Abstract

A split digital backpropagation (DBP) scheme for digital subcarrier-multiplexing (SCM) transmissions, denoted as SSDBP, is proposed and studied in both experiments and simulations. The implementation of the SSDBP is split at the transmitter and the receiver, leveraging existing chromatic dispersion (CD) compensation blocks to reduce complexity. We experimentally demonstrate that the SSDBP, with a complexity reduction up to 50% compared to the original receiver based SCM-DBP, can achieve a nonlinear compensation Q2 gain of 0.7-dB and 0.9-dB for 1920-km and 2880-km 34.94-GBd single channel PDM-16QAM transmissions, respectively. The maximum reach can be extended by 31.6% using 2-step SSDBP with only 27.5 complex multiplications per sample. Meanwhile, using 3-step SSDBP, the reach extension can be increased to 40.8%. The benefit of implementing part of SSDBP at the transmitter is experimentally validated with 0.1-dB Q2 improvement at 4-dBm launch power. We also numerically investigate the impact of the digital-to-analog converter (DAC) resolution and fiber parameter uncertainties on the nonlinear compensation performance of the SSDBP.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low complexity digital backpropagation for high baud subcarrier-multiplexing systems

Fangyuan Zhang, Qunbi Zhuge, Meng Qiu, and David V. Plant
Opt. Express 24(15) 17027-17040 (2016)

On the bandwidth dependent performance of split transmitter-receiver optical fiber nonlinearity compensation

Domaniç Lavery, Robert Maher, Gabriele Liga, Daniel Semrau, Lidia Galdino, and Polina Bayvel
Opt. Express 25(4) 4554-4563 (2017)

On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission

Gabriele Liga, Tianhua Xu, Alex Alvarado, Robert I. Killey, and Polina Bayvel
Opt. Express 22(24) 30053-30062 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
  2. Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensation algorithm operating at symbol rate,” J. Lightwave Technol. 29(17), 2570–2576 (2011).
  3. Y. Gao, J. C. Cartledge, A. S. Karar, S. S. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
    [PubMed]
  4. S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
    [PubMed]
  5. L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18(16), 17075–17088 (2010).
    [PubMed]
  6. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” in Proceedings of Optical Fiber Communication Conference (Los Angeles, California, 2011), paper OWW3.
  7. W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” in Proceedings of European Conference on Optical Communication (Geneva, Switzerland, 2011), paper Tu.3.A.2.
  8. M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, and L. Poti, “Single-step digital backpropagation for nonlinearity mitigation,” Photonic Netw. Commun. 33(3), 493–502 (2016).
  9. L. B. Du and A. J. Lowery, “Optimizing the subcarrier granularity of coherent optical communications systems,” Opt. Express 19(9), 8079–8084 (2011).
    [PubMed]
  10. W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photonics J. 2(3), 276–283 (2010).
  11. P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightwave Technol. 34(8), 1872–1885 (2016).
  12. M. Qiu, Q. Zhuge, M. Chagnon, Y. Gao, X. Xu, M. Morsy-Osman, and D. V. Plant, “Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems,” Opt. Express 22(15), 18770–18777 (2014).
    [PubMed]
  13. F. Zhang, Q. Zhuge, M. Qiu, W. Wang, M. Chagnon, and D. V. Plant, “XPM model-based digital backpropagation for subcarrier-multiplexing systems,” J. Lightwave Technol. 33(24), 5140–5150 (2015).
  14. Z. Tao, W. Yan, L. Liu, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Simple fiber model for determination of XPM effects,” J. Lightwave Technol. 29(7), 974–986 (2011).
  15. F. Zhang, Q. Zhuge, M. Qiu, and D. V. Plant, “Low complexity digital backpropagation for high baud subcarrier-multiplexing systems,” Opt. Express 24(15), 17027–17040 (2016).
    [PubMed]
  16. D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
  17. D. Lavery, R. Maher, G. Liga, D. Semrau, L. Galdino, and P. Bayvel, “On the bandwidth dependent performance of split transmitter-receiver optical fiber nonlinearity compensation,” Opt. Express 25(4), 4554–4563 (2017).
    [PubMed]
  18. E. Temprana, E. Myslivets, V. Ataie, B. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of coherent transmission reach tripling by frequency-referenced nonlinearity pre-compensation in EDFA-only SMF link,” in Proceedings of European Conference on Optical Communication (Duselldorf, Germany, 2016), paper Tu.3.B.4.
  19. Q. Zhuge, M. Reimer, A. Borowiec, M. O’Sullivan, and D. V. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion,” in Proceedings of Optical Fiber Communication Conference (San Francisco, California, 2014), paper Th4D.7.
  20. C. Laperle and M. O’Sullivan, “Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers,” J. Lightwave Technol. 32(4), 629–643 (2014).
  21. T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
  22. Z. Xiao, B. Li, S. Fu, L. Deng, M. Tang, and D. Liu, “First experimental demonstration of faster-than-Nyquist PDM-16QAM transmission over standard single mode fiber,” Opt. Lett. 42(6), 1072–1075 (2017).
    [PubMed]
  23. R. Dar and P. J. Winzer, “Nonlinear interference mitigation: methods and potential gain,” J. Lightwave Technol. 35(4), 903–930 (2017).
  24. T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).
  25. F. Zhang, Q. Zhuge, M. Qiu, M. Chagnon, and D. V. Plant, “Blind adaptive XPM model based digital backpropagation for subcarrier-multiplexing systems,” in Proceedings of European Conference on Optical Communication (Duselldorf, Germany, 2016), paper Tu.3.B.3.

2017 (3)

2016 (5)

F. Zhang, Q. Zhuge, M. Qiu, and D. V. Plant, “Low complexity digital backpropagation for high baud subcarrier-multiplexing systems,” Opt. Express 24(15), 17027–17040 (2016).
[PubMed]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).

S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
[PubMed]

M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, and L. Poti, “Single-step digital backpropagation for nonlinearity mitigation,” Photonic Netw. Commun. 33(3), 493–502 (2016).

P. Poggiolini, A. Nespola, Y. Jiang, G. Bosco, A. Carena, L. Bertignono, S. M. Bilal, S. Abrate, and F. Forghieri, “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightwave Technol. 34(8), 1872–1885 (2016).

2015 (1)

2014 (3)

2011 (3)

2010 (2)

L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18(16), 17075–17088 (2010).
[PubMed]

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photonics J. 2(3), 276–283 (2010).

2008 (2)

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).

T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).

1997 (1)

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).

Abrate, S.

Alvarado, A.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).

Bayvel, P.

D. Lavery, R. Maher, G. Liga, D. Semrau, L. Galdino, and P. Bayvel, “On the bandwidth dependent performance of split transmitter-receiver optical fiber nonlinearity compensation,” Opt. Express 25(4), 4554–4563 (2017).
[PubMed]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).

Bertignono, L.

Bilal, S. M.

Borowiec, A.

Bosco, G.

Carena, A.

Cartledge, J. C.

Chagnon, M.

Cox, D. C.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).

Dar, R.

Deng, L.

Dou, L.

Du, L. B.

Forestieri, E.

M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, and L. Poti, “Single-step digital backpropagation for nonlinearity mitigation,” Photonic Netw. Commun. 33(3), 493–502 (2016).

Forghieri, F.

Fresi, F.

M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, and L. Poti, “Single-step digital backpropagation for nonlinearity mitigation,” Photonic Netw. Commun. 33(3), 493–502 (2016).

Fu, S.

Galdino, L.

Gao, Y.

Hoshida, T.

Ip, E.

Ives, D.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).

Jiang, T.

T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).

Jiang, Y.

Kahn, J. M.

Karar, A. S.

Laperle, C.

Lavery, D.

D. Lavery, R. Maher, G. Liga, D. Semrau, L. Galdino, and P. Bayvel, “On the bandwidth dependent performance of split transmitter-receiver optical fiber nonlinearity compensation,” Opt. Express 25(4), 4554–4563 (2017).
[PubMed]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).

Li, B.

Li, L.

Li, X.

Liga, G.

D. Lavery, R. Maher, G. Liga, D. Semrau, L. Galdino, and P. Bayvel, “On the bandwidth dependent performance of split transmitter-receiver optical fiber nonlinearity compensation,” Opt. Express 25(4), 4554–4563 (2017).
[PubMed]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).

Liu, D.

Liu, L.

Lowery, A. J.

Maher, R.

Meloni, G.

M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, and L. Poti, “Single-step digital backpropagation for nonlinearity mitigation,” Photonic Netw. Commun. 33(3), 493–502 (2016).

Morsy-Osman, M.

Nespola, A.

O’Sullivan, M.

Oda, S.

Plant, D. V.

Poggiolini, P.

Poti, L.

M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, and L. Poti, “Single-step digital backpropagation for nonlinearity mitigation,” Photonic Netw. Commun. 33(3), 493–502 (2016).

Qiu, M.

Rasmussen, J. C.

Roberts, K.

Rommel, S.

M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, and L. Poti, “Single-step digital backpropagation for nonlinearity mitigation,” Photonic Netw. Commun. 33(3), 493–502 (2016).

Savory, S. J.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).

Schmidl, T. M.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).

Secondini, M.

M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, and L. Poti, “Single-step digital backpropagation for nonlinearity mitigation,” Photonic Netw. Commun. 33(3), 493–502 (2016).

Semrau, D.

Shieh, W.

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photonics J. 2(3), 276–283 (2010).

Tang, M.

Tang, Y.

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photonics J. 2(3), 276–283 (2010).

Tao, Z.

Wang, W.

Winzer, P. J.

Wu, Y.

T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).

Xiao, Z.

Xu, X.

Yam, S. S.

Yan, W.

Yang, Q.

Yi, L.

Zhang, F.

Zhou, S.

Zhuge, Q.

IEEE Photonics J. (1)

W. Shieh and Y. Tang, “Ultrahigh-speed signal transmission over nonlinear and dispersive fiber optic channel: the multicarrier advantage,” IEEE Photonics J. 2(3), 276–283 (2010).

IEEE Photonics Technol. Lett. (1)

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).

IEEE Trans. Broadcast (1)

T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast 54(2), 257–268 (2008).

IEEE Trans. Commun. (1)

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).

J. Lightwave Technol. (7)

Opt. Express (6)

Opt. Lett. (2)

Photonic Netw. Commun. (1)

M. Secondini, S. Rommel, G. Meloni, F. Fresi, E. Forestieri, and L. Poti, “Single-step digital backpropagation for nonlinearity mitigation,” Photonic Netw. Commun. 33(3), 493–502 (2016).

Other (5)

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” in Proceedings of Optical Fiber Communication Conference (Los Angeles, California, 2011), paper OWW3.

W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” in Proceedings of European Conference on Optical Communication (Geneva, Switzerland, 2011), paper Tu.3.A.2.

E. Temprana, E. Myslivets, V. Ataie, B. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of coherent transmission reach tripling by frequency-referenced nonlinearity pre-compensation in EDFA-only SMF link,” in Proceedings of European Conference on Optical Communication (Duselldorf, Germany, 2016), paper Tu.3.B.4.

Q. Zhuge, M. Reimer, A. Borowiec, M. O’Sullivan, and D. V. Plant, “Aggressive quantization on perturbation coefficients for nonlinear pre-distortion,” in Proceedings of Optical Fiber Communication Conference (San Francisco, California, 2014), paper Th4D.7.

F. Zhang, Q. Zhuge, M. Qiu, M. Chagnon, and D. V. Plant, “Blind adaptive XPM model based digital backpropagation for subcarrier-multiplexing systems,” in Proceedings of European Conference on Optical Communication (Duselldorf, Germany, 2016), paper Tu.3.B.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Transmitter-side DSP flow. (b) Receiver-side DSP flow.
Fig. 2
Fig. 2 (a) Illustration of NLC steps of 2-step SCM-DBP, 2-step SSDBP and 3-step SSDBP. (b) Block diagram of NLC in SSDBP.
Fig. 3
Fig. 3 Experiment setup and the spectrum of the generated signal of Tx DSP with (upper) and without (lower) nonlinear compensation. VOA: variable optical attenuator, SW: switch.
Fig. 4
Fig. 4 BTB transmission results. SC: single carrier.
Fig. 5
Fig. 5 (a) Performance after 1920-km SSMF transmission. (b) Performance after 2880-km SSMF transmission. SC: single carrier. LC: linear compensation.
Fig. 6
Fig. 6 (a) Illustration of NLC steps of 2-step SSDBP and 2-step receiver-side SSDBP. (b) Q2 gain of SSDBP with respect to receiver-side SSDBP.
Fig. 7
Fig. 7 Maximum reach under various compensation schemes.
Fig. 8
Fig. 8 (a) PAPR of the transmitted signals in various schemes. (b) The required OSNR at BER= 2 × 10 - 2 versus DAC resolution bits.
Fig. 9
Fig. 9 (a) Q2 gain of nonlinearity compensation over different transmission distances. (b) Contour of the Q2 gain of nonlinearity compensation against uncertainty of parameters.

Tables (2)

Tables Icon

Table 1 Complexity of CD compensation over different step lengths

Tables Icon

Table 2 Complexity of SSDBP and SCM-DBP.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M K C D ( log 2 ( K C D ) + 1 ) K C D P C D + M ( 5.5 + 3 N S )
P C D = 2 ( 2 1 / N S C M ) ( 1 + γ ) π | β 2 | L s t e p ( 2 R s ) 2
( M 2 ) K C D ( log 2 ( K C D ) + 1 ) K C D P C D + M ( 5.5 + 3 ( N S 2 + N S 2 4 N + N S 2 N ) )

Metrics