Abstract

We demonstrate a reflective liquid-crystal polarization volume grating with high efficiency for augmented reality displays. The coupling efficiency was measured to be 90% at 650 nm and 50° deflection angle. The angular dependence of reflection band agrees well with Bragg condition, and the transmittance of environment light is high with negligible scattering. The bandwidth can be tailored by controlling the layer periodicity, allowing versatile applications and design freedom not only for augmented realities but also for other photonic devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chirped polarization volume grating with ultra-wide angular bandwidth and high efficiency for see-through near-eye displays

Kun Yin, Hung-Yuan Lin, and Shin-Tson Wu
Opt. Express 27(24) 35895-35902 (2019)

Stretchable, flexible, rollable, and adherable polarization volume grating film

Kun Yin, Yun-Han Lee, Ziqian He, and Shin-Tson Wu
Opt. Express 27(4) 5814-5823 (2019)

Polarization volume grating with high efficiency and large diffraction angle

Yishi Weng, Daming Xu, Yuning Zhang, Xiaohua Li, and Shin-Tson Wu
Opt. Express 24(16) 17746-17759 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” SID Int. Symp. Digest Tech. Papers 48(1), 127–131 (2017).
  2. I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).
  3. T. Levola, “Novel diffractive optical components for near to eye displays,” SID Int. Symp. Digest Tech. Papers 37(1), 64–67 (2006).
  4. T. Rasmussen, “Overview of high-efficiency transmission gratings for molecular spectroscopy,” Spectroscopy (Springf.) 29(4), 32–39 (2014).
  5. F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).
  6. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).
  7. Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals materials, formation, and applications,” Adv. Optoelectron. 2008, 684349 (2008).
  8. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length-new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
    [PubMed]
  9. K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
    [PubMed]
  10. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [PubMed]
  11. X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25(16), 19298–19308 (2017).
  12. Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
  13. Y. Weng, D. Xu, Y. Zhang, X. Li, and S.-T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
    [PubMed]
  14. J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
  15. J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).
  16. J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).
  17. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” SID Int. Symp. Digest Tech. Papers 17(3) 185–193 (2009).

2017 (5)

K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
[PubMed]

X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25(16), 19298–19308 (2017).

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

2016 (2)

Y. Weng, D. Xu, Y. Zhang, X. Li, and S.-T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[PubMed]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).

2015 (2)

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length-new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[PubMed]

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).

2014 (1)

T. Rasmussen, “Overview of high-efficiency transmission gratings for molecular spectroscopy,” Spectroscopy (Springf.) 29(4), 32–39 (2014).

2008 (2)

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals materials, formation, and applications,” Adv. Optoelectron. 2008, 684349 (2008).

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[PubMed]

2001 (1)

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).

1993 (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).

Berry, S.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
[PubMed]

Bos, P.

K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
[PubMed]

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

Bruder, F.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).

Bryant, D.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

Bunning, T. J.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).

Clark, H.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

Escuti, M. J.

Fäcke, T.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).

Finnemeyer, V.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
[PubMed]

Gao, K.

Gauza, S.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

Gou, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

Hagen, R.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).

Hiroaki, U.

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).

Hönel, D.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).

Kasai, I.

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).

Kim, J.

Kimball, B. R.

Kobashi, J.

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).

Komanduri, R.

Lee, Y. H.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

Li, X.

Liu, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

Liu, Y. J.

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals materials, formation, and applications,” Adv. Optoelectron. 2008, 684349 (2008).

McGinty, C.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
[PubMed]

Mohri, Y.

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).

Natarajan, L. V.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).

Oh, C.

Orselli, E.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).

Ozaki, M.

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).

Payson, H.

Peng, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

Rasmussen, T.

T. Rasmussen, “Overview of high-efficiency transmission gratings for molecular spectroscopy,” Spectroscopy (Springf.) 29(4), 32–39 (2014).

Reich, R.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

Rewitz, C.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).

Roberts, B.

Roberts, D. E.

Rölle, T.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).

Serak, S. V.

Steeves, D. M.

Sun, X. W.

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals materials, formation, and applications,” Adv. Optoelectron. 2008, 684349 (2008).

Sutherland, R. L.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).

Tabiryan, N. V.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length-new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[PubMed]

Takeshi, E.

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).

Tan, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

Tanijiri, Y.

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).

Tondiglia, V. P.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).

Vornehm, J.

Walze, G.

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).

Wang, J.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

Weng, Y.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

Y. Weng, D. Xu, Y. Zhang, X. Li, and S.-T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[PubMed]

West, J.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

Wu, S. T.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

Wu, S.-T.

Xiang, X.

Xu, D.

Yaroshchuk, O.

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

Yoshida, H.

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).

Zhan, T.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

Zhang, Y.

Adv. Optoelectron. (1)

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals materials, formation, and applications,” Adv. Optoelectron. 2008, 684349 (2008).

Chem. Mater. (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).

Liq. Cryst. (1)

J. Wang, C. McGinty, J. West, D. Bryant, V. Finnemeyer, R. Reich, S. Berry, H. Clark, O. Yaroshchuk, and P. Bos, “Effects of humidity and surface on photoalignment of brilliant yellow,” Liq. Cryst. 5(44), 863–872 (2017).

Nat. Photonics (1)

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).

Opt. Data Process. Storage (2)

J. Kobashi, Y. Mohri, H. Yoshida, and M. Ozaki, “Circularly-polarized, large-angle reflective deflectors based on periodically patterned cholesteric liquid crystals,” Opt. Data Process. Storage 3(1), 61–66 (2017).

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).

Opt. Express (4)

Opt. Lett. (1)

Opt. Rev. (1)

I. Kasai, Y. Tanijiri, E. Takeshi, and U. Hiroaki, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8(4), 241–244 (2001).

Proc. SPIE (1)

F. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, and G. Walze, “Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film,” Proc. SPIE 9626, 96260T (2015).

Spectroscopy (Springf.) (1)

T. Rasmussen, “Overview of high-efficiency transmission gratings for molecular spectroscopy,” Spectroscopy (Springf.) 29(4), 32–39 (2014).

Other (3)

B. C. Kress and W. J. Cummings, “Towards the ultimate mixed reality experience: HoloLens display architecture choices,” SID Int. Symp. Digest Tech. Papers 48(1), 127–131 (2017).

T. Levola, “Novel diffractive optical components for near to eye displays,” SID Int. Symp. Digest Tech. Papers 37(1), 64–67 (2006).

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” SID Int. Symp. Digest Tech. Papers 17(3) 185–193 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The schematic plot of a reflective PVG with in-plane periodicity denoted as Λx, vertical periodicity as Λy (helical pitch P = 2Λy), the grating vector as k, and the slant angle being ϕ. For a normal incidence, the deflection angle is 2ϕ. (b) The FEM simulation with a circularly polarized light entering from glass onto a 3-µm thick PVG layer at normal incidence (Δn = 0.18, Λx = 540 nm, Λy = 250 nm and λ = 650 nm).
Fig. 2
Fig. 2 The setup for interference exposure process. The beam from linearly polarized He-Cd laser was filtered, collimated and split into two paths with a non-polarizing beam splitter (NPBS). They were then sent through quarter wave plates (QWPs) to form two opposite-handed circularly polarized light beams and interfere at an angle of α = 55° at the sample.
Fig. 3
Fig. 3 Measured and simulated diffraction efficiency at λ = 650 nm and different thickness of PVG film. A fair agreement is observed. Inset: a 2.9-µm sample viewed from an oblique angle with the PVG region circled by the blue line.
Fig. 4
Fig. 4 (a) The transmission spectra for PVG samples with different film thickness. The deflection angle (in glass) was roughly 50° at 650 nm. A clear reduction in bandwidth is observed, while the reflection efficiency increases significantly as the thickness increases to 2.9 µm. (b) A photo taken through the PVG sample with 2.9-µm thickness. PVG region is circled in the blue line. The distance between PVG to camera was 1 cm, and the target was 10 cm away.
Fig. 5
Fig. 5 (a) Measured transmission spectra of a PVG sample at different incident angles (from air). (b) Measured deflection efficiency at 650 nm at different incident angle (from air).
Fig. 6
Fig. 6 The central wavelength versus the incident angle (from air).
Fig. 7
Fig. 7 The spectra of the single-period (single periodicity along vertical axis) sample and three-period sample, showing the capability to extend the reflection band using this fabrication process.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ Λ x = Λ B /sinϕ Λ y = Λ B /cosϕ ,
ρ(x,y)= π Λ x x+ π Λ y y.
λ B =2 n eff Λ B cosθ,

Metrics