Abstract

We report the fabrication and characterization of a multilayer Ge quantum dot detector grown on Si1−xGex virtual substrate (x = 0.18) for photovoltaic mid-wave infrared photodetection. Detector displays an over 100% photovoltaic response enhancement as compared to a conventional Ge/Si device due to smaller hole effective mass in the SiGe barriers. A further enhancement in sensitivity is achieved by excitation of surface plasmon polariton waves in a Ge/SiGe photodetector coupled with a two-dimensional plasmonic structure. The plasmonic resonance induced photocurrent enhancement is found to be larger when the incident infrared light illuminates the detector from its substrate side. At zero bias and 90 K, the responsivity of 40 mA/W and peak detectivity of 1.4 × 1011 cm·Hz1/2/W are determined at a wavelength of 4 µm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of two-dimensional arrays of gold disks and holes for plasmonic enhancement of Ge/Si quantum dot mid-infrared photodetectors

A. I. Yakimov, V. V. Kirienko, and A. V. Dvurechenskii
Opt. Mater. Express 8(11) 3479-3484 (2018)

Quantum dot infrared photodetector enhanced by surface plasma wave excitation

S. C. Lee, S. Krishna, and S. R. J. Brueck
Opt. Express 17(25) 23160-23168 (2009)

Tensile-strained Ge/SiGe quantum-well photodetectors on silicon substrates with extended infrared response

Guo-En Chang, Shao-Wei Chen, and H. H. Cheng
Opt. Express 24(16) 17562-17571 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
    [Crossref]
  2. A. I. Yakimov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, A. I. Nikiforov, and A. V. Dvurechenskii, “Influence of delta-doping on the performance of Ge/Si quantum-dot mid-infrared photodetectors,” J. Appl. Phys. 112(3), 034511 (2012).
    [Crossref]
  3. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
    [Crossref]
  4. U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).
    [Crossref]
  5. H. Benisty, C. M. Sotomayor-Torrés, and C. Weisbuch, “Intrinsic mechanism for the poor luminescence properties of quantum-box systems,” Phys. Rev. B 44(19),10945–10948 (1991).
    [Crossref]
  6. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, “Phonon bottleneck in p-type Ge/Si quantum dots,” Appl. Phys. Lett. 107(21), 213502 (2015).
    [Crossref]
  7. X. Lu, J. Vaillancourt, and M. J. Miesner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
    [Crossref]
  8. P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
    [Crossref]
  9. F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
    [Crossref]
  10. A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, “SiGe based visible-NIR photodetector technology for optoelectronic applications,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, H. Arof, and S. W. Harun, eds. (InTech, 2015).
  11. O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B 62(24), 16715–16720 (2000).
    [Crossref]
  12. D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
    [Crossref] [PubMed]
  13. C. Miesner, O. Röthig, K. Brunner, and G. Abstreiter, “Intra-valence band photocurrent spectroscopy of self-assembled Ge dots in Si,” Appl. Phys. Lett. 76(8), 1027–1029 (2000).
    [Crossref]
  14. E. Finkman, N. Shuall, A. Vardi, V. L. Thanh, and S. E. Schacham, “Interlevel transitions and two-photon processes in Ge/Si quantum dot photocurrent,” J. Appl. Phys. 103(9), 093114 (2008).
    [Crossref]
  15. A. V. Barve and S. Krishna, “Photovoltaic quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 100(2), 021105 (2012).
    [Crossref]
  16. S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
    [Crossref]
  17. T. Manku and A. Nathan, “Effective mass for strained p-type Si1−xGex,” J. Appl. Phys. 69(12), 8414–8416 (1991).
    [Crossref]
  18. Y. Bogumilowicz, J. M. Hartmann, N. Cherkashin, A. Claverie, G. Rolland, and T. Billon,“SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitaxy,” Mater. Sci. Eng.: B 124–125, 113–117 (2005).
    [Crossref]
  19. M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, “Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers,” Appl. Phys. Lett. 101(15), 151601 (2012).
    [Crossref]
  20. M. Virgilio and G. Grosso, “Type-I alignement and direct fundamental gap in SiGe based heterostructures,” J. Phys.: Condens. Matter 18, 1021–1031 (2006).
  21. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
    [Crossref]
  22. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(14), 205–213 (2010).
    [Crossref]
  23. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(4), 036501 (2012).
    [Crossref] [PubMed]
  24. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(14), 433001 (2012).
    [Crossref]
  25. J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
    [Crossref]
  26. S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  27. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(2), 667–669 (1998).
    [Crossref]
  28. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(2), 39–46 (2007).
    [Crossref] [PubMed]
  29. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
    [Crossref]
  30. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
    [Crossref] [PubMed]
  31. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
    [Crossref]
  32. G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
    [Crossref]
  33. R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
    [Crossref]
  34. G. Gu, J. Vaillancourt, and X. Lu, “Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement,” Opt. Express 22(21), 24970–24976 (2014).
    [Crossref] [PubMed]
  35. J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
    [Crossref]
  36. Y. Zhang, J. Vaillancourt, G. Gu, W. Guo, and X. Lu, “Quantum selection rule dependent plasmonic enhancement in quantum dot infrared photodetectors,” J. Appl. Phys. 119(14), 193103 (2016).
    [Crossref]
  37. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  38. F. Schäffler, “Silicon-Germanium,” in Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, eds. (Wiley, 2001).
  39. J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M Mishrikey, “Comparison of numerical methods for the analysis of plasmonic structures,” J. Comput. Theor. Nanosci. 6(2), 763–774 (2009).
    [Crossref]
  40. COMSOL Group, “Multiphysics Reference Guide for COMSOL 4.3,” http://www.comsol.com .

2016 (3)

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Y. Zhang, J. Vaillancourt, G. Gu, W. Guo, and X. Lu, “Quantum selection rule dependent plasmonic enhancement in quantum dot infrared photodetectors,” J. Appl. Phys. 119(14), 193103 (2016).
[Crossref]

2015 (1)

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, “Phonon bottleneck in p-type Ge/Si quantum dots,” Appl. Phys. Lett. 107(21), 213502 (2015).
[Crossref]

2014 (2)

G. Gu, J. Vaillancourt, and X. Lu, “Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement,” Opt. Express 22(21), 24970–24976 (2014).
[Crossref] [PubMed]

J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
[Crossref]

2013 (3)

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

2012 (7)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(4), 036501 (2012).
[Crossref] [PubMed]

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(14), 433001 (2012).
[Crossref]

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[Crossref]

A. I. Yakimov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, A. I. Nikiforov, and A. V. Dvurechenskii, “Influence of delta-doping on the performance of Ge/Si quantum-dot mid-infrared photodetectors,” J. Appl. Phys. 112(3), 034511 (2012).
[Crossref]

A. V. Barve and S. Krishna, “Photovoltaic quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 100(2), 021105 (2012).
[Crossref]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, “Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers,” Appl. Phys. Lett. 101(15), 151601 (2012).
[Crossref]

2010 (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(14), 205–213 (2010).
[Crossref]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
[Crossref]

2009 (2)

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref]

J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M Mishrikey, “Comparison of numerical methods for the analysis of plasmonic structures,” J. Comput. Theor. Nanosci. 6(2), 763–774 (2009).
[Crossref]

2008 (1)

E. Finkman, N. Shuall, A. Vardi, V. L. Thanh, and S. E. Schacham, “Interlevel transitions and two-photon processes in Ge/Si quantum dot photocurrent,” J. Appl. Phys. 103(9), 093114 (2008).
[Crossref]

2007 (3)

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

X. Lu, J. Vaillancourt, and M. J. Miesner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(2), 39–46 (2007).
[Crossref] [PubMed]

2006 (1)

M. Virgilio and G. Grosso, “Type-I alignement and direct fundamental gap in SiGe based heterostructures,” J. Phys.: Condens. Matter 18, 1021–1031 (2006).

2005 (2)

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Cherkashin, A. Claverie, G. Rolland, and T. Billon,“SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitaxy,” Mater. Sci. Eng.: B 124–125, 113–117 (2005).
[Crossref]

2000 (3)

O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B 62(24), 16715–16720 (2000).
[Crossref]

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

C. Miesner, O. Röthig, K. Brunner, and G. Abstreiter, “Intra-valence band photocurrent spectroscopy of self-assembled Ge dots in Si,” Appl. Phys. Lett. 76(8), 1027–1029 (2000).
[Crossref]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(2), 667–669 (1998).
[Crossref]

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref]

1991 (2)

H. Benisty, C. M. Sotomayor-Torrés, and C. Weisbuch, “Intrinsic mechanism for the poor luminescence properties of quantum-box systems,” Phys. Rev. B 44(19),10945–10948 (1991).
[Crossref]

T. Manku and A. Nathan, “Effective mass for strained p-type Si1−xGex,” J. Appl. Phys. 69(12), 8414–8416 (1991).
[Crossref]

1990 (1)

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).
[Crossref]

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Abstreiter, G.

C. Miesner, O. Röthig, K. Brunner, and G. Abstreiter, “Intra-valence band photocurrent spectroscopy of self-assembled Ge dots in Si,” Appl. Phys. Lett. 76(8), 1027–1029 (2000).
[Crossref]

Adhikary, S.

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

Ariyawansa, G.

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[Crossref]

Armbrister, V. A.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, “Phonon bottleneck in p-type Ge/Si quantum dots,” Appl. Phys. Lett. 107(21), 213502 (2015).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(14), 205–213 (2010).
[Crossref]

Barve, A. V.

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

A. V. Barve and S. Krishna, “Photovoltaic quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 100(2), 021105 (2012).
[Crossref]

Bastard, G.

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).
[Crossref]

Bauer, G.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Benisty, H.

H. Benisty, C. M. Sotomayor-Torrés, and C. Weisbuch, “Intrinsic mechanism for the poor luminescence properties of quantum-box systems,” Phys. Rev. B 44(19),10945–10948 (1991).
[Crossref]

Bhattacharya, P.

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[Crossref]

Billon, T.

Y. Bogumilowicz, J. M. Hartmann, N. Cherkashin, A. Claverie, G. Rolland, and T. Billon,“SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitaxy,” Mater. Sci. Eng.: B 124–125, 113–117 (2005).
[Crossref]

Birner, S.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Bloshkin, A. A.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, “Phonon bottleneck in p-type Ge/Si quantum dots,” Appl. Phys. Lett. 107(21), 213502 (2015).
[Crossref]

A. I. Yakimov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, A. I. Nikiforov, and A. V. Dvurechenskii, “Influence of delta-doping on the performance of Ge/Si quantum-dot mid-infrared photodetectors,” J. Appl. Phys. 112(3), 034511 (2012).
[Crossref]

Bockelmann, U.

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).
[Crossref]

Bogumilowicz, Y.

Y. Bogumilowicz, J. M. Hartmann, N. Cherkashin, A. Claverie, G. Rolland, and T. Billon,“SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitaxy,” Mater. Sci. Eng.: B 124–125, 113–117 (2005).
[Crossref]

Braunstein, J.

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

Brueck, S. R. J.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref]

Brunner, K.

C. Miesner, O. Röthig, K. Brunner, and G. Abstreiter, “Intra-valence band photocurrent spectroscopy of self-assembled Ge dots in Si,” Appl. Phys. Lett. 76(8), 1027–1029 (2000).
[Crossref]

Bur, J. A.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Chakrabarti, S.

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[Crossref]

Chang, C.-C.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Cherkashin, N.

Y. Bogumilowicz, J. M. Hartmann, N. Cherkashin, A. Claverie, G. Rolland, and T. Billon,“SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitaxy,” Mater. Sci. Eng.: B 124–125, 113–117 (2005).
[Crossref]

Claverie, A.

Y. Bogumilowicz, J. M. Hartmann, N. Cherkashin, A. Claverie, G. Rolland, and T. Billon,“SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitaxy,” Mater. Sci. Eng.: B 124–125, 113–117 (2005).
[Crossref]

Dais, C.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Dhar, N. K.

A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, “SiGe based visible-NIR photodetector technology for optoelectronic applications,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, H. Arof, and S. W. Harun, eds. (InTech, 2015).

Djurišic, A. B.

Dvurechenskii, A. V.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, “Phonon bottleneck in p-type Ge/Si quantum dots,” Appl. Phys. Lett. 107(21), 213502 (2015).
[Crossref]

A. I. Yakimov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, A. I. Nikiforov, and A. V. Dvurechenskii, “Influence of delta-doping on the performance of Ge/Si quantum-dot mid-infrared photodetectors,” J. Appl. Phys. 112(3), 034511 (2012).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(2), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(2), 667–669 (1998).
[Crossref]

Eberl, K.

O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B 62(24), 16715–16720 (2000).
[Crossref]

Efstathiadis, H.

A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, “SiGe based visible-NIR photodetector technology for optoelectronic applications,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, H. Arof, and S. W. Harun, eds. (InTech, 2015).

Ekinci, Y.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Elazar, J. M.

Finkman, E.

E. Finkman, N. Shuall, A. Vardi, V. L. Thanh, and S. E. Schacham, “Interlevel transitions and two-photon processes in Ge/Si quantum dot photocurrent,” J. Appl. Phys. 103(9), 093114 (2008).
[Crossref]

Fleissner, J.

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

Fromherz, T.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Gautam, N.

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(2), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(2), 667–669 (1998).
[Crossref]

Grosso, G.

M. Virgilio and G. Grosso, “Type-I alignement and direct fundamental gap in SiGe based heterostructures,” J. Phys.: Condens. Matter 18, 1021–1031 (2006).

Grützmacher, D.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Gu, G.

Y. Zhang, J. Vaillancourt, G. Gu, W. Guo, and X. Lu, “Quantum selection rule dependent plasmonic enhancement in quantum dot infrared photodetectors,” J. Appl. Phys. 119(14), 193103 (2016).
[Crossref]

G. Gu, J. Vaillancourt, and X. Lu, “Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement,” Opt. Express 22(21), 24970–24976 (2014).
[Crossref] [PubMed]

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

Guo, W.

Y. Zhang, J. Vaillancourt, G. Gu, W. Guo, and X. Lu, “Quantum selection rule dependent plasmonic enhancement in quantum dot infrared photodetectors,” J. Appl. Phys. 119(14), 193103 (2016).
[Crossref]

Hafner, C.

J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M Mishrikey, “Comparison of numerical methods for the analysis of plasmonic structures,” J. Comput. Theor. Nanosci. 6(2), 763–774 (2009).
[Crossref]

Haldar, P.

A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, “SiGe based visible-NIR photodetector technology for optoelectronic applications,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, H. Arof, and S. W. Harun, eds. (InTech, 2015).

Hartmann, J. M.

M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, “Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers,” Appl. Phys. Lett. 101(15), 151601 (2012).
[Crossref]

Y. Bogumilowicz, J. M. Hartmann, N. Cherkashin, A. Claverie, G. Rolland, and T. Billon,“SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitaxy,” Mater. Sci. Eng.: B 124–125, 113–117 (2005).
[Crossref]

Hayashi, S.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(14), 433001 (2012).
[Crossref]

Holý, V.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Huang, D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Kim, J. O.

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

Kim, Y.-S.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Kirienko, V. V.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, “Phonon bottleneck in p-type Ge/Si quantum dots,” Appl. Phys. Lett. 107(21), 213502 (2015).
[Crossref]

A. I. Yakimov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, A. I. Nikiforov, and A. V. Dvurechenskii, “Influence of delta-doping on the performance of Ge/Si quantum-dot mid-infrared photodetectors,” J. Appl. Phys. 112(3), 034511 (2012).
[Crossref]

Koidl, P.

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

Krasilnik, Z. F.

M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, “Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers,” Appl. Phys. Lett. 101(15), 151601 (2012).
[Crossref]

Krishna, S.

A. V. Barve and S. Krishna, “Photovoltaic quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 100(2), 021105 (2012).
[Crossref]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref]

Kuznetsov, O. A.

M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, “Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers,” Appl. Phys. Lett. 101(15), 151601 (2012).
[Crossref]

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Lechner, R. T.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Lee, S. C.

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref]

Lee, S. J.

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(2), 667–669 (1998).
[Crossref]

Lin, S.-Y.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(4), 036501 (2012).
[Crossref] [PubMed]

Liu, F.-Q.

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Liu, J.-Q.

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Liu, R.

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

Liu, S.-M.

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Lobanov, D. N.

M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, “Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers,” Appl. Phys. Lett. 101(15), 151601 (2012).
[Crossref]

Lu, X.

Y. Zhang, J. Vaillancourt, G. Gu, W. Guo, and X. Lu, “Quantum selection rule dependent plasmonic enhancement in quantum dot infrared photodetectors,” J. Appl. Phys. 119(14), 193103 (2016).
[Crossref]

G. Gu, J. Vaillancourt, and X. Lu, “Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement,” Opt. Express 22(21), 24970–24976 (2014).
[Crossref] [PubMed]

J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
[Crossref]

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

X. Lu, J. Vaillancourt, and M. J. Miesner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
[Crossref]

Majewski, M. L.

Manku, T.

T. Manku and A. Nathan, “Effective mass for strained p-type Si1−xGex,” J. Appl. Phys. 69(12), 8414–8416 (1991).
[Crossref]

McPeak, K. M.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(4), 036501 (2012).
[Crossref] [PubMed]

Miesner, C.

C. Miesner, O. Röthig, K. Brunner, and G. Abstreiter, “Intra-valence band photocurrent spectroscopy of self-assembled Ge dots in Si,” Appl. Phys. Lett. 76(8), 1027–1029 (2000).
[Crossref]

Miesner, M. J.

X. Lu, J. Vaillancourt, and M. J. Miesner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
[Crossref]

Mishrikey, M

J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M Mishrikey, “Comparison of numerical methods for the analysis of plasmonic structures,” J. Comput. Theor. Nanosci. 6(2), 763–774 (2009).
[Crossref]

Mojaverian, N.

J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
[Crossref]

Müller, E.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Nagpal, P.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(4), 036501 (2012).
[Crossref] [PubMed]

Nathan, A.

T. Manku and A. Nathan, “Effective mass for strained p-type Si1−xGex,” J. Appl. Phys. 69(12), 8414–8416 (1991).
[Crossref]

Nikiforov, A. I.

A. I. Yakimov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, A. I. Nikiforov, and A. V. Dvurechenskii, “Influence of delta-doping on the performance of Ge/Si quantum-dot mid-infrared photodetectors,” J. Appl. Phys. 112(3), 034511 (2012).
[Crossref]

Ning, Z.-D.

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Noh, S. K.

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

Norris, D. J.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(4), 036501 (2012).
[Crossref] [PubMed]

Novikov, A. V.

M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, “Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers,” Appl. Phys. Lett. 101(15), 151601 (2012).
[Crossref]

Oh, S.-H.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(4), 036501 (2012).
[Crossref] [PubMed]

Okamoto, T.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(14), 433001 (2012).
[Crossref]

Perera, A. G. U.

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[Crossref]

Pletschen, W.

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Polla, D. L.

A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, “SiGe based visible-NIR photodetector technology for optoelectronic applications,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, H. Arof, and S. W. Harun, eds. (InTech, 2015).

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(14), 205–213 (2010).
[Crossref]

Puri, Y. R.

A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, “SiGe based visible-NIR photodetector technology for optoelectronic applications,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, H. Arof, and S. W. Harun, eds. (InTech, 2015).

Raguin, L.

J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M Mishrikey, “Comparison of numerical methods for the analysis of plasmonic structures,” J. Comput. Theor. Nanosci. 6(2), 763–774 (2009).
[Crossref]

Rakic, A. D.

Rau, Y.

O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B 62(24), 16715–16720 (2000).
[Crossref]

Rehm, R.

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

Ren, F.

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Richwine, R. A.

A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, “SiGe based visible-NIR photodetector technology for optoelectronic applications,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, H. Arof, and S. W. Harun, eds. (InTech, 2015).

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Rolland, G.

Y. Bogumilowicz, J. M. Hartmann, N. Cherkashin, A. Claverie, G. Rolland, and T. Billon,“SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitaxy,” Mater. Sci. Eng.: B 124–125, 113–117 (2005).
[Crossref]

Röthig, O.

C. Miesner, O. Röthig, K. Brunner, and G. Abstreiter, “Intra-valence band photocurrent spectroscopy of self-assembled Ge dots in Si,” Appl. Phys. Lett. 76(8), 1027–1029 (2000).
[Crossref]

Schacham, S. E.

E. Finkman, N. Shuall, A. Vardi, V. L. Thanh, and S. E. Schacham, “Interlevel transitions and two-photon processes in Ge/Si quantum dot photocurrent,” J. Appl. Phys. 103(9), 093114 (2008).
[Crossref]

Schäffler, F.

F. Schäffler, “Silicon-Germanium,” in Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, eds. (Wiley, 2001).

Schmidt, O. G.

O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B 62(24), 16715–16720 (2000).
[Crossref]

Schneider, H.

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

Schönbein, C.

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

Sengupta, S.

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

Shaleev, M. V.

M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, “Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers,” Appl. Phys. Lett. 101(15), 151601 (2012).
[Crossref]

Sharma, Y. D.

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Shenoi, R. V.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Shklyaev, A. A.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

Shuall, N.

E. Finkman, N. Shuall, A. Vardi, V. L. Thanh, and S. E. Schacham, “Interlevel transitions and two-photon processes in Ge/Si quantum dot photocurrent,” J. Appl. Phys. 103(9), 093114 (2008).
[Crossref]

Sigg, H.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Smajic, J.

J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M Mishrikey, “Comparison of numerical methods for the analysis of plasmonic structures,” J. Comput. Theor. Nanosci. 6(2), 763–774 (2009).
[Crossref]

Solak, H. H.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Sood, A. K.

A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, “SiGe based visible-NIR photodetector technology for optoelectronic applications,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, H. Arof, and S. W. Harun, eds. (InTech, 2015).

Sotomayor-Torrés, C. M.

H. Benisty, C. M. Sotomayor-Torrés, and C. Weisbuch, “Intrinsic mechanism for the poor luminescence properties of quantum-box systems,” Phys. Rev. B 44(19),10945–10948 (1991).
[Crossref]

Stangl, J.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Su, X. H.

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[Crossref]

Tavzarashvili, K.

J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M Mishrikey, “Comparison of numerical methods for the analysis of plasmonic structures,” J. Comput. Theor. Nanosci. 6(2), 763–774 (2009).
[Crossref]

Thanh, V. L.

E. Finkman, N. Shuall, A. Vardi, V. L. Thanh, and S. E. Schacham, “Interlevel transitions and two-photon processes in Ge/Si quantum dot photocurrent,” J. Appl. Phys. 103(9), 093114 (2008).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(2), 667–669 (1998).
[Crossref]

Timofeev, V. A.

A. I. Yakimov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, A. I. Nikiforov, and A. V. Dvurechenskii, “Influence of delta-doping on the performance of Ge/Si quantum-dot mid-infrared photodetectors,” J. Appl. Phys. 112(3), 034511 (2012).
[Crossref]

Vaillancourt, J.

Y. Zhang, J. Vaillancourt, G. Gu, W. Guo, and X. Lu, “Quantum selection rule dependent plasmonic enhancement in quantum dot infrared photodetectors,” J. Appl. Phys. 119(14), 193103 (2016).
[Crossref]

J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
[Crossref]

G. Gu, J. Vaillancourt, and X. Lu, “Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement,” Opt. Express 22(21), 24970–24976 (2014).
[Crossref] [PubMed]

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

X. Lu, J. Vaillancourt, and M. J. Miesner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
[Crossref]

Vardi, A.

E. Finkman, N. Shuall, A. Vardi, V. L. Thanh, and S. E. Schacham, “Interlevel transitions and two-photon processes in Ge/Si quantum dot photocurrent,” J. Appl. Phys. 103(9), 093114 (2008).
[Crossref]

Vasinajindakaw, P.

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

Virgilio, M.

M. Virgilio and G. Grosso, “Type-I alignement and direct fundamental gap in SiGe based heterostructures,” J. Phys.: Condens. Matter 18, 1021–1031 (2006).

Walter, M.

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

Wang, F.-J.

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Wang, Z.-G.

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Wasserman, D.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Weimann, G.

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

Weisbuch, C.

H. Benisty, C. M. Sotomayor-Torrés, and C. Weisbuch, “Intrinsic mechanism for the poor luminescence properties of quantum-box systems,” Phys. Rev. B 44(19),10945–10948 (1991).
[Crossref]

Wintersberger, E.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(2), 667–669 (1998).
[Crossref]

Xu, W.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[Crossref]

Yakimov, A. I.

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, “Phonon bottleneck in p-type Ge/Si quantum dots,” Appl. Phys. Lett. 107(21), 213502 (2015).
[Crossref]

A. I. Yakimov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, A. I. Nikiforov, and A. V. Dvurechenskii, “Influence of delta-doping on the performance of Ge/Si quantum-dot mid-infrared photodetectors,” J. Appl. Phys. 112(3), 034511 (2012).
[Crossref]

Ye, X.-L.

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Yurasov, D. V.

M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, “Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers,” Appl. Phys. Lett. 101(15), 151601 (2012).
[Crossref]

Zeller, J. W.

A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, “SiGe based visible-NIR photodetector technology for optoelectronic applications,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, H. Arof, and S. W. Harun, eds. (InTech, 2015).

Zhai, S.-Q.

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Zhang, J.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[Crossref]

Zhang, L.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, J. Vaillancourt, G. Gu, W. Guo, and X. Lu, “Quantum selection rule dependent plasmonic enhancement in quantum dot infrared photodetectors,” J. Appl. Phys. 119(14), 193103 (2016).
[Crossref]

Zhuo, N.

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (9)

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, “Phonon bottleneck in p-type Ge/Si quantum dots,” Appl. Phys. Lett. 107(21), 213502 (2015).
[Crossref]

X. Lu, J. Vaillancourt, and M. J. Miesner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
[Crossref]

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[Crossref]

F.-J. Wang, N. Zhuo, S.-M. Liu, F. Ren, Z.-D. Ning, X.-L. Ye, J.-Q. Liu, S.-Q. Zhai, F.-Q. Liu, and Z.-G. Wang, “Temperature independent infrared responsivity of a quantum dot cascade photodetector,” Appl. Phys. Lett. 108(25), 251103 (2016).
[Crossref]

C. Miesner, O. Röthig, K. Brunner, and G. Abstreiter, “Intra-valence band photocurrent spectroscopy of self-assembled Ge dots in Si,” Appl. Phys. Lett. 76(8), 1027–1029 (2000).
[Crossref]

A. V. Barve and S. Krishna, “Photovoltaic quantum dot quantum cascade infrared photodetector,” Appl. Phys. Lett. 100(2), 021105 (2012).
[Crossref]

S. Sengupta, J. O. Kim, A. V. Barve, S. Adhikary, Y. D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti, and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Appl. Phys. Lett. 100(19), 191111 (2012).
[Crossref]

M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A. Kuznetsov, D. N. Lobanov, and Z. F. Krasilnik, “Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers,” Appl. Phys. Lett. 101(15), 151601 (2012).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors,” Appl. Phys. Lett. 97(14), 021112 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Vaillancourt, N. Mojaverian, and X. Lu, “A long infrared focal plane array enhanced by backside-configured structures,” IEEE Photon. Technol. Lett. 26(8), 745–748 (2014).
[Crossref]

J. Appl. Phys. (4)

Y. Zhang, J. Vaillancourt, G. Gu, W. Guo, and X. Lu, “Quantum selection rule dependent plasmonic enhancement in quantum dot infrared photodetectors,” J. Appl. Phys. 119(14), 193103 (2016).
[Crossref]

T. Manku and A. Nathan, “Effective mass for strained p-type Si1−xGex,” J. Appl. Phys. 69(12), 8414–8416 (1991).
[Crossref]

E. Finkman, N. Shuall, A. Vardi, V. L. Thanh, and S. E. Schacham, “Interlevel transitions and two-photon processes in Ge/Si quantum dot photocurrent,” J. Appl. Phys. 103(9), 093114 (2008).
[Crossref]

A. I. Yakimov, V. A. Timofeev, A. A. Bloshkin, V. V. Kirienko, A. I. Nikiforov, and A. V. Dvurechenskii, “Influence of delta-doping on the performance of Ge/Si quantum-dot mid-infrared photodetectors,” J. Appl. Phys. 112(3), 034511 (2012).
[Crossref]

J. Appl. Phys. D: Appl. Phys. (1)

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Appl. Phys. D: Appl. Phys. 46(14), 015102 (2013).
[Crossref]

J. Comput. Theor. Nanosci. (1)

J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M Mishrikey, “Comparison of numerical methods for the analysis of plasmonic structures,” J. Comput. Theor. Nanosci. 6(2), 763–774 (2009).
[Crossref]

J. Phys. D: Appl. Phys. (2)

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D: Appl. Phys. 45(14), 433001 (2012).
[Crossref]

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D: Appl. Phys. 45, 113001 (2012).
[Crossref]

J. Phys.: Condens. Matter (1)

M. Virgilio and G. Grosso, “Type-I alignement and direct fundamental gap in SiGe based heterostructures,” J. Phys.: Condens. Matter 18, 1021–1031 (2006).

Mater. Res. Express (1)

A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, A. V. Dvurechenskii, and A. A. Shklyaev, “Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors,” Mater. Res. Express 3, 105032 (2016).
[Crossref]

Mater. Sci. Eng.: B (1)

Y. Bogumilowicz, J. M. Hartmann, N. Cherkashin, A. Claverie, G. Rolland, and T. Billon,“SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitaxy,” Mater. Sci. Eng.: B 124–125, 113–117 (2005).
[Crossref]

Nano Lett. (2)

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(14), 1704–1709 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nanoscale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(2), 667–669 (1998).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(2), 39–46 (2007).
[Crossref] [PubMed]

Nature Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(14), 205–213 (2010).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Phys. Rev. B (3)

O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands,” Phys. Rev. B 62(24), 16715–16720 (2000).
[Crossref]

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).
[Crossref]

H. Benisty, C. M. Sotomayor-Torrés, and C. Weisbuch, “Intrinsic mechanism for the poor luminescence properties of quantum-box systems,” Phys. Rev. B 44(19),10945–10948 (1991).
[Crossref]

Physica E (1)

H. Schneider, M. Walter, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, P. Koidl, and G. Weimann, “QWIP FPAs for high-performance thermal imaging,” Physica E 7, 101–107 (2000).
[Crossref]

Rep. Prog. Phys. (1)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(4), 036501 (2012).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(14), 105005 (2013).
[Crossref]

Other (3)

A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, “SiGe based visible-NIR photodetector technology for optoelectronic applications,” in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, M. Yasin, H. Arof, and S. W. Harun, eds. (InTech, 2015).

COMSOL Group, “Multiphysics Reference Guide for COMSOL 4.3,” http://www.comsol.com .

F. Schäffler, “Silicon-Germanium,” in Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, eds. (Wiley, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Layer sequence of 10-period (a) Ge/SiGe QDIP and (b) Ge/Si QDIP. (c) STM image from topmost uncapped Ge layer where 4.8 ML of Ge was deposited on a relaxed SiGe layer at 500°C with a rate of 0.05 Å/s. (d) Detector top view obtained in optical microscope.
Fig. 2
Fig. 2 (a) Zero-bias spectral response curves and (b) voltage dependence of the photocon-ductive gain of the Ge/Si QD device and the Ge/SiGe QDIP grown on virtual substrate.
Fig. 3
Fig. 3 (a) Optical image of a Ge/SiGe photodetector integrated with a 2D square lattice of holes in the gold film on its top surface (plan view). A 1D periodicity along the x axis is an artifact of the image. (b) A zoomed-in scanning electron microscopy image of the square lattice of circular holes in the Au film. For this sample, the diameter of holes is d = 1.00 ± 0.02 µm and the lattice constant is a = 1.6 µm. (c) Measured and simulated transmission spectra for a 50-nm-thick perforated gold film with circular air holes on a SiGe substrate with the Ge content of 0.18. The experimental spectra were obtained for substrate-side illumination (SSI) and top-side illumination (TSI) of the device. Since the calculated transmission is independent of the direction of light incidence, only one theoretical curve is shown. The peaks are labeled with the (i, j) grating orders. (d) A schematic illustration of the simulated structure.
Fig. 4
Fig. 4 Zero-bias spectral response of the SiGe-based QDIP with the 2DHA plasmonic structure compared to the bare QDIP for (a) TSI and (b) SSI.
Fig. 5
Fig. 5 Photocurrent enhancement ratio for top-side and substrate-side illumination. The larger enhancement is observed for SSI.
Fig. 6
Fig. 6 Spatial near-field profiles in the yz plane at various excitation wavelengths for a 2DHA-QDIP structure illuminated from the top (TSI) and from the bottom (SSI). The cut plane is at x = 0. The electromagnetic field is computed in a FEFD simulation, which includes the incident wave and all scattered waves. The light with circular polarization is incident along the z axis from the +z direction. The color scale denotes the normalized magnitude of the electric field and is the same for all panels. The active region of Ge quantum dots is between the white dash lines.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ i j = a i 2 + j 2 Re { [ ε m ε d ε m + ε d ] 1 / 2 } ,

Metrics