Abstract

The effect of gold tip crystallinity on their spectral amplification characteristics, monitored through the luminescence enhanced by surface plasmon resonance (SPR), is investigated experimentally. As the tip radius increases, the grains composing polycrystalline tips become larger, resulting in a blueshift of the emission while a redshift of the SPR was predicted for monocrystalline gold. This reveals that the effect of the grain size, a parameter that has not been considered so far, is dominant over that of the tip radius. This study is significant to apertureless scanning near-field optical microscopy, where the gold tip emission defines the spectral antenna range.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Grating enhanced apertureless near-field optical microscopy

Josip Mihaljevic, Christian Hafner, and Alfred J. Meixner
Opt. Express 23(14) 18401-18414 (2015)

Heterodyne apertureless near-field scanning optical microscopy on periodic gold nanowells

Jeffrey E. Hall, Gary P. Wiederrecht, Stephen K. Gray, Shih-Hui Chang, Seokwoo Jeon, John A. Rogers, Renaud Bachelot, and Pascal Royer
Opt. Express 15(7) 4098-4105 (2007)

Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches

Lewis Gomez, Renaud Bachelot, Alexandre Bouhelier, Gary P. Wiederrecht, Shih-hui Chang, Stephen K. Gray, Feng Hua, Seokwoo Jeon, John A. Rogers, Miguel E. Castro, Sylvain Blaize, Ilan Stefanon, Gilles Lerondel, and Pascal Royer
J. Opt. Soc. Am. B 23(5) 823-833 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. Heinzelmann and D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys. A Solids Surfaces 59, 89 (1994).
  2. S. Kirstein, “Scanning near-field optical microscopy,” Curr. Opin. Colloid Interface Sci. 4, 256 (1999).
  3. S. Patane, P. G. Gucciardi, M. Labardi, and M. Allegrini, “Apertureless near-field optical microscopy,” Riv. Nuovo Cim. 27, 1 (2004).
  4. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159 (1994).
    [PubMed]
  5. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623 (1994).
  6. J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
    [PubMed]
  7. K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [PubMed]
  8. F. Lu, M. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8, 307 (2014).
  9. B. Pettinger, “Single-molecule surface- and tip-enhanced raman spectroscopy,” Mol. Phys. 108, 2039 (2010).
  10. T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
    [PubMed]
  11. A. Merlen and F. Lagugné-Labarthet, “Imaging the Optical Near Field in Plasmonic Nanostructures,” Appl. Spectrosc. 68(12), 1307–1326 (2014).
    [PubMed]
  12. G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Arès, and A. Ruediger, “Composition Variation in Al-Based Dilute Nitride Alloys Using Apertureless Scanning Near-Field Optical Microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
    [PubMed]
  13. C. Chen, N. Hayazawa, and S. Kawata, “A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient,” Nat. Commun. 5, 3312 (2014).
    [PubMed]
  14. T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: tip-related issues,” Anal. Bioanal. Chem. 407(27), 8177–8195 (2015).
    [PubMed]
  15. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).
  16. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
    [PubMed]
  17. M. B. Mohamed, V. Volkov, S. Link, and M. a. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).
  18. B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, “Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement,” Surf. Sci. 603, 1335 (2009).
  19. K. F. Domke, “Tip-enhanced Raman spectroscopy – Topographic and chemical information on the nanoscale,” PhD thesis Freie Universitat Berlin, (2006).
  20. A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
    [PubMed]
  21. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795 (2010).
  22. L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, “Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration,” Opt. Express 23(11), 13804–13813 (2015).
    [PubMed]
  23. A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
    [PubMed]
  24. S. Thomas, G. Wachter, C. Lemell, J. Burgdorfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17, 63010 (2015).
  25. J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
    [PubMed]
  26. C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, “Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging,” J. Phys. Chem. C 117, 10669–10676 (2013).
  27. P. Apell, R. Monreal, and S. Lundqvist, “Photoluminescence of noble metals,” Phys. Scr. 38, 174 (1988).
  28. J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
    [PubMed]
  29. L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309–1315 (2006).
  30. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
  31. K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrosc. Radiat. Transf. 114, 45–55 (2013).
  32. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 93, 1–8 (2002).
  33. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
    [PubMed]
  34. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
  35. F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
    [PubMed]
  36. S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
    [PubMed]
  37. D. Roy, C. M. Williams, and K. Mingard, “Single-crystal gold tip for tip-enhanced Raman spectroscopy,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 28, 631 (2010).
  38. C. Zhou, J. Yu, Y. Qin, and J. Zheng, “Grain size effects in polycrystalline gold nanoparticles,” Nanoscale 4(14), 4228–4233 (2012).
    [PubMed]

2017 (1)

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[PubMed]

2016 (2)

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Arès, and A. Ruediger, “Composition Variation in Al-Based Dilute Nitride Alloys Using Apertureless Scanning Near-Field Optical Microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[PubMed]

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

2015 (4)

A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
[PubMed]

L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, “Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration,” Opt. Express 23(11), 13804–13813 (2015).
[PubMed]

S. Thomas, G. Wachter, C. Lemell, J. Burgdorfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17, 63010 (2015).

T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: tip-related issues,” Anal. Bioanal. Chem. 407(27), 8177–8195 (2015).
[PubMed]

2014 (3)

C. Chen, N. Hayazawa, and S. Kawata, “A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient,” Nat. Commun. 5, 3312 (2014).
[PubMed]

A. Merlen and F. Lagugné-Labarthet, “Imaging the Optical Near Field in Plasmonic Nanostructures,” Appl. Spectrosc. 68(12), 1307–1326 (2014).
[PubMed]

F. Lu, M. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8, 307 (2014).

2013 (3)

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[PubMed]

C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, “Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging,” J. Phys. Chem. C 117, 10669–10676 (2013).

K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrosc. Radiat. Transf. 114, 45–55 (2013).

2012 (3)

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

C. Zhou, J. Yu, Y. Qin, and J. Zheng, “Grain size effects in polycrystalline gold nanoparticles,” Nanoscale 4(14), 4228–4233 (2012).
[PubMed]

2010 (3)

D. Roy, C. M. Williams, and K. Mingard, “Single-crystal gold tip for tip-enhanced Raman spectroscopy,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 28, 631 (2010).

B. Pettinger, “Single-molecule surface- and tip-enhanced raman spectroscopy,” Mol. Phys. 108, 2039 (2010).

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795 (2010).

2009 (1)

B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, “Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement,” Surf. Sci. 603, 1335 (2009).

2008 (2)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[PubMed]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[PubMed]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[PubMed]

2006 (1)

L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309–1315 (2006).

2005 (2)

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
[PubMed]

2004 (1)

S. Patane, P. G. Gucciardi, M. Labardi, and M. Allegrini, “Apertureless near-field optical microscopy,” Riv. Nuovo Cim. 27, 1 (2004).

2002 (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 93, 1–8 (2002).

2000 (1)

M. B. Mohamed, V. Volkov, S. Link, and M. a. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).

1999 (1)

S. Kirstein, “Scanning near-field optical microscopy,” Curr. Opin. Colloid Interface Sci. 4, 256 (1999).

1994 (3)

H. Heinzelmann and D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys. A Solids Surfaces 59, 89 (1994).

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159 (1994).
[PubMed]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623 (1994).

1988 (1)

P. Apell, R. Monreal, and S. Lundqvist, “Photoluminescence of noble metals,” Phys. Scr. 38, 174 (1988).

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).

1969 (1)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).

Aimez, V.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Arès, and A. Ruediger, “Composition Variation in Al-Based Dilute Nitride Alloys Using Apertureless Scanning Near-Field Optical Microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[PubMed]

Aizpurua, J.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[PubMed]

Allegrini, M.

S. Patane, P. G. Gucciardi, M. Labardi, and M. Allegrini, “Apertureless near-field optical microscopy,” Riv. Nuovo Cim. 27, 1 (2004).

Apell, P.

P. Apell, R. Monreal, and S. Lundqvist, “Photoluminescence of noble metals,” Phys. Scr. 38, 174 (1988).

Arès, R.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Arès, and A. Ruediger, “Composition Variation in Al-Based Dilute Nitride Alloys Using Apertureless Scanning Near-Field Optical Microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[PubMed]

Atkinson, A. L.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[PubMed]

Ausman, L. K.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[PubMed]

Bachelot, R.

C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, “Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging,” J. Phys. Chem. C 117, 10669–10676 (2013).

Baumberg, J. J.

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

Belkin, M. A.

F. Lu, M. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8, 307 (2014).

Benz, F.

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

Blum, C.

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[PubMed]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795 (2010).

Boucherif, A.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Arès, and A. Ruediger, “Composition Variation in Al-Based Dilute Nitride Alloys Using Apertureless Scanning Near-Field Optical Microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[PubMed]

Bowman, R. W.

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[PubMed]

Burgdorfer, J.

S. Thomas, G. Wachter, C. Lemell, J. Burgdorfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17, 63010 (2015).

Carnegie, C.

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

Chen, C.

C. Chen, N. Hayazawa, and S. Kawata, “A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient,” Nat. Commun. 5, 3312 (2014).
[PubMed]

Chen, S.

Chikkaraddy, R.

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).

Dab, C.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Arès, and A. Ruediger, “Composition Variation in Al-Based Dilute Nitride Alloys Using Apertureless Scanning Near-Field Optical Microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[PubMed]

de Nijs, B.

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

Deckert, V.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[PubMed]

Deeb, C.

C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, “Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging,” J. Phys. Chem. C 117, 10669–10676 (2013).

Dellith, J.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[PubMed]

Demming, A. L.

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
[PubMed]

Derkachova, A.

K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrosc. Radiat. Transf. 114, 45–55 (2013).

Domke, K. F.

B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, “Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement,” Surf. Sci. 603, 1335 (2009).

El-Sayed, M. a.

M. B. Mohamed, V. Volkov, S. Link, and M. a. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795 (2010).

Fafard, S.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Arès, and A. Ruediger, “Composition Variation in Al-Based Dilute Nitride Alloys Using Apertureless Scanning Near-Field Optical Microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[PubMed]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 93, 1–8 (2002).

Festy, F.

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
[PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 93, 1–8 (2002).

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[PubMed]

García de Abajo, F. J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[PubMed]

Götz, I.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[PubMed]

Gucciardi, P. G.

S. Patane, P. G. Gucciardi, M. Labardi, and M. Allegrini, “Apertureless near-field optical microscopy,” Riv. Nuovo Cim. 27, 1 (2004).

Hayazawa, N.

C. Chen, N. Hayazawa, and S. Kawata, “A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient,” Nat. Commun. 5, 3312 (2014).
[PubMed]

Heinzelmann, H.

H. Heinzelmann and D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys. A Solids Surfaces 59, 89 (1994).

Hommelhoff, P.

S. Thomas, G. Wachter, C. Lemell, J. Burgdorfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17, 63010 (2015).

Huang, S. C.

T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: tip-related issues,” Anal. Bioanal. Chem. 407(27), 8177–8195 (2015).
[PubMed]

Huang, T.

Huang, T. X.

T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: tip-related issues,” Anal. Bioanal. Chem. 407(27), 8177–8195 (2015).
[PubMed]

Inouye, Y.

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795 (2010).

Jain, P. K.

C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, “Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging,” J. Phys. Chem. C 117, 10669–10676 (2013).

Jin, M.

F. Lu, M. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8, 307 (2014).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).

Kawata, S.

C. Chen, N. Hayazawa, and S. Kawata, “A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient,” Nat. Commun. 5, 3312 (2014).
[PubMed]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159 (1994).
[PubMed]

Kirstein, S.

S. Kirstein, “Scanning near-field optical microscopy,” Curr. Opin. Colloid Interface Sci. 4, 256 (1999).

Kolhatkar, G.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Arès, and A. Ruediger, “Composition Variation in Al-Based Dilute Nitride Alloys Using Apertureless Scanning Near-Field Optical Microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[PubMed]

Kolwas, K.

K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrosc. Radiat. Transf. 114, 45–55 (2013).

Labardi, M.

S. Patane, P. G. Gucciardi, M. Labardi, and M. Allegrini, “Apertureless near-field optical microscopy,” Riv. Nuovo Cim. 27, 1 (2004).

Lagugné-Labarthet, F.

Lemell, C.

S. Thomas, G. Wachter, C. Lemell, J. Burgdorfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17, 63010 (2015).

Li, M. H.

T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: tip-related issues,” Anal. Bioanal. Chem. 407(27), 8177–8195 (2015).
[PubMed]

Li, S.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[PubMed]

Link, S.

M. B. Mohamed, V. Volkov, S. Link, and M. a. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).

Liu, J.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

Liz-Marzán, L. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[PubMed]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).

Lu, F.

F. Lu, M. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8, 307 (2014).

Lundqvist, S.

P. Apell, R. Monreal, and S. Lundqvist, “Photoluminescence of noble metals,” Phys. Scr. 38, 174 (1988).

McMahon, J. M.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[PubMed]

Meng, L.

Merlen, A.

A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
[PubMed]

A. Merlen and F. Lagugné-Labarthet, “Imaging the Optical Near Field in Plasmonic Nanostructures,” Appl. Spectrosc. 68(12), 1307–1326 (2014).
[PubMed]

Mertens, J.

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

Mingard, K.

D. Roy, C. M. Williams, and K. Mingard, “Single-crystal gold tip for tip-enhanced Raman spectroscopy,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 28, 631 (2010).

Mohamed, M. B.

M. B. Mohamed, V. Volkov, S. Link, and M. a. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).

Monreal, R.

P. Apell, R. Monreal, and S. Lundqvist, “Photoluminescence of noble metals,” Phys. Scr. 38, 174 (1988).

Mooradian, A.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[PubMed]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[PubMed]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795 (2010).

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[PubMed]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623 (1994).

Ohadi, H.

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

Opilik, L.

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[PubMed]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[PubMed]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).

Patane, S.

S. Patane, P. G. Gucciardi, M. Labardi, and M. Allegrini, “Apertureless near-field optical microscopy,” Riv. Nuovo Cim. 27, 1 (2004).

Pérez-Juste, J.

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).

Pettinger, B.

B. Pettinger, “Single-molecule surface- and tip-enhanced raman spectroscopy,” Mol. Phys. 108, 2039 (2010).

B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, “Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement,” Surf. Sci. 603, 1335 (2009).

Picardi, G.

B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, “Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement,” Surf. Sci. 603, 1335 (2009).

Pinchuk, A. O.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[PubMed]

Plain, J.

C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, “Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging,” J. Phys. Chem. C 117, 10669–10676 (2013).

Plathier, J.

A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
[PubMed]

Pohl, D. W.

H. Heinzelmann and D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys. A Solids Surfaces 59, 89 (1994).

Qin, Y.

C. Zhou, J. Yu, Y. Qin, and J. Zheng, “Grain size effects in polycrystalline gold nanoparticles,” Nanoscale 4(14), 4228–4233 (2012).
[PubMed]

Ren, B.

T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: tip-related issues,” Anal. Bioanal. Chem. 407(27), 8177–8195 (2015).
[PubMed]

L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, “Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration,” Opt. Express 23(11), 13804–13813 (2015).
[PubMed]

Rettenmayr, M.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[PubMed]

Richards, D.

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
[PubMed]

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[PubMed]

Roy, D.

D. Roy, C. M. Williams, and K. Mingard, “Single-crystal gold tip for tip-enhanced Raman spectroscopy,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 28, 631 (2010).

Ruediger, A.

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Arès, and A. Ruediger, “Composition Variation in Al-Based Dilute Nitride Alloys Using Apertureless Scanning Near-Field Optical Microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[PubMed]

A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
[PubMed]

Russell, M.

C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, “Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging,” J. Phys. Chem. C 117, 10669–10676 (2013).

Salmon, A.

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

Scaffardi, L. B.

L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309–1315 (2006).

Schatz, G. C.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[PubMed]

Schmid, T.

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[PubMed]

Schneidewind, H.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[PubMed]

Schuster, R.

B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, “Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement,” Surf. Sci. 603, 1335 (2009).

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795 (2010).

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 93, 1–8 (2002).

Thomas, S.

S. Thomas, G. Wachter, C. Lemell, J. Burgdorfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17, 63010 (2015).

Tocho, J. O.

L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309–1315 (2006).

Trautmann, S.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[PubMed]

Undisz, A.

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[PubMed]

Volkov, V.

M. B. Mohamed, V. Volkov, S. Link, and M. a. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 93, 1–8 (2002).

Wachter, G.

S. Thomas, G. Wachter, C. Lemell, J. Burgdorfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17, 63010 (2015).

Wang, X.

T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: tip-related issues,” Anal. Bioanal. Chem. 407(27), 8177–8195 (2015).
[PubMed]

L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, “Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration,” Opt. Express 23(11), 13804–13813 (2015).
[PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795 (2010).

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623 (1994).

Wiederrecht, G. P.

C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, “Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging,” J. Phys. Chem. C 117, 10669–10676 (2013).

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 93, 1–8 (2002).

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[PubMed]

Williams, C. M.

D. Roy, C. M. Williams, and K. Mingard, “Single-crystal gold tip for tip-enhanced Raman spectroscopy,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 28, 631 (2010).

Yang, Z.

Yu, J.

C. Zhou, J. Yu, Y. Qin, and J. Zheng, “Grain size effects in polycrystalline gold nanoparticles,” Nanoscale 4(14), 4228–4233 (2012).
[PubMed]

Yu, M.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[PubMed]

Zeng, Z. C.

T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: tip-related issues,” Anal. Bioanal. Chem. 407(27), 8177–8195 (2015).
[PubMed]

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623 (1994).

Zenobi, R.

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[PubMed]

Zhang, D.

B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, “Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement,” Surf. Sci. 603, 1335 (2009).

Zhao, J.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[PubMed]

Zheng, J.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

C. Zhou, J. Yu, Y. Qin, and J. Zheng, “Grain size effects in polycrystalline gold nanoparticles,” Nanoscale 4(14), 4228–4233 (2012).
[PubMed]

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

Zhou, C.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

C. Zhou, J. Yu, Y. Qin, and J. Zheng, “Grain size effects in polycrystalline gold nanoparticles,” Nanoscale 4(14), 4228–4233 (2012).
[PubMed]

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

Zhou, X.

C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, “Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging,” J. Phys. Chem. C 117, 10669–10676 (2013).

Acc. Chem. Res. (1)

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[PubMed]

Anal. Bioanal. Chem. (1)

T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, “Tip-enhanced Raman spectroscopy: tip-related issues,” Anal. Bioanal. Chem. 407(27), 8177–8195 (2015).
[PubMed]

Angew. Chem. Int. Ed. Engl. (1)

T. Schmid, L. Opilik, C. Blum, and R. Zenobi, “Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review,” Angew. Chem. Int. Ed. Engl. 52(23), 5940–5954 (2013).
[PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[PubMed]

Appl. Phys. A Solids Surfaces (1)

H. Heinzelmann and D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys. A Solids Surfaces 59, 89 (1994).

Appl. Phys. Lett. (1)

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623 (1994).

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

M. B. Mohamed, V. Volkov, S. Link, and M. a. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517–523 (2000).

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[PubMed]

Coord. Chem. Rev. (1)

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).

Curr. Opin. Colloid Interface Sci. (1)

S. Kirstein, “Scanning near-field optical microscopy,” Curr. Opin. Colloid Interface Sci. 4, 256 (1999).

J. Chem. Phys. (1)

A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering,” J. Chem. Phys. 122(18), 184716 (2005).
[PubMed]

J. Phys. Chem. C (1)

C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, “Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging,” J. Phys. Chem. C 117, 10669–10676 (2013).

J. Phys. Chem. Lett. (1)

F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R. W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape,” J. Phys. Chem. Lett. 7(12), 2264–2269 (2016).
[PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

K. Kolwas and A. Derkachova, “Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay,” J. Quant. Spectrosc. Radiat. Transf. 114, 45–55 (2013).

J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. (1)

D. Roy, C. M. Williams, and K. Mingard, “Single-crystal gold tip for tip-enhanced Raman spectroscopy,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 28, 631 (2010).

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795 (2010).

Mol. Phys. (1)

B. Pettinger, “Single-molecule surface- and tip-enhanced raman spectroscopy,” Mol. Phys. 108, 2039 (2010).

Nanoscale (4)

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[PubMed]

S. Trautmann, J. Aizpurua, I. Götz, A. Undisz, J. Dellith, H. Schneidewind, M. Rettenmayr, and V. Deckert, “A classical description of subnanometer resolution by atomic features in metallic structures,” Nanoscale 9(1), 391–401 (2017).
[PubMed]

C. Zhou, J. Yu, Y. Qin, and J. Zheng, “Grain size effects in polycrystalline gold nanoparticles,” Nanoscale 4(14), 4228–4233 (2012).
[PubMed]

Nanotechnology (1)

L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309–1315 (2006).

Nat. Commun. (1)

C. Chen, N. Hayazawa, and S. Kawata, “A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient,” Nat. Commun. 5, 3312 (2014).
[PubMed]

Nat. Photonics (1)

F. Lu, M. Jin, and M. A. Belkin, “Tip-enhanced infrared nanospectroscopy via molecular expansion force detection,” Nat. Photonics 8, 307 (2014).

New J. Phys. (2)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J. Phys. 93, 1–8 (2002).

S. Thomas, G. Wachter, C. Lemell, J. Burgdorfer, and P. Hommelhoff, “Large optical field enhancement for nanotips with large opening angles,” New J. Phys. 17, 63010 (2015).

Opt. Express (1)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

G. Kolhatkar, A. Boucherif, C. Dab, S. Fafard, V. Aimez, R. Arès, and A. Ruediger, “Composition Variation in Al-Based Dilute Nitride Alloys Using Apertureless Scanning Near-Field Optical Microscopy,” Phys. Chem. Chem. Phys. 18(44), 30546–30553 (2016).
[PubMed]

A. Merlen, J. Plathier, and A. Ruediger, “A near field optical image of a gold surface: a luminescence study,” Phys. Chem. Chem. Phys. 17(33), 21176–21181 (2015).
[PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).

Phys. Rev. B Condens. Matter (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[PubMed]

Phys. Rev. Lett. (1)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).

Phys. Scr. (1)

P. Apell, R. Monreal, and S. Lundqvist, “Photoluminescence of noble metals,” Phys. Scr. 38, 174 (1988).

Riv. Nuovo Cim. (1)

S. Patane, P. G. Gucciardi, M. Labardi, and M. Allegrini, “Apertureless near-field optical microscopy,” Riv. Nuovo Cim. 27, 1 (2004).

Surf. Sci. (1)

B. Pettinger, K. F. Domke, D. Zhang, G. Picardi, and R. Schuster, “Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement,” Surf. Sci. 603, 1335 (2009).

Other (1)

K. F. Domke, “Tip-enhanced Raman spectroscopy – Topographic and chemical information on the nanoscale,” PhD thesis Freie Universitat Berlin, (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Topography image of three CNTs measured using a gold tip, and (b) profile taken across a CNT (black dots; the line connecting the dots was added to guide the eye) fitted using the model of the tip trajectory (red curve).
Fig. 2
Fig. 2 Schematic of the tip apex trajectory close to a CNT.
Fig. 3
Fig. 3 Typical emission signal measured at the apex of a 20 nm radius gold tip (black) using a 632.8 nm laser excitation, 4 µm away from the sample surface, and fitted using a Lorenztian distribution (red).
Fig. 4
Fig. 4 Theoretical SPR (green dashed dotted line), luminescence (blue dotted line) and enhanced luminescence (black dashed line), and experimentally measured emission (red line). For clarity, the theoretical SPR curve is multiplied by a factor of 100.
Fig. 5
Fig. 5 Peak shift of the gold tip emission as a function of the tip radius.
Fig. 6
Fig. 6 Schematic of the evolution of the grain at the tip apex during the etching process at different times (t0, t1, t2).
Fig. 7
Fig. 7 Luminescence of a gold tip measured with a UV laser at the tip apex (blue line) and away from the apex (red dashed line). An SEM image of the gold tip is presented in inset, where the two crosses indicate the positions where the luminescence was measured.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

y={ y 0 +rR+ ( R+r+D ) 2 ( x x 0 ) 2 if| x x 0 | ( R+r+D ) 2 ( Rr ) 2 y 0 +D else ,
I(ω)= ω α( ω 0 )+α(ω) 4 ( 1+n ) 2 + k 2 1 n 2 + k 2 D 0 (ω),
D 0 (ω)= E F ω 0 E F ω dED (E) 2
G(ω)=5 | 1+2g( ω 0 ) | 2 | 1+2g(ω) | 2 ,
g(ω)= ε metal (ω) ε env (ω) ε metal (ω)+χ ε env (ω) ,
ε metal (ω)= ε boundelectron (ω)+ ε freeelectron (ω),
ε freeelectron (ω)=1 ω P 2 ω 2 +i( γ+C ν F S )ω .

Metrics