and In0.2Ga0.8N used in the calculation.

Tables Icon

Table 2 Calculated and measured transition energies of the In0.2Ga0.8N AC-MQWs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E j = k ( P k P j ) l k / ε k ε j k l k / ε k

Metrics